/* $NetBSD: adv.c,v 1.53 2022/09/25 18:43:32 thorpej Exp $ */
/*
* Generic driver for the Advanced Systems Inc. Narrow SCSI controllers
*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Baldassare Dante Profeta <dante@mclink.it>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: adv.c,v 1.53 2022/09/25 18:43:32 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/advlib.h>
#include <dev/ic/adv.h>
#ifndef DDB
#define Debugger() panic("should call debugger here (adv.c)")
#endif /* ! DDB */
/* #define ASC_DEBUG */
/******************************************************************************/
static int adv_alloc_control_data(ASC_SOFTC *);
static void adv_free_control_data(ASC_SOFTC *);
static int adv_create_ccbs(ASC_SOFTC *, ADV_CCB *, int);
static void adv_free_ccb(ASC_SOFTC *, ADV_CCB *);
static void adv_reset_ccb(ADV_CCB *);
static int adv_init_ccb(ASC_SOFTC *, ADV_CCB *);
static ADV_CCB *adv_get_ccb(ASC_SOFTC *);
static void adv_queue_ccb(ASC_SOFTC *, ADV_CCB *);
static void adv_start_ccbs(ASC_SOFTC *);
static void adv_scsipi_request(struct scsipi_channel *,
scsipi_adapter_req_t, void *);
static void advminphys(struct buf *);
static void adv_narrow_isr_callback(ASC_SOFTC *, ASC_QDONE_INFO *);
static int adv_poll(ASC_SOFTC *, struct scsipi_xfer *, int);
static void adv_timeout(void *);
static void adv_watchdog(void *);
/******************************************************************************/
#define ADV_ABORT_TIMEOUT 2000 /* time to wait for abort (mSec) */
#define ADV_WATCH_TIMEOUT 1000 /* time to wait for watchdog (mSec) */
/******************************************************************************/
/* Control Blocks routines */
/******************************************************************************/
static int
adv_alloc_control_data(ASC_SOFTC *sc)
{
int error;
/*
* Allocate the control blocks.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adv_control),
PAGE_SIZE, 0, &sc->sc_control_seg, 1,
&sc->sc_control_nsegs, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate control "
"structures, error = %d\n", error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_control_seg,
sc->sc_control_nsegs, sizeof(struct adv_control),
(void **) & sc->sc_control,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map control structures, error = %d\n", error);
return (error);
}
/*
* Create and load the DMA map used for the control blocks.
*/
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adv_control),
1, sizeof(struct adv_control), 0, BUS_DMA_NOWAIT,
&sc->sc_dmamap_control)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create control DMA map, error = %d\n", error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control,
sc->sc_control, sizeof(struct adv_control), NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load control DMA map, error = %d\n", error);
return (error);
}
/*
* Initialize the overrun_buf address.
*/
sc->overrun_buf = sc->sc_dmamap_control->dm_segs[0].ds_addr +
offsetof(struct adv_control, overrun_buf);
return (0);
}
static void
adv_free_control_data(ASC_SOFTC *sc)
{
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap_control);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap_control);
sc->sc_dmamap_control = NULL;
bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
sizeof(struct adv_control));
bus_dmamem_free(sc->sc_dmat, &sc->sc_control_seg,
sc->sc_control_nsegs);
}
/*
* Create a set of ccbs and add them to the free list. Called once
* by adv_init(). We return the number of CCBs successfully created.
*/
static int
adv_create_ccbs(ASC_SOFTC *sc, ADV_CCB *ccbstore, int count)
{
ADV_CCB *ccb;
int i, error;
memset(ccbstore, 0, sizeof(ADV_CCB) * count);
for (i = 0; i < count; i++) {
ccb = &ccbstore[i];
if ((error = adv_init_ccb(sc, ccb)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to initialize ccb, error = %d\n", error);
return (i);
}
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain);
}
return (i);
}
/*
* A ccb is put onto the free list.
*/
static void
adv_free_ccb(ASC_SOFTC *sc, ADV_CCB *ccb)
{
int s;
s = splbio();
adv_reset_ccb(ccb);
TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain);
splx(s);
}
static void
adv_reset_ccb(ADV_CCB *ccb)
{
ccb->flags = 0;
}
static int
adv_init_ccb(ASC_SOFTC *sc, ADV_CCB *ccb)
{
int hashnum, error;
callout_init(&ccb->ccb_watchdog, 0);
/*
* Create the DMA map for this CCB.
*/
error = bus_dmamap_create(sc->sc_dmat,
(ASC_MAX_SG_LIST - 1) * PAGE_SIZE,
ASC_MAX_SG_LIST, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE,
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer);
if (error) {
aprint_error_dev(sc->sc_dev,
"unable to create DMA map, error = %d\n", error);
return (error);
}
/*
* put in the phystokv hash table
* Never gets taken out.
*/
ccb->hashkey = sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb);
hashnum = CCB_HASH(ccb->hashkey);
ccb->nexthash = sc->sc_ccbhash[hashnum];
sc->sc_ccbhash[hashnum] = ccb;
adv_reset_ccb(ccb);
return (0);
}
/*
* Get a free ccb
*
* If there are none, see if we can allocate a new one
*/
static ADV_CCB *
adv_get_ccb(ASC_SOFTC *sc)
{
ADV_CCB *ccb = 0;
int s;
s = splbio();
ccb = TAILQ_FIRST(&sc->sc_free_ccb);
if (ccb != NULL) {
TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain);
ccb->flags |= CCB_ALLOC;
}
splx(s);
return (ccb);
}
/*
* Given a physical address, find the ccb that it corresponds to.
*/
ADV_CCB *
adv_ccb_phys_kv(ASC_SOFTC *sc, u_long ccb_phys)
{
int hashnum = CCB_HASH(ccb_phys);
ADV_CCB *ccb = sc->sc_ccbhash[hashnum];
while (ccb) {
if (ccb->hashkey == ccb_phys)
break;
ccb = ccb->nexthash;
}
return (ccb);
}
/*
* Queue a CCB to be sent to the controller, and send it if possible.
*/
static void
adv_queue_ccb(ASC_SOFTC *sc, ADV_CCB *ccb)
{
TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain);
adv_start_ccbs(sc);
}
static void
adv_start_ccbs(ASC_SOFTC *sc)
{
ADV_CCB *ccb;
while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) {
if (ccb->flags & CCB_WATCHDOG)
callout_stop(&ccb->ccb_watchdog);
if (AscExeScsiQueue(sc, &ccb->scsiq) == ASC_BUSY) {
ccb->flags |= CCB_WATCHDOG;
callout_reset(&ccb->ccb_watchdog,
(ADV_WATCH_TIMEOUT * hz) / 1000,
adv_watchdog, ccb);
break;
}
TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain);
if ((ccb->xs->xs_control & XS_CTL_POLL) == 0)
callout_reset(&ccb->xs->xs_callout,
mstohz(ccb->timeout), adv_timeout, ccb);
}
}
/******************************************************************************/
/* SCSI layer interfacing routines */
/******************************************************************************/
int
adv_init(ASC_SOFTC *sc)
{
int warn;
if (!AscFindSignature(sc->sc_iot, sc->sc_ioh)) {
aprint_error("adv_init: failed to find signature\n");
return (1);
}
/*
* Read the board configuration
*/
AscInitASC_SOFTC(sc);
warn = AscInitFromEEP(sc);
if (warn) {
aprint_error_dev(sc->sc_dev, "-get: ");
switch (warn) {
case -1:
aprint_normal("Chip is not halted\n");
break;
case -2:
aprint_normal("Couldn't get MicroCode Start"
" address\n");
break;
case ASC_WARN_IO_PORT_ROTATE:
aprint_normal("I/O port address modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
aprint_normal("I/O port increment switch enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
aprint_normal("EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
aprint_normal("IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
aprint_normal("tag queuing enabled w/o disconnects\n");
break;
default:
aprint_normal("unknown warning %d\n", warn);
}
}
if (sc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
sc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
/*
* Modify the board configuration
*/
warn = AscInitFromASC_SOFTC(sc);
if (warn) {
aprint_error_dev(sc->sc_dev, "-set: ");
switch (warn) {
case ASC_WARN_CMD_QNG_CONFLICT:
aprint_normal("tag queuing enabled w/o disconnects\n");
break;
case ASC_WARN_AUTO_CONFIG:
aprint_normal("I/O port increment switch enabled\n");
break;
default:
aprint_normal("unknown warning %d\n", warn);
}
}
sc->isr_callback = adv_narrow_isr_callback;
return (0);
}
void
adv_attach(ASC_SOFTC *sc)
{
struct scsipi_adapter *adapt = &sc->sc_adapter;
struct scsipi_channel *chan = &sc->sc_channel;
int i, error;
/*
* Initialize board RISC chip and enable interrupts.
*/
switch (AscInitDriver(sc)) {
case 0:
/* AllOK */
break;
case 1:
panic("%s: bad signature", device_xname(sc->sc_dev));
break;
case 2:
panic("%s: unable to load MicroCode",
device_xname(sc->sc_dev));
break;
case 3:
panic("%s: unable to initialize MicroCode",
device_xname(sc->sc_dev));
break;
default:
panic("%s: unable to initialize board RISC chip",
device_xname(sc->sc_dev));
}
/*
* Fill in the scsipi_adapter.
*/
memset(adapt, 0, sizeof(*adapt));
adapt->adapt_dev = sc->sc_dev;
adapt->adapt_nchannels = 1;
/* adapt_openings initialized below */
/* adapt_max_periph initialized below */
adapt->adapt_request = adv_scsipi_request;
adapt->adapt_minphys = advminphys;
/*
* Fill in the scsipi_channel.
*/
memset(chan, 0, sizeof(*chan));
chan->chan_adapter = adapt;
chan->chan_bustype = &scsi_bustype;
chan->chan_channel = 0;
chan->chan_ntargets = 8;
chan->chan_nluns = 8;
chan->chan_id = sc->chip_scsi_id;
TAILQ_INIT(&sc->sc_free_ccb);
TAILQ_INIT(&sc->sc_waiting_ccb);
/*
* Allocate the Control Blocks and the overrun buffer.
*/
error = adv_alloc_control_data(sc);
if (error)
return; /* (error) */
/*
* Create and initialize the Control Blocks.
*/
i = adv_create_ccbs(sc, sc->sc_control->ccbs, ADV_MAX_CCB);
if (i == 0) {
aprint_error_dev(sc->sc_dev,
"unable to create control blocks\n");
return; /* (ENOMEM) */ ;
} else if (i != ADV_MAX_CCB) {
aprint_error_dev(sc->sc_dev,
"WARNING: only %d of %d control blocks created\n",
i, ADV_MAX_CCB);
}
adapt->adapt_openings = i;
adapt->adapt_max_periph = adapt->adapt_openings;
sc->sc_child = config_found(sc->sc_dev, chan, scsiprint, CFARGS_NONE);
}
int
adv_detach(ASC_SOFTC *sc, int flags)
{
int rv = 0;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
adv_free_control_data(sc);
return (rv);
}
static void
advminphys(struct buf *bp)
{
if (bp->b_bcount > ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE))
bp->b_bcount = ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE);
minphys(bp);
}
/*
* start a scsi operation given the command and the data address. Also needs
* the unit, target and lu.
*/
static void
adv_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_xfer *xs;
struct scsipi_periph *periph;
ASC_SOFTC *sc = device_private(chan->chan_adapter->adapt_dev);
bus_dma_tag_t dmat = sc->sc_dmat;
ADV_CCB *ccb;
int s, flags, error, nsegs;
switch (req) {
case ADAPTER_REQ_RUN_XFER:
xs = arg;
periph = xs->xs_periph;
flags = xs->xs_control;
/*
* Get a CCB to use.
*/
ccb = adv_get_ccb(sc);
#ifdef DIAGNOSTIC
/*
* This should never happen as we track the resources
* in the mid-layer.
*/
if (ccb == NULL) {
scsipi_printaddr(periph);
printf("unable to allocate ccb\n");
panic("adv_scsipi_request");
}
#endif
ccb->xs = xs;
ccb->timeout = xs->timeout;
/*
* Build up the request
*/
memset(&ccb->scsiq, 0, sizeof(ASC_SCSI_Q));
ccb->scsiq.q2.ccb_ptr =
sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb);
ccb->scsiq.cdbptr = &xs->cmd->opcode;
ccb->scsiq.q2.cdb_len = xs->cmdlen;
ccb->scsiq.q1.target_id =
ASC_TID_TO_TARGET_ID(periph->periph_target);
ccb->scsiq.q1.target_lun = periph->periph_lun;
ccb->scsiq.q2.target_ix =
ASC_TIDLUN_TO_IX(periph->periph_target,
periph->periph_lun);
ccb->scsiq.q1.sense_addr =
sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb) + offsetof(struct adv_ccb, scsi_sense);
ccb->scsiq.q1.sense_len = sizeof(struct scsi_sense_data);
/*
* If there are any outstanding requests for the current
* target, then every 255th request send an ORDERED request.
* This heuristic tries to retain the benefit of request
* sorting while preventing request starvation. 255 is the
* max number of tags or pending commands a device may have
* outstanding.
*/
sc->reqcnt[periph->periph_target]++;
if (((sc->reqcnt[periph->periph_target] > 0) &&
(sc->reqcnt[periph->periph_target] % 255) == 0) ||
xs->bp == NULL || (xs->bp->b_flags & B_ASYNC) == 0) {
ccb->scsiq.q2.tag_code = M2_QTAG_MSG_ORDERED;
} else {
ccb->scsiq.q2.tag_code = M2_QTAG_MSG_SIMPLE;
}
if (xs->datalen) {
/*
* Map the DMA transfer.
*/
#ifdef TFS
if (flags & SCSI_DATA_UIO) {
error = bus_dmamap_load_uio(dmat,
ccb->dmamap_xfer, (struct uio *) xs->data,
((flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT :
BUS_DMA_WAITOK) | BUS_DMA_STREAMING |
((flags & XS_CTL_DATA_IN) ? BUS_DMA_READ :
BUS_DMA_WRITE));
} else
#endif /* TFS */
{
error = bus_dmamap_load(dmat, ccb->dmamap_xfer,
xs->data, xs->datalen, NULL,
((flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT :
BUS_DMA_WAITOK) | BUS_DMA_STREAMING |
((flags & XS_CTL_DATA_IN) ? BUS_DMA_READ :
BUS_DMA_WRITE));
}
switch (error) {
case 0:
break;
case ENOMEM:
case EAGAIN:
xs->error = XS_RESOURCE_SHORTAGE;
goto out_bad;
default:
xs->error = XS_DRIVER_STUFFUP;
if (error == EFBIG) {
aprint_error_dev(sc->sc_dev,
"adv_scsi_cmd, more than %d"
" DMA segments\n",
ASC_MAX_SG_LIST);
} else {
aprint_error_dev(sc->sc_dev,
"adv_scsi_cmd, error %d"
" loading DMA map\n", error);
}
out_bad:
adv_free_ccb(sc, ccb);
scsipi_done(xs);
return;
}
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(flags & XS_CTL_DATA_IN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
memset(&ccb->sghead, 0, sizeof(ASC_SG_HEAD));
for (nsegs = 0;
nsegs < ccb->dmamap_xfer->dm_nsegs; nsegs++) {
ccb->sghead.sg_list[nsegs].addr =
ccb->dmamap_xfer->dm_segs[nsegs].ds_addr;
ccb->sghead.sg_list[nsegs].bytes =
ccb->dmamap_xfer->dm_segs[nsegs].ds_len;
}
ccb->sghead.entry_cnt = ccb->scsiq.q1.sg_queue_cnt =
ccb->dmamap_xfer->dm_nsegs;
ccb->scsiq.q1.cntl |= ASC_QC_SG_HEAD;
ccb->scsiq.sg_head = &ccb->sghead;
ccb->scsiq.q1.data_addr = 0;
ccb->scsiq.q1.data_cnt = 0;
} else {
/*
* No data xfer, use non S/G values.
*/
ccb->scsiq.q1.data_addr = 0;
ccb->scsiq.q1.data_cnt = 0;
}
#ifdef ASC_DEBUG
printf("id = %d, lun = %d, cmd = %d, ccb = 0x%lX\n",
periph->periph_target,
periph->periph_lun, xs->cmd->opcode,
(unsigned long)ccb);
#endif
s = splbio();
adv_queue_ccb(sc, ccb);
splx(s);
if ((flags & XS_CTL_POLL) == 0)
return;
/* Not allowed to use interrupts, poll for completion. */
if (adv_poll(sc, xs, ccb->timeout)) {
adv_timeout(ccb);
if (adv_poll(sc, xs, ccb->timeout))
adv_timeout(ccb);
}
return;
case ADAPTER_REQ_GROW_RESOURCES:
/* XXX Not supported. */
return;
case ADAPTER_REQ_SET_XFER_MODE:
{
/*
* We can't really set the mode, but we know how to
* query what the firmware negotiated.
*/
struct scsipi_xfer_mode *xm = arg;
u_int8_t sdtr_data;
ASC_SCSI_BIT_ID_TYPE tid_bit;
tid_bit = ASC_TIX_TO_TARGET_ID(xm->xm_target);
xm->xm_mode = 0;
xm->xm_period = 0;
xm->xm_offset = 0;
if (sc->init_sdtr & tid_bit) {
xm->xm_mode |= PERIPH_CAP_SYNC;
sdtr_data = sc->sdtr_data[xm->xm_target];
xm->xm_period =
sc->sdtr_period_tbl[(sdtr_data >> 4) &
(sc->max_sdtr_index - 1)];
xm->xm_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
}
if (sc->use_tagged_qng & tid_bit)
xm->xm_mode |= PERIPH_CAP_TQING;
scsipi_async_event(chan, ASYNC_EVENT_XFER_MODE, xm);
return;
}
}
}
int
adv_intr(void *arg)
{
ASC_SOFTC *sc = arg;
#ifdef ASC_DEBUG
int int_pend = FALSE;
if (ASC_IS_INT_PENDING(sc->sc_iot, sc->sc_ioh)) {
int_pend = TRUE;
printf("ISR - ");
}
#endif
AscISR(sc);
#ifdef ASC_DEBUG
if(int_pend)
printf("\n");
#endif
return (1);
}
/*
* Poll a particular unit, looking for a particular xs
*/
static int
adv_poll(ASC_SOFTC *sc, struct scsipi_xfer *xs, int count)
{
/* timeouts are in msec, so we loop in 1000 usec cycles */
while (count) {
adv_intr(sc);
if (xs->xs_status & XS_STS_DONE)
return (0);
delay(1000); /* only happens in boot so ok */
count--;
}
return (1);
}
static void
adv_timeout(void *arg)
{
ADV_CCB *ccb = arg;
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_periph *periph = xs->xs_periph;
ASC_SOFTC *sc =
device_private(periph->periph_channel->chan_adapter->adapt_dev);
int s;
scsipi_printaddr(periph);
printf("timed out");
s = splbio();
/*
* If it has been through before, then a previous abort has failed,
* don't try abort again, reset the bus instead.
*/
if (ccb->flags & CCB_ABORT) {
/* abort timed out */
printf(" AGAIN. Resetting Bus\n");
/* Lets try resetting the bus! */
if (AscResetBus(sc) == ASC_ERROR) {
ccb->timeout = sc->scsi_reset_wait;
adv_queue_ccb(sc, ccb);
}
} else {
/* abort the operation that has timed out */
printf("\n");
AscAbortCCB(sc, ccb);
ccb->xs->error = XS_TIMEOUT;
ccb->timeout = ADV_ABORT_TIMEOUT;
ccb->flags |= CCB_ABORT;
adv_queue_ccb(sc, ccb);
}
splx(s);
}
static void
adv_watchdog(void *arg)
{
ADV_CCB *ccb = arg;
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_periph *periph = xs->xs_periph;
ASC_SOFTC *sc =
device_private(periph->periph_channel->chan_adapter->adapt_dev);
int s;
s = splbio();
ccb->flags &= ~CCB_WATCHDOG;
adv_start_ccbs(sc);
splx(s);
}
/******************************************************************************/
/* NARROW boards Interrupt callbacks */
/******************************************************************************/
/*
* adv_narrow_isr_callback() - Second Level Interrupt Handler called by AscISR()
*
* Interrupt callback function for the Narrow SCSI Asc Library.
*/
static void
adv_narrow_isr_callback(ASC_SOFTC *sc, ASC_QDONE_INFO *qdonep)
{
bus_dma_tag_t dmat = sc->sc_dmat;
ADV_CCB *ccb;
struct scsipi_xfer *xs;
struct scsi_sense_data *s1, *s2;
ccb = adv_ccb_phys_kv(sc, qdonep->d2.ccb_ptr);
xs = ccb->xs;
#ifdef ASC_DEBUG
printf(" - ccb=0x%lx, id=%d, lun=%d, cmd=%d, ",
(unsigned long)ccb,
xs->xs_periph->periph_target,
xs->xs_periph->periph_lun, xs->cmd->opcode);
#endif
callout_stop(&ccb->xs->xs_callout);
/*
* If we were a data transfer, unload the map that described
* the data buffer.
*/
if (xs->datalen) {
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dmat, ccb->dmamap_xfer);
}
if ((ccb->flags & CCB_ALLOC) == 0) {
aprint_error_dev(sc->sc_dev, "exiting ccb not allocated!\n");
Debugger();
return;
}
/*
* 'qdonep' contains the command's ending status.
*/
#ifdef ASC_DEBUG
printf("d_s=%d, h_s=%d", qdonep->d3.done_stat, qdonep->d3.host_stat);
#endif
switch (qdonep->d3.done_stat) {
case ASC_QD_NO_ERROR:
switch (qdonep->d3.host_stat) {
case ASC_QHSTA_NO_ERROR:
xs->error = XS_NOERROR;
/*
* XXX
* According to the original Linux driver, xs->resid
* should be qdonep->remain_bytes. However, its value
* is bogus, which seems like a H/W bug. The best thing
* we can do would be to ignore it, assuming that all
* data has been successfully transferred...
*/
xs->resid = 0;
break;
default:
/* QHSTA error occurred */
xs->error = XS_DRIVER_STUFFUP;
break;
}
/*
* If an INQUIRY command completed successfully, then call
* the AscInquiryHandling() function to patch bugged boards.
*/
if ((xs->cmd->opcode == SCSICMD_Inquiry) &&
(xs->xs_periph->periph_lun == 0) &&
(xs->datalen - qdonep->remain_bytes) >= 8) {
AscInquiryHandling(sc,
xs->xs_periph->periph_target & 0x7,
(ASC_SCSI_INQUIRY *) xs->data);
}
break;
case ASC_QD_WITH_ERROR:
switch (qdonep->d3.host_stat) {
case ASC_QHSTA_NO_ERROR:
if (qdonep->d3.scsi_stat == SS_CHK_CONDITION) {
s1 = &ccb->scsi_sense;
s2 = &xs->sense.scsi_sense;
*s2 = *s1;
xs->error = XS_SENSE;
} else {
xs->error = XS_DRIVER_STUFFUP;
}
break;
case ASC_QHSTA_M_SEL_TIMEOUT:
xs->error = XS_SELTIMEOUT;
break;
default:
/* QHSTA error occurred */
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
case ASC_QD_ABORTED_BY_HOST:
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
adv_free_ccb(sc, ccb);
scsipi_done(xs);
}