/*
* Copyright (c) 2005 Jesse Off. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* The matrix keypad is a primitive type of keying device
* commonly used in systems as a small, cheap, easy-to-build and rugged
* way to get user input in a variety of embedded environments. This
* driver can work for any size of keypad. A one key keypad (aka
* button) can also be used. The theory of operation is described
* thusly:
*
* 1) The keypad is connected to the NetBSD embedded system
* with digital I/O (DIO) pins connected to each column of
* the keypad and also to each row of the keypad.
*
* 2) When a button is pressed, a short is made between a
* column line and the intersecting row line.
*
* 3) Software is responsible to poll each row/column individually
* and also to debounce any key presses.
*
* To correctly wire up such a thing requires the input DIO
* lines to have pull-up resistors, otherwise an input may be read as a random
* value if not currently being shorted by a button press.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: matrixkp_subr.c,v 1.7 2007/10/19 11:59:55 ad Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <machine/autoconf.h>
#include <sys/intr.h>
#include <sys/bus.h>
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wskbdvar.h>
#include <dev/wscons/wsksymdef.h>
#include <dev/wscons/wsksymvar.h>
#include <dev/ic/matrixkpvar.h>
#define TV_ELAPSED_US(x, y) (((x).tv_sec - (y).tv_sec) * 1000000 + \
((x).tv_usec - (y).tv_usec))
const struct wskbd_accessops mxkp_accessops = {
mxkp_enable,
mxkp_set_leds,
mxkp_ioctl,
};
void
mxkp_attach(struct matrixkp_softc *sc)
{
u_int32_t i;
callout_init(&sc->sc_callout, 0);
callout_setfunc(&sc->sc_callout, mxkp_poll, sc);
if (sc->poll_freq > hz || sc->poll_freq == 0)
sc->poll_freq = hz;
sc->sc_enabled = 0;
if (sc->debounce_stable_ms == 0)
sc->sc_flags |= MXKP_NODEBOUNCE;
if (sc->mxkp_event == NULL)
sc->mxkp_event = mxkp_wskbd_event;
FOR_KEYS(i, sc->mxkp_pressed[i] = 0);
}
void
mxkp_poll(void *arg)
{
struct matrixkp_softc *sc = (struct matrixkp_softc *)arg;
u_int32_t i, anychanged;
u_int32_t scanned[(MAXNKEYS + 31) / 32];
u_int32_t changed[(MAXNKEYS + 31) / 32];
u_int32_t set[(MAXNKEYS + 31) / 32];
u_int32_t cleared[(MAXNKEYS + 31) / 32];
rescan:
anychanged = 0;
FOR_KEYS(i, scanned[i] = 0);
sc->mxkp_scankeys(sc, scanned);
FOR_KEYS(i, changed[i] = sc->mxkp_pressed[i] ^ scanned[i]);
FOR_KEYS(i, anychanged |= changed[i]);
if (!(sc->sc_flags & MXKP_NODEBOUNCE) && anychanged) {
mxkp_debounce(sc, changed, scanned);
anychanged = 0;
FOR_KEYS(i, changed[i] &= sc->mxkp_pressed[i] ^ scanned[i]);
FOR_KEYS(i, anychanged |= changed[i]);
}
if (anychanged) {
FOR_KEYS(i, set[i] = changed[i] & scanned[i]);
FOR_KEYS(i, cleared[i] = changed[i] & sc->mxkp_pressed[i]);
sc->mxkp_event(sc, set, cleared);
FOR_KEYS(i, sc->mxkp_pressed[i] &= ~cleared[i]);
FOR_KEYS(i, sc->mxkp_pressed[i] |= set[i]);
goto rescan;
}
if (sc->sc_enabled)
callout_schedule(&sc->sc_callout, hz / sc->poll_freq);
}
/*
* debounce will return when masked keys have been stable
* for sc->debounce_stable_ms
*/
void
mxkp_debounce(struct matrixkp_softc *sc, u_int32_t *mask, u_int32_t *scan) {
struct timeval verystart, start, now;
u_int32_t last_val[(MAXNKEYS + 31) / 32];
u_int32_t anyset, i;
FOR_KEYS(i, last_val[i] = scan[i]);
microtime(&verystart);
start = verystart;
do {
FOR_KEYS(i, scan[i] = 0);
sc->mxkp_scankeys(sc, scan);
microtime(&now);
anyset = 0;
FOR_KEYS(i, anyset |= (scan[i] ^ last_val[i]) & mask[i]);
if (anyset) /* bounce detected */
start = now;
FOR_KEYS(i, last_val[i] = scan[i]);
} while (TV_ELAPSED_US(now, start) <= (sc->debounce_stable_ms * 1000));
}
void
mxkp_wskbd_event(struct matrixkp_softc *sc, u_int32_t *on, u_int32_t *off)
{
unsigned int i;
for(i = 0; i < sc->mxkp_nkeys; i++) {
if (off[i / 32] & (1 << (i % 32))) {
wskbd_input(sc->sc_wskbddev, WSCONS_EVENT_KEY_UP, i);
}
}
for(i = 0; i < sc->mxkp_nkeys; i++) {
if (on[i / 32] & (1 << (i % 32))) {
wskbd_input(sc->sc_wskbddev, WSCONS_EVENT_KEY_DOWN, i);
}
}
}
int
mxkp_enable(void *v, int on)
{
struct matrixkp_softc *sc = v;
if (on) {
if (sc->sc_enabled)
return EBUSY;
sc->sc_enabled = 1;
callout_schedule(&sc->sc_callout, hz / sc->poll_freq);
} else {
sc->sc_enabled = 0;
}
return 0;
}
void
mxkp_set_leds(void *v, int leds)
{
}
int
mxkp_ioctl(void *v, u_long cmd, void *data, int flag, struct lwp *l)
{
switch (cmd) {
case WSKBDIO_GTYPE:
*(int *)data = WSKBD_TYPE_MATRIXKP;
return 0;
case WSKBDIO_SETLEDS:
return 0;
case WSKBDIO_GETLEDS:
*(int *)data = 0;
return 0;
case WSKBDIO_COMPLEXBELL:
return 0;
}
return EPASSTHROUGH;
}