/* $NetBSD: acpi_machdep.c,v 1.35 2023/01/24 09:35:20 riastradh Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Machine-dependent routines for ACPICA.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_machdep.c,v 1.35 2023/01/24 09:35:20 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <machine/cpufunc.h>
#include <machine/bootinfo.h>
#include <machine/autoconf.h>
#include <dev/acpi/acpica.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_mcfg.h>
#include <machine/acpi_machdep.h>
#include <machine/mpbiosvar.h>
#include <machine/mpacpi.h>
#include <machine/i82093reg.h>
#include <machine/i82093var.h>
#include <machine/pic.h>
#include <machine/pmap_private.h>
#include <x86/efi.h>
#include <dev/pci/pcivar.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include "ioapic.h"
#include "acpica.h"
#include "opt_mpbios.h"
#include "opt_acpi.h"
#include "opt_vga.h"
#ifdef XEN
#include <xen/hypervisor.h>
#endif
/*
* Default VBIOS reset method for non-HW accelerated VGA drivers.
*/
#ifdef VGA_POST
# define VBIOS_RESET_DEFAULT 2
#else
# define VBIOS_RESET_DEFAULT 1
#endif
ACPI_STATUS
acpi_md_OsInitialize(void)
{
return AE_OK;
}
ACPI_PHYSICAL_ADDRESS
acpi_md_OsGetRootPointer(void)
{
ACPI_PHYSICAL_ADDRESS PhysicalAddress;
ACPI_STATUS Status;
#ifdef XENPV
/*
* Obtain the ACPI RSDP from the hypervisor.
* This is the only way to go if Xen booted from EFI: the
* Extended BIOS Data Area (EBDA) is not mapped, and Xen
* does not pass an EFI SystemTable to the kernel.
*/
struct xen_platform_op op = {
.cmd = XENPF_firmware_info,
.u.firmware_info = {
.type = XEN_FW_EFI_INFO,
.index = XEN_FW_EFI_CONFIG_TABLE
}
};
union xenpf_efi_info *info = &op.u.firmware_info.u.efi_info;
if (HYPERVISOR_platform_op(&op) == 0) {
struct efi_cfgtbl *ct;
int i;
ct = AcpiOsMapMemory(info->cfg.addr,
sizeof(*ct) * info->cfg.nent);
for (i = 0; i < info->cfg.nent; i++) {
if (memcmp(&ct[i].ct_uuid,
&EFI_UUID_ACPI20, sizeof(EFI_UUID_ACPI20)) == 0) {
PhysicalAddress = (ACPI_PHYSICAL_ADDRESS)
(uintptr_t)ct[i].ct_data;
if (PhysicalAddress)
goto out;
}
}
for (i = 0; i < info->cfg.nent; i++) {
if (memcmp(&ct[i].ct_uuid,
&EFI_UUID_ACPI10, sizeof(EFI_UUID_ACPI10)) == 0) {
PhysicalAddress = (ACPI_PHYSICAL_ADDRESS)
(uintptr_t)ct[i].ct_data;
if (PhysicalAddress)
goto out;
}
}
out:
AcpiOsUnmapMemory(ct, sizeof(*ct) * info->cfg.nent);
if (PhysicalAddress)
return PhysicalAddress;
}
#else
#ifdef XEN
if (vm_guest == VM_GUEST_XENPVH) {
PhysicalAddress = hvm_start_info->rsdp_paddr;
if (PhysicalAddress)
return PhysicalAddress;
}
#endif
/*
* Get the ACPI RSDP from EFI SystemTable. This works when the
* kernel was loaded from EFI bootloader.
*/
if (efi_probe()) {
PhysicalAddress = efi_getcfgtblpa(&EFI_UUID_ACPI20);
if (!PhysicalAddress)
PhysicalAddress = efi_getcfgtblpa(&EFI_UUID_ACPI10);
if (PhysicalAddress)
return PhysicalAddress;
}
#endif
/*
* Find ACPI RSDP from Extended BIOS Data Area (EBDA). This
* works when the kernel was started from BIOS bootloader,
* or for Xen PV when Xen was started from BIOS bootloader.
*/
Status = AcpiFindRootPointer(&PhysicalAddress);
if (ACPI_FAILURE(Status))
PhysicalAddress = 0;
return PhysicalAddress;
}
struct acpi_md_override {
int irq;
int pin;
int flags;
};
#if NIOAPIC > 0
static ACPI_STATUS
acpi_md_findoverride(ACPI_SUBTABLE_HEADER *hdrp, void *aux)
{
ACPI_MADT_INTERRUPT_OVERRIDE *iop;
struct acpi_md_override *ovrp;
if (hdrp->Type != ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
return AE_OK;
}
iop = (void *)hdrp;
ovrp = aux;
if (iop->SourceIrq == ovrp->irq) {
ovrp->pin = iop->GlobalIrq;
ovrp->flags = iop->IntiFlags;
}
return AE_OK;
}
#endif
ACPI_STATUS
acpi_md_OsInstallInterruptHandler(uint32_t InterruptNumber,
ACPI_OSD_HANDLER ServiceRoutine, void *Context, void **cookiep,
const char *xname)
{
void *ih;
ih = acpi_md_intr_establish(InterruptNumber, IPL_TTY, IST_LEVEL,
(int (*)(void *))ServiceRoutine, Context, /*mpsafe*/true, xname);
if (ih == NULL)
return AE_NO_MEMORY;
*cookiep = ih;
return AE_OK;
}
void
acpi_md_OsRemoveInterruptHandler(void *cookie)
{
intr_disestablish(cookie);
}
void *
acpi_md_intr_establish(uint32_t InterruptNumber, int ipl, int type,
int (*handler)(void *), void *arg, bool mpsafe, const char *xname)
{
void *ih;
struct pic *pic;
int irq = InterruptNumber, pin;
#if NIOAPIC > 0
struct ioapic_softc *ioapic;
struct acpi_md_override ovr;
struct mp_intr_map tmpmap, *mip, **mipp = NULL;
intr_handle_t mpih;
int redir, mpflags;
/*
* ACPI interrupts default to level-triggered active-low.
*/
mpflags = (MPS_INTTR_LEVEL << 2) | MPS_INTPO_ACTLO;
redir = IOAPIC_REDLO_LEVEL | IOAPIC_REDLO_ACTLO;
/*
* Apply any MADT override setting.
*/
ovr.irq = irq;
ovr.pin = -1;
if (acpi_madt_map() == AE_OK) {
acpi_madt_walk(acpi_md_findoverride, &ovr);
acpi_madt_unmap();
} else {
aprint_debug("acpi_madt_map() failed, can't check for MADT override\n");
}
if (ovr.pin != -1) {
bool sci = irq == AcpiGbl_FADT.SciInterrupt;
int polarity = ovr.flags & ACPI_MADT_POLARITY_MASK;
int trigger = ovr.flags & ACPI_MADT_TRIGGER_MASK;
irq = ovr.pin;
if (polarity == ACPI_MADT_POLARITY_ACTIVE_HIGH ||
(!sci && polarity == ACPI_MADT_POLARITY_CONFORMS)) {
mpflags &= ~MPS_INTPO_ACTLO;
mpflags |= MPS_INTPO_ACTHI;
redir &= ~IOAPIC_REDLO_ACTLO;
}
if (trigger == ACPI_MADT_TRIGGER_EDGE ||
(!sci && trigger == ACPI_MADT_TRIGGER_CONFORMS)) {
type = IST_EDGE;
mpflags &= ~(MPS_INTTR_LEVEL << 2);
mpflags |= (MPS_INTTR_EDGE << 2);
redir &= ~IOAPIC_REDLO_LEVEL;
}
}
pic = NULL;
pin = irq;
/*
* If the interrupt is handled via IOAPIC, update the map.
* If the map isn't set up yet, install a temporary one.
* Identify ISA & EISA interrupts
*/
if (mp_busses != NULL) {
if (intr_find_mpmapping(mp_isa_bus, irq, &mpih) == 0 ||
intr_find_mpmapping(mp_eisa_bus, irq, &mpih) == 0) {
if (!APIC_IRQ_ISLEGACY(mpih)) {
pin = APIC_IRQ_PIN(mpih);
ioapic = ioapic_find(APIC_IRQ_APIC(mpih));
if (ioapic != NULL)
pic = &ioapic->sc_pic;
}
}
}
if (pic == NULL) {
/*
* If the interrupt is handled via IOAPIC, update the map.
* If the map isn't set up yet, install a temporary one.
*/
ioapic = ioapic_find_bybase(irq);
if (ioapic != NULL) {
pic = &ioapic->sc_pic;
if (pic->pic_type == PIC_IOAPIC) {
pin = irq - pic->pic_vecbase;
irq = -1;
} else {
pin = irq;
}
mip = ioapic->sc_pins[pin].ip_map;
if (mip) {
mip->flags &= ~0xf;
mip->flags |= mpflags;
mip->redir &= ~(IOAPIC_REDLO_LEVEL |
IOAPIC_REDLO_ACTLO);
mip->redir |= redir;
} else {
mipp = &ioapic->sc_pins[pin].ip_map;
*mipp = &tmpmap;
tmpmap.redir = redir;
tmpmap.flags = mpflags;
}
}
}
if (pic == NULL)
#endif
{
pic = &i8259_pic;
pin = irq;
}
ih = intr_establish_xname(irq, pic, pin, type, ipl,
handler, arg, mpsafe, xname);
#if NIOAPIC > 0
if (mipp) {
*mipp = NULL;
}
#endif
return ih;
}
void
acpi_md_intr_mask(void *ih)
{
intr_mask(ih);
}
void
acpi_md_intr_unmask(void *ih)
{
intr_unmask(ih);
}
void
acpi_md_intr_disestablish(void *ih)
{
intr_disestablish(ih);
}
ACPI_STATUS
acpi_md_OsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress,
uint32_t Length, void **LogicalAddress)
{
int rv;
rv = _x86_memio_map(x86_bus_space_mem, PhysicalAddress,
Length, 0, (bus_space_handle_t *)LogicalAddress);
return (rv != 0) ? AE_NO_MEMORY : AE_OK;
}
void
acpi_md_OsUnmapMemory(void *LogicalAddress, uint32_t Length)
{
(void) _x86_memio_unmap(x86_bus_space_mem,
(bus_space_handle_t)LogicalAddress, Length, NULL);
}
ACPI_STATUS
acpi_md_OsGetPhysicalAddress(void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
{
paddr_t pa;
if (pmap_extract(pmap_kernel(), (vaddr_t) LogicalAddress, &pa)) {
*PhysicalAddress = pa;
return AE_OK;
}
return AE_ERROR;
}
BOOLEAN
acpi_md_OsReadable(void *Pointer, uint32_t Length)
{
BOOLEAN rv = TRUE;
vaddr_t sva, eva;
pt_entry_t *pte;
sva = trunc_page((vaddr_t) Pointer);
eva = round_page((vaddr_t) Pointer + Length);
if (sva < VM_MIN_KERNEL_ADDRESS)
return FALSE;
for (; sva < eva; sva += PAGE_SIZE) {
pte = kvtopte(sva);
if ((*pte & PTE_P) == 0) {
rv = FALSE;
break;
}
}
return rv;
}
BOOLEAN
acpi_md_OsWritable(void *Pointer, uint32_t Length)
{
BOOLEAN rv = TRUE;
vaddr_t sva, eva;
pt_entry_t *pte;
sva = trunc_page((vaddr_t) Pointer);
eva = round_page((vaddr_t) Pointer + Length);
if (sva < VM_MIN_KERNEL_ADDRESS)
return FALSE;
for (; sva < eva; sva += PAGE_SIZE) {
pte = kvtopte(sva);
if ((*pte & (PTE_P|PTE_W)) != (PTE_P|PTE_W)) {
rv = FALSE;
break;
}
}
return rv;
}
void
acpi_md_OsDisableInterrupt(void)
{
x86_disable_intr();
}
void
acpi_md_OsEnableInterrupt(void)
{
x86_enable_intr();
}
uint32_t
acpi_md_ncpus(void)
{
return kcpuset_countset(kcpuset_attached);
}
static bool
acpi_md_mcfg_validate(uint64_t addr, int bus_start, int *bus_end)
{
struct btinfo_memmap *bim;
uint64_t size, mapaddr, mapsize;
uint32_t type;
int i, n;
#ifndef XENPV
if (lookup_bootinfo(BTINFO_EFIMEMMAP) != NULL)
bim = efi_get_e820memmap();
else
#endif
bim = lookup_bootinfo(BTINFO_MEMMAP);
if (bim == NULL)
return false;
size = *bus_end - bus_start + 1;
size *= ACPIMCFG_SIZE_PER_BUS;
for (i = 0; i < bim->num; i++) {
mapaddr = bim->entry[i].addr;
mapsize = bim->entry[i].size;
type = bim->entry[i].type;
aprint_debug("MCFG: MEMMAP: 0x%016" PRIx64
"-0x%016" PRIx64 ", size=0x%016" PRIx64
", type=%d(%s)\n",
mapaddr, mapaddr + mapsize - 1, mapsize, type,
(type == BIM_Memory) ? "Memory" :
(type == BIM_Reserved) ? "Reserved" :
(type == BIM_ACPI) ? "ACPI" :
(type == BIM_NVS) ? "NVS" :
(type == BIM_PMEM) ? "Persistent" :
(type == BIM_PRAM) ? "Persistent (Legacy)" :
"unknown");
switch (type) {
case BIM_ACPI:
case BIM_Reserved:
if (addr < mapaddr || addr >= mapaddr + mapsize)
break;
/* full map */
if (addr + size <= mapaddr + mapsize)
return true;
/* partial map */
n = (mapsize - (addr - mapaddr)) /
ACPIMCFG_SIZE_PER_BUS;
/* bus_start == bus_end is not allowed. */
if (n > 1) {
*bus_end = bus_start + n - 1;
return true;
}
aprint_debug("MCFG: bus %d-%d, address 0x%016" PRIx64
": invalid size: request 0x%016" PRIx64 ", "
"actual 0x%016" PRIx64 "\n",
bus_start, *bus_end, addr, size, mapsize);
break;
}
}
aprint_debug("MCFG: bus %d-%d, address 0x%016" PRIx64 ": "
"no valid region\n", bus_start, *bus_end, addr);
return false;
}
static uint32_t
acpi_md_mcfg_read(bus_space_tag_t bst, bus_space_handle_t bsh, bus_addr_t addr)
{
vaddr_t va = bsh + addr;
uint32_t data = (uint32_t) -1;
KASSERT(bst == x86_bus_space_mem);
__asm("movl %1, %0" : "=a" (data) : "m" (*(volatile uint32_t *)va));
return data;
}
static void
acpi_md_mcfg_write(bus_space_tag_t bst, bus_space_handle_t bsh, bus_addr_t addr,
uint32_t data)
{
vaddr_t va = bsh + addr;
KASSERT(bst == x86_bus_space_mem);
__asm("movl %1, %0" : "=m" (*(volatile uint32_t *)va) : "a" (data));
}
static const struct acpimcfg_ops acpi_md_mcfg_ops = {
.ao_validate = acpi_md_mcfg_validate,
.ao_read = acpi_md_mcfg_read,
.ao_write = acpi_md_mcfg_write,
};
void
acpi_md_callback(struct acpi_softc *sc)
{
#ifdef MPBIOS
if (!mpbios_scanned)
#endif
mpacpi_find_interrupts(sc);
#ifndef XENPV
acpi_md_sleep_init();
#endif
acpimcfg_init(x86_bus_space_mem, &acpi_md_mcfg_ops);
}
#ifndef XENPV
void
device_acpi_register(device_t dev, void *aux)
{
device_t parent;
bool device_is_vga, device_is_pci, device_is_isa;
parent = device_parent(dev);
if (parent == NULL)
return;
device_is_vga = device_is_a(dev, "vga") || device_is_a(dev, "genfb");
device_is_pci = device_is_a(parent, "pci");
device_is_isa = device_is_a(parent, "isa");
if (device_is_vga && (device_is_pci || device_is_isa)) {
extern int acpi_md_vbios_reset;
acpi_md_vbios_reset = VBIOS_RESET_DEFAULT;
}
}
#endif