/* $NetBSD: if_cemac.c,v 1.26 2022/11/12 16:54:36 jmcneill Exp $ */
/*
* Copyright (c) 2015 Genetec Corporation. All rights reserved.
* Written by Hashimoto Kenichi for Genetec Corporation.
*
* Based on arch/arm/at91/at91emac.c
*
* Copyright (c) 2007 Embedtronics Oy
* All rights reserved.
*
* Copyright (c) 2004 Jesse Off
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Cadence EMAC/GEM ethernet controller IP driver
* used by arm/at91, arm/zynq SoC
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.26 2022/11/12 16:54:36 jmcneill Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/time.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <sys/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <dev/cadence/cemacreg.h>
#include <dev/cadence/if_cemacvar.h>
#define DEFAULT_MDCDIV 32
#define CEMAC_READ(x) \
bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
#define CEMAC_WRITE(x, y) \
bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
#define CEMAC_GEM_WRITE(x, y) \
do { \
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
else \
bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
} while(0)
#define RX_QLEN 64
#define TX_QLEN 2 /* I'm very sorry but that's where we can get */
struct cemac_qmeta {
struct mbuf *m;
bus_dmamap_t m_dmamap;
};
struct cemac_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_dma_tag_t sc_dmat;
uint8_t sc_enaddr[ETHER_ADDR_LEN];
struct ethercom sc_ethercom;
mii_data_t sc_mii;
void *rbqpage;
unsigned rbqlen;
bus_addr_t rbqpage_dsaddr;
bus_dmamap_t rbqpage_dmamap;
void *tbqpage;
unsigned tbqlen;
bus_addr_t tbqpage_dsaddr;
bus_dmamap_t tbqpage_dmamap;
volatile struct eth_dsc *RDSC;
int rxqi;
struct cemac_qmeta rxq[RX_QLEN];
volatile struct eth_dsc *TDSC;
int txqi, txqc;
struct cemac_qmeta txq[TX_QLEN];
callout_t cemac_tick_ch;
bool tx_busy;
int cemac_flags;
};
static void cemac_init(struct cemac_softc *);
static int cemac_gctx(struct cemac_softc *);
static int cemac_mediachange(struct ifnet *);
static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
static int cemac_mii_readreg(device_t, int, int, uint16_t *);
static int cemac_mii_writereg(device_t, int, int, uint16_t);
static void cemac_statchg(struct ifnet *);
static void cemac_tick(void *);
static int cemac_ifioctl(struct ifnet *, u_long, void *);
static void cemac_ifstart(struct ifnet *);
static void cemac_ifwatchdog(struct ifnet *);
static int cemac_ifinit(struct ifnet *);
static void cemac_ifstop(struct ifnet *, int);
static void cemac_setaddr(struct ifnet *);
#ifdef CEMAC_DEBUG
int cemac_debug = CEMAC_DEBUG;
#define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
#else
#define DPRINTFN(n, fmt)
#endif
CFATTACH_DECL_NEW(cemac, sizeof(struct cemac_softc),
cemac_match, cemac_attach, NULL, NULL);
int
cemac_match_common(device_t parent, cfdata_t match, void *aux)
{
if (strcmp(match->cf_name, "cemac") == 0)
return 1;
return 0;
}
void
cemac_attach_common(device_t self, bus_space_tag_t iot,
bus_space_handle_t ioh, bus_dma_tag_t dmat, int flags)
{
struct cemac_softc *sc = device_private(self);
prop_data_t enaddr;
uint32_t u;
sc->sc_dev = self;
sc->sc_ioh = ioh;
sc->sc_iot = iot;
sc->sc_dmat = dmat;
sc->cemac_flags = flags;
aprint_naive("\n");
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
aprint_normal(": Cadence Gigabit Ethernet Controller\n");
else
aprint_normal(": Cadence Ethernet Controller\n");
/* configure emac: */
CEMAC_WRITE(ETH_CTL, 0); // disable everything
CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
CEMAC_WRITE(ETH_RBQP, 0); // clear receive
CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
CEMAC_WRITE(ETH_CFG,
GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
else
CEMAC_WRITE(ETH_CFG,
ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
//CEMAC_WRITE(ETH_TCR, 0); // send nothing
//(void)CEMAC_READ(ETH_ISR);
u = CEMAC_READ(ETH_TSR);
CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL | ETH_TSR_OVR)));
u = CEMAC_READ(ETH_RSR);
CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
/* Fetch the Ethernet address from property if set. */
enaddr = prop_dictionary_get(device_properties(self), "mac-address");
if (enaddr != NULL) {
KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
memcpy(sc->sc_enaddr, prop_data_value(enaddr),
ETHER_ADDR_LEN);
} else {
static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
};
memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
}
cemac_init(sc);
}
static int
cemac_gctx(struct cemac_softc *sc)
{
uint32_t tsr;
tsr = CEMAC_READ(ETH_TSR);
if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
// no space left
if (!(tsr & ETH_TSR_BNQ))
return 0;
} else {
if (tsr & GEM_TSR_TXGO)
return 0;
}
CEMAC_WRITE(ETH_TSR, tsr);
// free sent frames
while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
(tsr & ETH_TSR_IDLE ? 0 : 1))) {
int bi = sc->txqi % TX_QLEN;
DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
__FUNCTION__, bi, sc->TDSC[bi].Addr));
DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
__FUNCTION__, bi, sc->TDSC[bi].Info));
bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
m_freem(sc->txq[bi].m);
DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
__FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
sc->txq[bi].m = NULL;
sc->txqi = (bi + 1) % TX_QLEN;
sc->txqc--;
}
// mark we're free
if (sc->tx_busy) {
sc->tx_busy = false;
/* Disable transmit-buffer-free interrupt */
/*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
}
return 1;
}
int
cemac_intr(void *arg)
{
struct cemac_softc *sc = (struct cemac_softc *)arg;
struct ifnet * ifp = &sc->sc_ethercom.ec_if;
uint32_t imr, isr, ctl;
#ifdef CEMAC_DEBUG
uint32_t rsr;
#endif
int bi;
imr = ~CEMAC_READ(ETH_IMR);
if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
// interrupt not enabled, can't be us
return 0;
}
isr = CEMAC_READ(ETH_ISR);
CEMAC_WRITE(ETH_ISR, isr);
isr &= imr;
#ifdef CEMAC_DEBUG
rsr = CEMAC_READ(ETH_RSR); // get receive status register
#endif
DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
if (isr & ETH_ISR_RBNA) { // out of receive buffers
CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
ctl = CEMAC_READ(ETH_CTL); // get current control register value
CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
if_statinc_ref(nsr, if_ierrors);
if_statinc_ref(nsr, if_ipackets);
DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
}
if (isr & ETH_ISR_ROVR) {
CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
if_statinc_ref(nsr, if_ierrors);
if_statinc_ref(nsr, if_ipackets);
DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
}
if (isr & ETH_ISR_RCOM) { // packet has been received!
uint32_t nfo;
DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
int fl, csum;
struct mbuf *m;
nfo = sc->RDSC[bi].Info;
fl = (nfo & ETH_RDSC_I_LEN) - 4;
DPRINTFN(2,("## nfo=0x%08X\n", nfo));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) MCLGET(m, M_DONTWAIT);
if (m != NULL && (m->m_flags & M_EXT)) {
bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat,
sc->rxq[bi].m_dmamap);
m_set_rcvif(sc->rxq[bi].m, ifp);
sc->rxq[bi].m->m_pkthdr.len =
sc->rxq[bi].m->m_len = fl;
switch (nfo & ETH_RDSC_I_CHKSUM) {
case ETH_RDSC_I_CHKSUM_IP:
csum = M_CSUM_IPv4;
break;
case ETH_RDSC_I_CHKSUM_UDP:
csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
M_CSUM_UDPv6;
break;
case ETH_RDSC_I_CHKSUM_TCP:
csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
M_CSUM_TCPv6;
break;
default:
csum = 0;
break;
}
sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
DPRINTFN(2,("received %u bytes packet\n", fl));
if_percpuq_enqueue(ifp->if_percpuq,
sc->rxq[bi].m);
if (mtod(m, intptr_t) & 3)
m_adj(m, mtod(m, intptr_t) & 3);
sc->rxq[bi].m = m;
bus_dmamap_load(sc->sc_dmat,
sc->rxq[bi].m_dmamap,
m->m_ext.ext_buf, MCLBYTES,
NULL, BUS_DMA_NOWAIT);
bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_PREREAD);
sc->RDSC[bi].Info = 0;
sc->RDSC[bi].Addr =
sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
} else {
/* Drop packets until we can get replacement
* empty mbufs for the RXDQ.
*/
if (m != NULL)
m_freem(m);
if_statinc_ref(nsr, if_ierrors);
}
sc->rxqi++;
}
}
IF_STAT_PUTREF(ifp);
if (cemac_gctx(sc) > 0)
if_schedule_deferred_start(ifp);
#if 0 // reloop
irq = CEMAC_READ(IntStsC);
if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
goto begin;
#endif
return (1);
}
static void
cemac_init(struct cemac_softc *sc)
{
bus_dma_segment_t segs;
int rsegs, err, i;
struct ifnet * ifp = &sc->sc_ethercom.ec_if;
struct mii_data * const mii = &sc->sc_mii;
uint32_t u;
#if 0
int mdcdiv = DEFAULT_MDCDIV;
#endif
callout_init(&sc->cemac_tick_ch, 0);
// ok...
CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
CEMAC_WRITE(ETH_RBQP, 0); // clear receive
CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
CEMAC_WRITE(ETH_CFG,
GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
else
CEMAC_WRITE(ETH_CFG,
ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
CEMAC_WRITE(GEM_DMA_CFG,
__SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
__SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
__SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
GEM_DMA_CFG_DISC_WHEN_NO_AHB);
}
// CEMAC_WRITE(ETH_TCR, 0); // send nothing
// (void)CEMAC_READ(ETH_ISR);
u = CEMAC_READ(ETH_TSR);
CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL | ETH_TSR_OVR)));
u = CEMAC_READ(ETH_RSR);
CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
#if 0
if (device_cfdata(sc->sc_dev)->cf_flags)
mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
#endif
/* set ethernet address */
CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
| (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
| (sc->sc_enaddr[0]));
CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
| (sc->sc_enaddr[4]));
CEMAC_GEM_WRITE(SA2L, 0);
CEMAC_GEM_WRITE(SA2H, 0);
CEMAC_GEM_WRITE(SA3L, 0);
CEMAC_GEM_WRITE(SA3H, 0);
CEMAC_GEM_WRITE(SA4L, 0);
CEMAC_GEM_WRITE(SA4H, 0);
/* Allocate a page of memory for receive queue descriptors */
sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
sc->rbqlen *= PAGE_SIZE;
DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
&segs, 1, &rsegs, BUS_DMA_WAITOK);
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
&sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
&sc->rbqpage_dmamap);
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
}
if (err != 0)
panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
memset(sc->rbqpage, 0, sc->rbqlen);
/* Allocate a page of memory for transmit queue descriptors */
sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
sc->tbqlen *= PAGE_SIZE;
DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
&segs, 1, &rsegs, BUS_DMA_WAITOK);
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
&sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
&sc->tbqpage_dmamap);
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
}
if (err != 0)
panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
memset(sc->tbqpage, 0, sc->tbqlen);
/* Set up pointers to start of each queue in kernel addr space.
* Each descriptor queue or status queue entry uses 2 words
*/
sc->RDSC = (void *)sc->rbqpage;
sc->TDSC = (void *)sc->tbqpage;
/* init TX queue */
for (i = 0; i < TX_QLEN; i++) {
sc->TDSC[i].Addr = 0;
sc->TDSC[i].Info = ETH_TDSC_I_USED |
(i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
}
/* Populate the RXQ with mbufs */
sc->rxqi = 0;
for (i = 0; i < RX_QLEN; i++) {
struct mbuf *m;
err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
if (err) {
panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
}
MGETHDR(m, M_WAIT, MT_DATA);
MCLGET(m, M_WAIT);
sc->rxq[i].m = m;
if (mtod(m, intptr_t) & 3) {
m_adj(m, mtod(m, intptr_t) & 3);
}
err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
m->m_ext.ext_buf, MCLBYTES, NULL,
BUS_DMA_WAITOK);
if (err) {
panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
}
sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
sc->RDSC[i].Info = 0;
bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_PREREAD);
}
/* prepare transmit queue */
for (i = 0; i < TX_QLEN; i++) {
err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
&sc->txq[i].m_dmamap);
if (err)
panic("ARGH #1");
sc->txq[i].m = NULL;
}
/* Program each queue's start addr, cur addr, and len registers
* with the physical addresses.
*/
CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
/* Divide HCLK by 32 for MDC clock */
sc->sc_ethercom.ec_mii = mii;
mii->mii_ifp = ifp;
mii->mii_readreg = cemac_mii_readreg;
mii->mii_writereg = cemac_mii_writereg;
mii->mii_statchg = cemac_statchg;
ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
cemac_mediastatus);
mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1, 0);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
#if 0
// enable / disable interrupts
CEMAC_WRITE(ETH_IDR, -1);
CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
| ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
// (void)CEMAC_READ(ETH_ISR); // why
// enable transmitter / receiver
CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
| ETH_CTL_CSR | ETH_CTL_MPE);
#endif
/*
* We can support hardware checksumming.
*/
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = cemac_ifioctl;
ifp->if_start = cemac_ifstart;
ifp->if_watchdog = cemac_ifwatchdog;
ifp->if_init = cemac_ifinit;
ifp->if_stop = cemac_ifstop;
ifp->if_timer = 0;
ifp->if_softc = sc;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, (sc)->sc_enaddr);
}
static int
cemac_mediachange(struct ifnet *ifp)
{
if (ifp->if_flags & IFF_UP)
cemac_ifinit(ifp);
return (0);
}
static void
cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cemac_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
static int
cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct cemac_softc *sc;
sc = device_private(self);
CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
| ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
| ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
| ETH_MAN_CODE_IEEE802_3));
while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
;
*val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
return 0;
}
static int
cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct cemac_softc *sc;
sc = device_private(self);
CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
| ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
| ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
| ETH_MAN_CODE_IEEE802_3
| (val & ETH_MAN_DATA)));
while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
;
return 0;
}
static void
cemac_statchg(struct ifnet *ifp)
{
struct cemac_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
uint32_t reg;
/*
* We must keep the MAC and the PHY in sync as
* to the status of full-duplex!
*/
reg = CEMAC_READ(ETH_CFG);
reg &= ~ETH_CFG_FD;
if (sc->sc_mii.mii_media_active & IFM_FDX)
reg |= ETH_CFG_FD;
reg &= ~ETH_CFG_SPD;
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
reg &= ~GEM_CFG_GEN;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
break;
case IFM_100_TX:
reg |= ETH_CFG_SPD;
break;
case IFM_1000_T:
reg |= ETH_CFG_SPD | GEM_CFG_GEN;
break;
default:
break;
}
CEMAC_WRITE(ETH_CFG, reg);
}
static void
cemac_tick(void *arg)
{
struct cemac_softc* sc = (struct cemac_softc *)arg;
struct ifnet * ifp = &sc->sc_ethercom.ec_if;
int s;
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
if_statadd(ifp, if_collisions,
CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
else
if_statadd(ifp, if_collisions,
CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
/* These misses are ok, they will happen if the RAM/CPU can't keep up */
if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
uint32_t misses = CEMAC_READ(ETH_DRFC);
if (misses > 0)
aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
}
s = splnet();
if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
cemac_ifstart(ifp);
splx(s);
mii_tick(&sc->sc_mii);
callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
}
static int
cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
{
int s, error;
s = splnet();
switch (cmd) {
default:
error = ether_ioctl(ifp, cmd, data);
if (error != ENETRESET)
break;
error = 0;
if (cmd == SIOCSIFCAP) {
error = if_init(ifp);
} else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
cemac_setaddr(ifp);
}
}
splx(s);
return error;
}
static void
cemac_ifstart(struct ifnet *ifp)
{
struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
struct mbuf *m;
bus_dma_segment_t *segs;
int s, bi, err, nsegs;
s = splnet();
start:
if (cemac_gctx(sc) == 0) {
/* Enable transmit-buffer-free interrupt */
CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
sc->tx_busy = true;
ifp->if_timer = 10;
splx(s);
return;
}
ifp->if_timer = 0;
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL) {
splx(s);
return;
}
bi = (sc->txqi + sc->txqc) % TX_QLEN;
if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
BUS_DMA_NOWAIT)) ||
sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
sc->txq[bi].m_dmamap->dm_nsegs > 1) {
/* Copy entire mbuf chain to new single */
struct mbuf *mn;
if (err == 0)
bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) goto stop;
if (m->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
goto stop;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
m = mn;
bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
BUS_DMA_NOWAIT);
} else {
IFQ_DEQUEUE(&ifp->if_snd, m);
}
bpf_mtap(ifp, m, BPF_D_OUT);
nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
segs = sc->txq[bi].m_dmamap->dm_segs;
if (nsegs > 1)
panic("#### ARGH #2");
sc->txq[bi].m = m;
sc->txqc++;
DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
__FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
(unsigned)m->m_pkthdr.len));
#ifdef DIAGNOSTIC
if (sc->txqc > TX_QLEN)
panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
#endif
bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
sc->txq[bi].m_dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
sc->TDSC[bi].Addr = segs->ds_addr;
sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
__FUNCTION__, bi, sc->TDSC[bi].Addr));
DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
__FUNCTION__, bi, sc->TDSC[bi].Info));
uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
CEMAC_WRITE(ETH_CTL, ctl);
DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
} else {
CEMAC_WRITE(ETH_TAR, segs->ds_addr);
CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
}
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
goto start;
stop:
splx(s);
return;
}
static void
cemac_ifwatchdog(struct ifnet *ifp)
{
struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
}
static int
cemac_ifinit(struct ifnet *ifp)
{
struct cemac_softc *sc = ifp->if_softc;
uint32_t dma, cfg;
int s = splnet();
callout_stop(&sc->cemac_tick_ch);
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
if (ifp->if_capenable &
(IFCAP_CSUM_IPv4_Tx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
dma = CEMAC_READ(GEM_DMA_CFG);
dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
CEMAC_WRITE(GEM_DMA_CFG, dma);
}
if (ifp->if_capenable &
(IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
cfg = CEMAC_READ(ETH_CFG);
cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
CEMAC_WRITE(ETH_CFG, cfg);
}
}
// enable interrupts
CEMAC_WRITE(ETH_IDR, -1);
CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
| ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
// enable transmitter / receiver
CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
| ETH_CTL_CSR | ETH_CTL_MPE);
mii_mediachg(&sc->sc_mii);
callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
ifp->if_flags |= IFF_RUNNING;
splx(s);
return 0;
}
static void
cemac_ifstop(struct ifnet *ifp, int disable)
{
// uint32_t u;
struct cemac_softc *sc = ifp->if_softc;
#if 0
CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
// CEMAC_WRITE(ETH_RBQP, 0); // clear receive
if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
CEMAC_WRITE(ETH_CFG,
GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
else
CEMAC_WRITE(ETH_CFG,
ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
// CEMAC_WRITE(ETH_TCR, 0); // send nothing
// (void)CEMAC_READ(ETH_ISR);
u = CEMAC_READ(ETH_TSR);
CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL | ETH_TSR_OVR)));
u = CEMAC_READ(ETH_RSR);
CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
#endif
callout_stop(&sc->cemac_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_timer = 0;
sc->tx_busy = false;
sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
}
static void
cemac_setaddr(struct ifnet *ifp)
{
struct cemac_softc *sc = ifp->if_softc;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t ias[3][ETHER_ADDR_LEN];
uint32_t h, nma = 0, hashes[2] = { 0, 0 };
uint32_t ctl = CEMAC_READ(ETH_CTL);
uint32_t cfg = CEMAC_READ(ETH_CFG);
/* disable receiver temporarily */
CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
if (ifp->if_flags & IFF_PROMISC) {
cfg |= ETH_CFG_CAF;
} else {
cfg &= ~ETH_CFG_CAF;
}
// ETH_CFG_BIG?
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
cfg |= ETH_CFG_MTI;
hashes[0] = 0xffffffffUL;
hashes[1] = 0xffffffffUL;
ifp->if_flags |= IFF_ALLMULTI;
nma = 0;
break;
}
if (nma < 3) {
/* We can program 3 perfect address filters for mcast */
memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
} else {
/*
* XXX: Datasheet is not very clear here, I'm not sure
* if I'm doing this right. --joff
*/
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 most-significant bits. */
h = h >> 26;
#if 0
hashes[h / 32] |= (1 << (h % 32));
#else
hashes[0] = 0xffffffffUL;
hashes[1] = 0xffffffffUL;
#endif
cfg |= ETH_CFG_MTI;
}
ETHER_NEXT_MULTI(step, enm);
nma++;
}
ETHER_UNLOCK(ec);
// program...
DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
| (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
| (sc->sc_enaddr[0]));
CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
| (sc->sc_enaddr[4]));
if (nma > 0) {
DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[0][0], ias[0][1], ias[0][2],
ias[0][3], ias[0][4], ias[0][5]));
CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
| (ias[0][2] << 16) | (ias[0][1] << 8)
| (ias[0][0]));
CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
| (ias[0][5]));
}
if (nma > 1) {
DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[1][0], ias[1][1], ias[1][2],
ias[1][3], ias[1][4], ias[1][5]));
CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
| (ias[1][2] << 16) | (ias[1][1] << 8)
| (ias[1][0]));
CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
| (ias[1][5]));
}
if (nma > 2) {
DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[2][0], ias[2][1], ias[2][2],
ias[2][3], ias[2][4], ias[2][5]));
CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
| (ias[2][2] << 16) | (ias[2][1] << 8)
| (ias[2][0]));
CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
| (ias[2][5]));
}
CEMAC_GEM_WRITE(HSH, hashes[0]);
CEMAC_GEM_WRITE(HSL, hashes[1]);
CEMAC_WRITE(ETH_CFG, cfg);
CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
}