/* $NetBSD: if_iavf.c,v 1.16 2022/06/17 06:18:09 yamaguchi Exp $ */
/*
* Copyright (c) 2013-2015, Intel Corporation
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2016,2017 David Gwynne <dlg@openbsd.org>
* Copyright (c) 2019 Jonathan Matthew <jmatthew@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright (c) 2020 Internet Initiative Japan, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iavf.c,v 1.16 2022/06/17 06:18:09 yamaguchi Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bitops.h>
#include <sys/bus.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/evcnt.h>
#include <sys/interrupt.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/pcq.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/workqueue.h>
#include <sys/xcall.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/rss_config.h>
#include <netinet/tcp.h> /* for struct tcphdr */
#include <netinet/udp.h> /* for struct udphdr */
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_ixlreg.h>
#include <dev/pci/if_ixlvar.h>
#include <dev/pci/if_iavfvar.h>
#include <prop/proplib.h>
#define IAVF_PCIREG PCI_MAPREG_START
#define IAVF_AQ_NUM 256
#define IAVF_AQ_MASK (IAVF_AQ_NUM-1)
#define IAVF_AQ_ALIGN 64
#define IAVF_AQ_BUFLEN 4096
#define I40E_AQ_LARGE_BUF 512
#define IAVF_VF_MAJOR 1
#define IAVF_VF_MINOR 1
#define IAVF_VFR_INPROGRESS 0
#define IAVF_VFR_COMPLETED 1
#define IAVF_VFR_VFACTIVE 2
#define IAVF_REG_VFR 0xdeadbeef
#define IAVF_ITR_RX 0x0
#define IAVF_ITR_TX 0x1
#define IAVF_ITR_MISC 0x2
#define IAVF_NOITR 0x3
#define IAVF_MTU_ETHERLEN (ETHER_HDR_LEN \
+ ETHER_CRC_LEN)
#define IAVF_MAX_MTU (9600 - IAVF_MTU_ETHERLEN)
#define IAVF_MIN_MTU (ETHER_MIN_LEN - ETHER_CRC_LEN)
#define IAVF_WORKQUEUE_PRI PRI_SOFTNET
#define IAVF_TX_PKT_DESCS 8
#define IAVF_TX_QUEUE_ALIGN 128
#define IAVF_RX_QUEUE_ALIGN 128
#define IAVF_TX_PKT_MAXSIZE (MCLBYTES * IAVF_TX_PKT_DESCS)
#define IAVF_MCLBYTES (MCLBYTES - ETHER_ALIGN)
#define IAVF_TICK_INTERVAL (5 * hz)
#define IAVF_WATCHDOG_TICKS 3
#define IAVF_WATCHDOG_STOP 0
#define IAVF_TXRX_PROCESS_UNLIMIT UINT_MAX
#define IAVF_TX_PROCESS_LIMIT 256
#define IAVF_RX_PROCESS_LIMIT 256
#define IAVF_TX_INTR_PROCESS_LIMIT 256
#define IAVF_RX_INTR_PROCESS_LIMIT 0U
#define IAVF_EXEC_TIMEOUT 3000
#define IAVF_IFCAP_RXCSUM (IFCAP_CSUM_IPv4_Rx | \
IFCAP_CSUM_TCPv4_Rx | \
IFCAP_CSUM_UDPv4_Rx | \
IFCAP_CSUM_TCPv6_Rx | \
IFCAP_CSUM_UDPv6_Rx)
#define IAVF_IFCAP_TXCSUM (IFCAP_CSUM_IPv4_Tx | \
IFCAP_CSUM_TCPv4_Tx | \
IFCAP_CSUM_UDPv4_Tx | \
IFCAP_CSUM_TCPv6_Tx | \
IFCAP_CSUM_UDPv6_Tx)
#define IAVF_CSUM_ALL_OFFLOAD (M_CSUM_IPv4 | \
M_CSUM_TCPv4 | M_CSUM_TCPv6 | \
M_CSUM_UDPv4 | M_CSUM_UDPv6)
struct iavf_softc; /* defined */
struct iavf_module_params {
int debug;
uint32_t rx_itr;
uint32_t tx_itr;
unsigned int rx_ndescs;
unsigned int tx_ndescs;
int max_qps;
};
struct iavf_product {
unsigned int vendor_id;
unsigned int product_id;
};
struct iavf_link_speed {
uint64_t baudrate;
uint64_t media;
};
struct iavf_aq_regs {
bus_size_t atq_tail;
bus_size_t atq_head;
bus_size_t atq_len;
bus_size_t atq_bal;
bus_size_t atq_bah;
bus_size_t arq_tail;
bus_size_t arq_head;
bus_size_t arq_len;
bus_size_t arq_bal;
bus_size_t arq_bah;
uint32_t atq_len_enable;
uint32_t atq_tail_mask;
uint32_t atq_head_mask;
uint32_t arq_len_enable;
uint32_t arq_tail_mask;
uint32_t arq_head_mask;
};
struct iavf_work {
struct work ixw_cookie;
void (*ixw_func)(void *);
void *ixw_arg;
unsigned int ixw_added;
};
struct iavf_tx_map {
struct mbuf *txm_m;
bus_dmamap_t txm_map;
unsigned int txm_eop;
};
struct iavf_tx_ring {
unsigned int txr_qid;
char txr_name[16];
struct iavf_softc *txr_sc;
kmutex_t txr_lock;
pcq_t *txr_intrq;
void *txr_si;
unsigned int txr_prod;
unsigned int txr_cons;
struct iavf_tx_map *txr_maps;
struct ixl_dmamem txr_mem;
bus_size_t txr_tail;
int txr_watchdog;
struct evcnt txr_defragged;
struct evcnt txr_defrag_failed;
struct evcnt txr_pcqdrop;
struct evcnt txr_transmitdef;
struct evcnt txr_defer;
struct evcnt txr_watchdogto;
struct evcnt txr_intr;
};
struct iavf_rx_map {
struct mbuf *rxm_m;
bus_dmamap_t rxm_map;
};
struct iavf_rx_ring {
unsigned int rxr_qid;
char rxr_name[16];
struct iavf_softc *rxr_sc;
kmutex_t rxr_lock;
unsigned int rxr_prod;
unsigned int rxr_cons;
struct iavf_rx_map *rxr_maps;
struct ixl_dmamem rxr_mem;
bus_size_t rxr_tail;
struct mbuf *rxr_m_head;
struct mbuf **rxr_m_tail;
struct evcnt rxr_mgethdr_failed;
struct evcnt rxr_mgetcl_failed;
struct evcnt rxr_mbuf_load_failed;
struct evcnt rxr_defer;
struct evcnt rxr_intr;
};
struct iavf_queue_pair {
struct iavf_tx_ring *qp_txr;
struct iavf_rx_ring *qp_rxr;
struct work qp_work;
void *qp_si;
bool qp_workqueue;
};
struct iavf_stat_counters {
struct evcnt isc_rx_bytes;
struct evcnt isc_rx_unicast;
struct evcnt isc_rx_multicast;
struct evcnt isc_rx_broadcast;
struct evcnt isc_rx_discards;
struct evcnt isc_rx_unknown_protocol;
struct evcnt isc_tx_bytes;
struct evcnt isc_tx_unicast;
struct evcnt isc_tx_multicast;
struct evcnt isc_tx_broadcast;
struct evcnt isc_tx_discards;
struct evcnt isc_tx_errors;
};
/*
* Locking notes:
* + A field in iavf_tx_ring is protected by txr_lock (a spin mutex), and
* A field in iavf_rx_ring is protected by rxr_lock (a spin mutex).
* - more than one lock must not be held at once.
* + fields named sc_atq_*, sc_arq_*, and sc_adminq_* are protected by
* sc_adminq_lock(a spin mutex).
* - The lock is held while accessing sc_aq_regs
* and is not held with txr_lock and rxr_lock together.
* + Other fields in iavf_softc is protected by sc_cfg_lock
* (an adaptive mutex).
* - The lock must be held before acquiring another lock.
*
* Locking order:
* - IFNET_LOCK => sc_cfg_lock => sc_adminq_lock
* - sc_cfg_lock => ETHER_LOCK => sc_adminq_lock
* - sc_cfg_lock => txr_lock
* - sc_cfg_lock => rxr_lock
*/
struct iavf_softc {
device_t sc_dev;
enum i40e_mac_type sc_mac_type;
int sc_debuglevel;
bool sc_attached;
bool sc_dead;
kmutex_t sc_cfg_lock;
callout_t sc_tick;
struct ifmedia sc_media;
uint64_t sc_media_status;
uint64_t sc_media_active;
int sc_link_state;
const struct iavf_aq_regs *
sc_aq_regs;
struct ethercom sc_ec;
uint8_t sc_enaddr[ETHER_ADDR_LEN];
uint8_t sc_enaddr_fake[ETHER_ADDR_LEN];
uint8_t sc_enaddr_added[ETHER_ADDR_LEN];
uint8_t sc_enaddr_reset[ETHER_ADDR_LEN];
struct if_percpuq *sc_ipq;
struct pci_attach_args sc_pa;
bus_dma_tag_t sc_dmat;
bus_space_tag_t sc_memt;
bus_space_handle_t sc_memh;
bus_size_t sc_mems;
pci_intr_handle_t *sc_ihp;
void **sc_ihs;
unsigned int sc_nintrs;
uint32_t sc_major_ver;
uint32_t sc_minor_ver;
uint32_t sc_vf_id;
uint32_t sc_vf_cap;
uint16_t sc_vsi_id;
uint16_t sc_qset_handle;
uint16_t sc_max_mtu;
bool sc_got_vf_resources;
bool sc_got_irq_map;
unsigned int sc_max_vectors;
kmutex_t sc_adminq_lock;
kcondvar_t sc_adminq_cv;
struct ixl_dmamem sc_atq;
unsigned int sc_atq_prod;
unsigned int sc_atq_cons;
struct ixl_aq_bufs sc_atq_idle;
struct ixl_aq_bufs sc_atq_live;
struct ixl_dmamem sc_arq;
struct ixl_aq_bufs sc_arq_idle;
struct ixl_aq_bufs sc_arq_live;
unsigned int sc_arq_prod;
unsigned int sc_arq_cons;
struct iavf_work sc_arq_refill;
uint32_t sc_arq_opcode;
uint32_t sc_arq_retval;
uint32_t sc_tx_itr;
uint32_t sc_rx_itr;
unsigned int sc_tx_ring_ndescs;
unsigned int sc_rx_ring_ndescs;
unsigned int sc_nqueue_pairs;
unsigned int sc_nqps_alloc;
unsigned int sc_nqps_vsi;
unsigned int sc_nqps_req;
struct iavf_queue_pair *sc_qps;
bool sc_txrx_workqueue;
u_int sc_tx_intr_process_limit;
u_int sc_tx_process_limit;
u_int sc_rx_intr_process_limit;
u_int sc_rx_process_limit;
struct workqueue *sc_workq;
struct workqueue *sc_workq_txrx;
struct iavf_work sc_reset_task;
struct iavf_work sc_wdto_task;
struct iavf_work sc_req_queues_task;
bool sc_req_queues_retried;
bool sc_resetting;
bool sc_reset_up;
struct sysctllog *sc_sysctllog;
struct iavf_stat_counters
sc_stat_counters;
};
#define IAVF_LOG(_sc, _lvl, _fmt, _args...) \
do { \
if (!(_sc)->sc_attached) { \
switch (_lvl) { \
case LOG_ERR: \
case LOG_WARNING: \
aprint_error_dev((_sc)->sc_dev, _fmt, ##_args); \
break; \
case LOG_INFO: \
aprint_normal_dev((_sc)->sc_dev,_fmt, ##_args); \
break; \
case LOG_DEBUG: \
default: \
aprint_debug_dev((_sc)->sc_dev, _fmt, ##_args); \
} \
} else { \
struct ifnet *_ifp = &(_sc)->sc_ec.ec_if; \
log((_lvl), "%s: " _fmt, _ifp->if_xname, ##_args); \
} \
} while (0)
static int iavf_dmamem_alloc(bus_dma_tag_t, struct ixl_dmamem *,
bus_size_t, bus_size_t);
static void iavf_dmamem_free(bus_dma_tag_t, struct ixl_dmamem *);
static struct ixl_aq_buf *
iavf_aqb_get(struct iavf_softc *, struct ixl_aq_bufs *);
static struct ixl_aq_buf *
iavf_aqb_get_locked(struct ixl_aq_bufs *);
static void iavf_aqb_put_locked(struct ixl_aq_bufs *, struct ixl_aq_buf *);
static void iavf_aqb_clean(struct ixl_aq_bufs *, bus_dma_tag_t);
static const struct iavf_product *
iavf_lookup(const struct pci_attach_args *);
static enum i40e_mac_type
iavf_mactype(pci_product_id_t);
static void iavf_pci_csr_setup(pci_chipset_tag_t, pcitag_t);
static int iavf_wait_active(struct iavf_softc *);
static bool iavf_is_etheranyaddr(const uint8_t *);
static void iavf_prepare_fakeaddr(struct iavf_softc *);
static int iavf_replace_lla(struct ifnet *,
const uint8_t *, const uint8_t *);
static void iavf_evcnt_attach(struct evcnt *,
const char *, const char *);
static int iavf_setup_interrupts(struct iavf_softc *);
static void iavf_teardown_interrupts(struct iavf_softc *);
static int iavf_setup_sysctls(struct iavf_softc *);
static void iavf_teardown_sysctls(struct iavf_softc *);
static int iavf_setup_stats(struct iavf_softc *);
static void iavf_teardown_stats(struct iavf_softc *);
static struct workqueue *
iavf_workq_create(const char *, pri_t, int, int);
static void iavf_workq_destroy(struct workqueue *);
static int iavf_work_set(struct iavf_work *, void (*)(void *), void *);
static void iavf_work_add(struct workqueue *, struct iavf_work *);
static void iavf_work_wait(struct workqueue *, struct iavf_work *);
static unsigned int
iavf_calc_msix_count(struct iavf_softc *);
static unsigned int
iavf_calc_queue_pair_size(struct iavf_softc *);
static int iavf_queue_pairs_alloc(struct iavf_softc *);
static void iavf_queue_pairs_free(struct iavf_softc *);
static int iavf_arq_fill(struct iavf_softc *);
static void iavf_arq_refill(void *);
static int iavf_arq_poll(struct iavf_softc *, uint32_t, int);
static void iavf_atq_done(struct iavf_softc *);
static int iavf_init_admin_queue(struct iavf_softc *);
static void iavf_cleanup_admin_queue(struct iavf_softc *);
static int iavf_arq(struct iavf_softc *);
static int iavf_adminq_exec(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static int iavf_adminq_poll(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *, int);
static int iavf_adminq_poll_locked(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *, int);
static int iavf_add_multi(struct iavf_softc *, uint8_t *, uint8_t *);
static int iavf_del_multi(struct iavf_softc *, uint8_t *, uint8_t *);
static void iavf_del_all_multi(struct iavf_softc *);
static int iavf_get_version(struct iavf_softc *, struct ixl_aq_buf *);
static int iavf_get_vf_resources(struct iavf_softc *, struct ixl_aq_buf *);
static int iavf_get_stats(struct iavf_softc *);
static int iavf_config_irq_map(struct iavf_softc *, struct ixl_aq_buf *);
static int iavf_config_vsi_queues(struct iavf_softc *);
static int iavf_config_hena(struct iavf_softc *);
static int iavf_config_rss_key(struct iavf_softc *);
static int iavf_config_rss_lut(struct iavf_softc *);
static int iavf_config_promisc_mode(struct iavf_softc *, int, int);
static int iavf_config_vlan_stripping(struct iavf_softc *, int);
static int iavf_config_vlan_id(struct iavf_softc *, uint16_t, uint32_t);
static int iavf_queue_select(struct iavf_softc *, int);
static int iavf_request_queues(struct iavf_softc *, unsigned int);
static int iavf_reset_vf(struct iavf_softc *);
static int iavf_eth_addr(struct iavf_softc *, const uint8_t *, uint32_t);
static void iavf_process_version(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static void iavf_process_vf_resources(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static void iavf_process_irq_map(struct iavf_softc *,
struct ixl_aq_desc *);
static void iavf_process_vc_event(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static void iavf_process_stats(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static void iavf_process_req_queues(struct iavf_softc *,
struct ixl_aq_desc *, struct ixl_aq_buf *);
static int iavf_intr(void *);
static int iavf_queue_intr(void *);
static void iavf_tick(void *);
static void iavf_tick_halt(void *);
static void iavf_reset_request(void *);
static void iavf_reset_start(void *);
static void iavf_reset(void *);
static void iavf_reset_finish(struct iavf_softc *);
static int iavf_init(struct ifnet *);
static int iavf_init_locked(struct iavf_softc *);
static void iavf_stop(struct ifnet *, int);
static void iavf_stop_locked(struct iavf_softc *);
static int iavf_ioctl(struct ifnet *, u_long, void *);
static void iavf_start(struct ifnet *);
static int iavf_transmit(struct ifnet *, struct mbuf*);
static int iavf_watchdog(struct iavf_tx_ring *);
static void iavf_watchdog_timeout(void *);
static int iavf_media_change(struct ifnet *);
static void iavf_media_status(struct ifnet *, struct ifmediareq *);
static int iavf_ifflags_cb(struct ethercom *);
static int iavf_vlan_cb(struct ethercom *, uint16_t, bool);
static void iavf_deferred_transmit(void *);
static void iavf_handle_queue(void *);
static void iavf_handle_queue_wk(struct work *, void *);
static int iavf_reinit(struct iavf_softc *);
static int iavf_rxfill(struct iavf_softc *, struct iavf_rx_ring *);
static void iavf_txr_clean(struct iavf_softc *, struct iavf_tx_ring *);
static void iavf_rxr_clean(struct iavf_softc *, struct iavf_rx_ring *);
static int iavf_txeof(struct iavf_softc *, struct iavf_tx_ring *,
u_int, struct evcnt *);
static int iavf_rxeof(struct iavf_softc *, struct iavf_rx_ring *,
u_int, struct evcnt *);
static int iavf_iff(struct iavf_softc *);
static int iavf_iff_locked(struct iavf_softc *);
static void iavf_post_request_queues(void *);
static int iavf_sysctl_itr_handler(SYSCTLFN_PROTO);
static int iavf_match(device_t, cfdata_t, void *);
static void iavf_attach(device_t, device_t, void*);
static int iavf_detach(device_t, int);
static int iavf_finalize_teardown(device_t);
CFATTACH_DECL3_NEW(iavf, sizeof(struct iavf_softc),
iavf_match, iavf_attach, iavf_detach, NULL, NULL, NULL,
DVF_DETACH_SHUTDOWN);
static const struct iavf_product iavf_products[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_XL710_VF },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_XL710_VF_HV },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_X722_VF },
/* required last entry */
{0, 0}
};
static const struct iavf_link_speed iavf_link_speeds[] = {
{ 0, 0 },
{ IF_Mbps(100), IFM_100_TX },
{ IF_Mbps(1000), IFM_1000_T },
{ IF_Gbps(10), IFM_10G_T },
{ IF_Gbps(40), IFM_40G_CR4 },
{ IF_Gbps(20), IFM_20G_KR2 },
{ IF_Gbps(25), IFM_25G_CR }
};
static const struct iavf_aq_regs iavf_aq_regs = {
.atq_tail = I40E_VF_ATQT1,
.atq_tail_mask = I40E_VF_ATQT1_ATQT_MASK,
.atq_head = I40E_VF_ATQH1,
.atq_head_mask = I40E_VF_ARQH1_ARQH_MASK,
.atq_len = I40E_VF_ATQLEN1,
.atq_bal = I40E_VF_ATQBAL1,
.atq_bah = I40E_VF_ATQBAH1,
.atq_len_enable = I40E_VF_ATQLEN1_ATQENABLE_MASK,
.arq_tail = I40E_VF_ARQT1,
.arq_tail_mask = I40E_VF_ARQT1_ARQT_MASK,
.arq_head = I40E_VF_ARQH1,
.arq_head_mask = I40E_VF_ARQH1_ARQH_MASK,
.arq_len = I40E_VF_ARQLEN1,
.arq_bal = I40E_VF_ARQBAL1,
.arq_bah = I40E_VF_ARQBAH1,
.arq_len_enable = I40E_VF_ARQLEN1_ARQENABLE_MASK,
};
static struct iavf_module_params iavf_params = {
.debug = 0,
.rx_itr = 0x07a, /* 4K intrs/sec */
.tx_itr = 0x07a, /* 4K intrs/sec */
.tx_ndescs = 512,
.rx_ndescs = 256,
.max_qps = INT_MAX,
};
#define delaymsec(_x) DELAY(1000 * (_x))
#define iavf_rd(_s, _r) \
bus_space_read_4((_s)->sc_memt, (_s)->sc_memh, (_r))
#define iavf_wr(_s, _r, _v) \
bus_space_write_4((_s)->sc_memt, (_s)->sc_memh, (_r), (_v))
#define iavf_barrier(_s, _r, _l, _o) \
bus_space_barrier((_s)->sc_memt, (_s)->sc_memh, (_r), (_l), (_o))
#define iavf_flush(_s) (void)iavf_rd((_s), I40E_VFGEN_RSTAT)
#define iavf_nqueues(_sc) (1 << ((_sc)->sc_nqueue_pairs - 1))
#define iavf_allqueues(_sc) ((1 << ((_sc)->sc_nqueue_pairs)) - 1)
static inline void
iavf_intr_barrier(void)
{
/* make all interrupt handler finished */
xc_barrier(0);
}
static inline void
iavf_intr_enable(struct iavf_softc *sc)
{
iavf_wr(sc, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL0_INTENA_MASK |
I40E_VFINT_DYN_CTL0_CLEARPBA_MASK |
(IAVF_NOITR << I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT));
iavf_wr(sc, I40E_VFINT_ICR0_ENA1, I40E_VFINT_ICR0_ENA1_ADMINQ_MASK);
iavf_flush(sc);
}
static inline void
iavf_intr_disable(struct iavf_softc *sc)
{
iavf_wr(sc, I40E_VFINT_DYN_CTL01,
(IAVF_NOITR << I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT));
iavf_wr(sc, I40E_VFINT_ICR0_ENA1, 0);
iavf_flush(sc);
}
static inline void
iavf_queue_intr_enable(struct iavf_softc *sc, unsigned int qid)
{
iavf_wr(sc, I40E_VFINT_DYN_CTLN1(qid),
I40E_VFINT_DYN_CTLN1_INTENA_MASK |
I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
(IAVF_NOITR << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT));
iavf_flush(sc);
}
static inline void
iavf_queue_intr_disable(struct iavf_softc *sc, unsigned int qid)
{
iavf_wr(sc, I40E_VFINT_DYN_CTLN1(qid),
(IAVF_NOITR << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT));
iavf_flush(sc);
}
static inline void
iavf_aq_vc_set_opcode(struct ixl_aq_desc *iaq, uint32_t opcode)
{
struct iavf_aq_vc *vc;
vc = (struct iavf_aq_vc *)&iaq->iaq_cookie;
vc->iaq_vc_opcode = htole32(opcode);
}
static inline uint32_t
iavf_aq_vc_get_opcode(const struct ixl_aq_desc *iaq)
{
const struct iavf_aq_vc *vc;
vc = (const struct iavf_aq_vc *)&iaq->iaq_cookie;
return le32toh(vc->iaq_vc_opcode);
}
static inline uint32_t
iavf_aq_vc_get_retval(const struct ixl_aq_desc *iaq)
{
const struct iavf_aq_vc *vc;
vc = (const struct iavf_aq_vc *)&iaq->iaq_cookie;
return le32toh(vc->iaq_vc_retval);
}
static int
iavf_match(device_t parent, cfdata_t match, void *aux)
{
const struct pci_attach_args *pa = aux;
return (iavf_lookup(pa) != NULL) ? 1 : 0;
}
static void
iavf_attach(device_t parent, device_t self, void *aux)
{
struct iavf_softc *sc;
struct pci_attach_args *pa = aux;
struct ifnet *ifp;
struct ixl_aq_buf *aqb;
pcireg_t memtype;
char xnamebuf[MAXCOMLEN];
int error, i;
sc = device_private(self);
sc->sc_dev = self;
ifp = &sc->sc_ec.ec_if;
sc->sc_pa = *pa;
sc->sc_dmat = (pci_dma64_available(pa)) ? pa->pa_dmat64 : pa->pa_dmat;
sc->sc_aq_regs = &iavf_aq_regs;
sc->sc_debuglevel = iavf_params.debug;
sc->sc_tx_ring_ndescs = iavf_params.tx_ndescs;
sc->sc_rx_ring_ndescs = iavf_params.rx_ndescs;
sc->sc_tx_itr = iavf_params.tx_itr;
sc->sc_rx_itr = iavf_params.rx_itr;
sc->sc_nqps_req = MIN(ncpu, iavf_params.max_qps);
iavf_prepare_fakeaddr(sc);
sc->sc_mac_type = iavf_mactype(PCI_PRODUCT(pa->pa_id));
iavf_pci_csr_setup(pa->pa_pc, pa->pa_tag);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IAVF_PCIREG);
if (pci_mapreg_map(pa, IAVF_PCIREG, memtype, 0,
&sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_mems)) {
aprint_error(": unable to map registers\n");
return;
}
if (iavf_wait_active(sc) != 0) {
aprint_error(": VF reset timed out\n");
goto unmap;
}
mutex_init(&sc->sc_cfg_lock, MUTEX_DEFAULT, IPL_SOFTNET);
mutex_init(&sc->sc_adminq_lock, MUTEX_DEFAULT, IPL_NET);
SIMPLEQ_INIT(&sc->sc_atq_idle);
SIMPLEQ_INIT(&sc->sc_atq_live);
SIMPLEQ_INIT(&sc->sc_arq_idle);
SIMPLEQ_INIT(&sc->sc_arq_live);
sc->sc_arq_cons = 0;
sc->sc_arq_prod = 0;
aqb = NULL;
if (iavf_dmamem_alloc(sc->sc_dmat, &sc->sc_atq,
sizeof(struct ixl_aq_desc) * IAVF_AQ_NUM, IAVF_AQ_ALIGN) != 0) {
aprint_error(": unable to allocate atq\n");
goto free_mutex;
}
if (iavf_dmamem_alloc(sc->sc_dmat, &sc->sc_arq,
sizeof(struct ixl_aq_desc) * IAVF_AQ_NUM, IAVF_AQ_ALIGN) != 0) {
aprint_error(": unable to allocate arq\n");
goto free_atq;
}
for (i = 0; i < IAVF_AQ_NUM; i++) {
aqb = iavf_aqb_get(sc, NULL);
if (aqb != NULL) {
iavf_aqb_put_locked(&sc->sc_arq_idle, aqb);
}
}
aqb = NULL;
if (!iavf_arq_fill(sc)) {
aprint_error(": unable to fill arq descriptors\n");
goto free_arq;
}
if (iavf_init_admin_queue(sc) != 0) {
aprint_error(": unable to initialize admin queue\n");
goto shutdown;
}
aqb = iavf_aqb_get(sc, NULL);
if (aqb == NULL) {
aprint_error(": unable to allocate buffer for ATQ\n");
goto shutdown;
}
error = iavf_get_version(sc, aqb);
switch (error) {
case 0:
break;
case ETIMEDOUT:
aprint_error(": timeout waiting for VF version\n");
goto shutdown;
case ENOTSUP:
aprint_error(": unsupported VF version %d\n", sc->sc_major_ver);
goto shutdown;
default:
aprint_error(":unable to get VF interface version\n");
goto shutdown;
}
if (iavf_get_vf_resources(sc, aqb) != 0) {
aprint_error(": timeout waiting for VF resources\n");
goto shutdown;
}
aprint_normal(", VF version %d.%d%s",
sc->sc_major_ver, sc->sc_minor_ver,
(sc->sc_minor_ver > IAVF_VF_MINOR) ? "(minor mismatch)" : "");
aprint_normal(", VF %d, VSI %d", sc->sc_vf_id, sc->sc_vsi_id);
aprint_normal("\n");
aprint_naive("\n");
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
if (iavf_queue_pairs_alloc(sc) != 0) {
goto shutdown;
}
if (iavf_setup_interrupts(sc) != 0) {
goto free_queue_pairs;
}
if (iavf_config_irq_map(sc, aqb) != 0) {
aprint_error(", timed out waiting for IRQ map response\n");
goto teardown_intrs;
}
if (iavf_setup_sysctls(sc) != 0) {
goto teardown_intrs;
}
if (iavf_setup_stats(sc) != 0) {
goto teardown_sysctls;
}
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
aqb = NULL;
snprintf(xnamebuf, sizeof(xnamebuf),
"%s_adminq_cv", device_xname(self));
cv_init(&sc->sc_adminq_cv, xnamebuf);
callout_init(&sc->sc_tick, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_tick, iavf_tick, sc);
iavf_work_set(&sc->sc_reset_task, iavf_reset_start, sc);
iavf_work_set(&sc->sc_arq_refill, iavf_arq_refill, sc);
iavf_work_set(&sc->sc_wdto_task, iavf_watchdog_timeout, sc);
iavf_work_set(&sc->sc_req_queues_task, iavf_post_request_queues, sc);
snprintf(xnamebuf, sizeof(xnamebuf), "%s_wq_cfg", device_xname(self));
sc->sc_workq = iavf_workq_create(xnamebuf, IAVF_WORKQUEUE_PRI,
IPL_NET, WQ_MPSAFE);
if (sc->sc_workq == NULL)
goto destroy_cv;
snprintf(xnamebuf, sizeof(xnamebuf), "%s_wq_txrx", device_xname(self));
error = workqueue_create(&sc->sc_workq_txrx, xnamebuf,
iavf_handle_queue_wk, sc, IAVF_WORKQUEUE_PRI, IPL_NET,
WQ_PERCPU|WQ_MPSAFE);
if (error != 0) {
sc->sc_workq_txrx = NULL;
goto teardown_wqs;
}
if_initialize(ifp);
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_MPSAFE;
ifp->if_ioctl = iavf_ioctl;
ifp->if_start = iavf_start;
ifp->if_transmit = iavf_transmit;
ifp->if_watchdog = NULL;
ifp->if_init = iavf_init;
ifp->if_stop = iavf_stop;
IFQ_SET_MAXLEN(&ifp->if_snd, sc->sc_tx_ring_ndescs);
IFQ_SET_READY(&ifp->if_snd);
sc->sc_ipq = if_percpuq_create(ifp);
ifp->if_capabilities |= IAVF_IFCAP_RXCSUM;
ifp->if_capabilities |= IAVF_IFCAP_TXCSUM;
ether_set_vlan_cb(&sc->sc_ec, iavf_vlan_cb);
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
sc->sc_ec.ec_capenable = sc->sc_ec.ec_capabilities;
ether_set_ifflags_cb(&sc->sc_ec, iavf_ifflags_cb);
sc->sc_ec.ec_ifmedia = &sc->sc_media;
ifmedia_init_with_lock(&sc->sc_media, IFM_IMASK, iavf_media_change,
iavf_media_status, &sc->sc_cfg_lock);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->sc_enaddr);
sc->sc_txrx_workqueue = true;
sc->sc_tx_process_limit = IAVF_TX_PROCESS_LIMIT;
sc->sc_rx_process_limit = IAVF_RX_PROCESS_LIMIT;
sc->sc_tx_intr_process_limit = IAVF_TX_INTR_PROCESS_LIMIT;
sc->sc_rx_intr_process_limit = IAVF_RX_INTR_PROCESS_LIMIT;
if_register(ifp);
if_link_state_change(ifp, sc->sc_link_state);
iavf_intr_enable(sc);
if (sc->sc_nqps_vsi < sc->sc_nqps_req)
iavf_work_add(sc->sc_workq, &sc->sc_req_queues_task);
sc->sc_attached = true;
return;
teardown_wqs:
config_finalize_register(self, iavf_finalize_teardown);
destroy_cv:
cv_destroy(&sc->sc_adminq_cv);
callout_destroy(&sc->sc_tick);
iavf_teardown_stats(sc);
teardown_sysctls:
iavf_teardown_sysctls(sc);
teardown_intrs:
iavf_teardown_interrupts(sc);
free_queue_pairs:
iavf_queue_pairs_free(sc);
shutdown:
if (aqb != NULL)
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
iavf_cleanup_admin_queue(sc);
iavf_aqb_clean(&sc->sc_atq_idle, sc->sc_dmat);
iavf_aqb_clean(&sc->sc_arq_idle, sc->sc_dmat);
free_arq:
iavf_dmamem_free(sc->sc_dmat, &sc->sc_arq);
free_atq:
iavf_dmamem_free(sc->sc_dmat, &sc->sc_atq);
free_mutex:
mutex_destroy(&sc->sc_cfg_lock);
mutex_destroy(&sc->sc_adminq_lock);
unmap:
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
sc->sc_mems = 0;
sc->sc_attached = false;
}
static int
iavf_detach(device_t self, int flags)
{
struct iavf_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
if (!sc->sc_attached)
return 0;
iavf_stop(ifp, 1);
/*
* set a dummy function to halt callout safely
* even if a workqueue entry calls callout_schedule()
*/
callout_setfunc(&sc->sc_tick, iavf_tick_halt, sc);
iavf_work_wait(sc->sc_workq, &sc->sc_reset_task);
iavf_work_wait(sc->sc_workq, &sc->sc_wdto_task);
callout_halt(&sc->sc_tick, NULL);
callout_destroy(&sc->sc_tick);
/* detach the I/F before stop adminq due to callbacks */
ether_ifdetach(ifp);
if_detach(ifp);
ifmedia_fini(&sc->sc_media);
if_percpuq_destroy(sc->sc_ipq);
iavf_intr_disable(sc);
iavf_intr_barrier();
iavf_work_wait(sc->sc_workq, &sc->sc_arq_refill);
mutex_enter(&sc->sc_adminq_lock);
iavf_cleanup_admin_queue(sc);
mutex_exit(&sc->sc_adminq_lock);
iavf_aqb_clean(&sc->sc_atq_idle, sc->sc_dmat);
iavf_aqb_clean(&sc->sc_arq_idle, sc->sc_dmat);
iavf_dmamem_free(sc->sc_dmat, &sc->sc_arq);
iavf_dmamem_free(sc->sc_dmat, &sc->sc_atq);
cv_destroy(&sc->sc_adminq_cv);
iavf_workq_destroy(sc->sc_workq);
sc->sc_workq = NULL;
iavf_queue_pairs_free(sc);
iavf_teardown_interrupts(sc);
iavf_teardown_sysctls(sc);
iavf_teardown_stats(sc);
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
mutex_destroy(&sc->sc_adminq_lock);
mutex_destroy(&sc->sc_cfg_lock);
return 0;
}
static int
iavf_finalize_teardown(device_t self)
{
struct iavf_softc *sc = device_private(self);
if (sc->sc_workq != NULL) {
iavf_workq_destroy(sc->sc_workq);
sc->sc_workq = NULL;
}
if (sc->sc_workq_txrx != NULL) {
workqueue_destroy(sc->sc_workq_txrx);
sc->sc_workq_txrx = NULL;
}
return 0;
}
static int
iavf_init(struct ifnet *ifp)
{
struct iavf_softc *sc;
int rv;
sc = ifp->if_softc;
mutex_enter(&sc->sc_cfg_lock);
rv = iavf_init_locked(sc);
mutex_exit(&sc->sc_cfg_lock);
return rv;
}
static int
iavf_init_locked(struct iavf_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
unsigned int i;
int error;
KASSERT(mutex_owned(&sc->sc_cfg_lock));
if (ISSET(ifp->if_flags, IFF_RUNNING))
iavf_stop_locked(sc);
if (sc->sc_resetting)
return ENXIO;
error = iavf_reinit(sc);
if (error) {
iavf_stop_locked(sc);
return error;
}
SET(ifp->if_flags, IFF_RUNNING);
CLR(ifp->if_flags, IFF_OACTIVE);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
iavf_wr(sc, I40E_VFINT_ITRN1(IAVF_ITR_RX, i), sc->sc_rx_itr);
iavf_wr(sc, I40E_VFINT_ITRN1(IAVF_ITR_TX, i), sc->sc_tx_itr);
}
iavf_wr(sc, I40E_VFINT_ITR01(IAVF_ITR_RX), sc->sc_rx_itr);
iavf_wr(sc, I40E_VFINT_ITR01(IAVF_ITR_TX), sc->sc_tx_itr);
iavf_wr(sc, I40E_VFINT_ITR01(IAVF_ITR_MISC), 0);
error = iavf_iff_locked(sc);
if (error) {
iavf_stop_locked(sc);
return error;
};
/* ETHERCAP_VLAN_HWFILTER can not be disabled */
SET(sc->sc_ec.ec_capenable, ETHERCAP_VLAN_HWFILTER);
callout_schedule(&sc->sc_tick, IAVF_TICK_INTERVAL);
return 0;
}
static int
iavf_reinit(struct iavf_softc *sc)
{
struct iavf_rx_ring *rxr;
struct iavf_tx_ring *txr;
unsigned int i;
uint32_t reg;
KASSERT(mutex_owned(&sc->sc_cfg_lock));
sc->sc_reset_up = true;
sc->sc_nqueue_pairs = MIN(sc->sc_nqps_alloc, sc->sc_nintrs - 1);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
rxr = sc->sc_qps[i].qp_rxr;
txr = sc->sc_qps[i].qp_txr;
iavf_rxfill(sc, rxr);
txr->txr_watchdog = IAVF_WATCHDOG_STOP;
}
if (iavf_config_vsi_queues(sc) != 0)
return EIO;
if (iavf_config_hena(sc) != 0)
return EIO;
iavf_config_rss_key(sc);
iavf_config_rss_lut(sc);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
iavf_queue_intr_enable(sc, i);
}
/* unmask */
reg = iavf_rd(sc, I40E_VFINT_DYN_CTL01);
reg |= (IAVF_NOITR << I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT);
iavf_wr(sc, I40E_VFINT_DYN_CTL01, reg);
if (iavf_queue_select(sc, IAVF_VC_OP_ENABLE_QUEUES) != 0)
return EIO;
return 0;
}
static void
iavf_stop(struct ifnet *ifp, int disable)
{
struct iavf_softc *sc;
sc = ifp->if_softc;
mutex_enter(&sc->sc_cfg_lock);
iavf_stop_locked(sc);
mutex_exit(&sc->sc_cfg_lock);
}
static void
iavf_stop_locked(struct iavf_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct iavf_rx_ring *rxr;
struct iavf_tx_ring *txr;
uint32_t reg;
unsigned int i;
KASSERT(mutex_owned(&sc->sc_cfg_lock));
CLR(ifp->if_flags, IFF_RUNNING);
sc->sc_reset_up = false;
callout_stop(&sc->sc_tick);
if (!sc->sc_resetting) {
/* disable queues*/
if (iavf_queue_select(sc, IAVF_VC_OP_DISABLE_QUEUES) != 0) {
goto die;
}
}
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
iavf_queue_intr_disable(sc, i);
}
/* mask interrupts */
reg = iavf_rd(sc, I40E_VFINT_DYN_CTL01);
reg |= I40E_VFINT_DYN_CTL0_INTENA_MSK_MASK |
(IAVF_NOITR << I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT);
iavf_wr(sc, I40E_VFINT_DYN_CTL01, reg);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
rxr = sc->sc_qps[i].qp_rxr;
txr = sc->sc_qps[i].qp_txr;
mutex_enter(&rxr->rxr_lock);
iavf_rxr_clean(sc, rxr);
mutex_exit(&rxr->rxr_lock);
mutex_enter(&txr->txr_lock);
iavf_txr_clean(sc, txr);
mutex_exit(&txr->txr_lock);
workqueue_wait(sc->sc_workq_txrx,
&sc->sc_qps[i].qp_work);
}
return;
die:
if (!sc->sc_dead) {
sc->sc_dead = true;
log(LOG_INFO, "%s: Request VF reset\n", ifp->if_xname);
iavf_work_set(&sc->sc_reset_task, iavf_reset_request, sc);
iavf_work_add(sc->sc_workq, &sc->sc_reset_task);
}
log(LOG_CRIT, "%s: failed to shut down rings\n", ifp->if_xname);
}
static int
iavf_watchdog(struct iavf_tx_ring *txr)
{
struct iavf_softc *sc;
sc = txr->txr_sc;
mutex_enter(&txr->txr_lock);
if (txr->txr_watchdog == IAVF_WATCHDOG_STOP
|| --txr->txr_watchdog > 0) {
mutex_exit(&txr->txr_lock);
return 0;
}
txr->txr_watchdog = IAVF_WATCHDOG_STOP;
txr->txr_watchdogto.ev_count++;
mutex_exit(&txr->txr_lock);
device_printf(sc->sc_dev, "watchdog timeout on queue %d\n",
txr->txr_qid);
return 1;
}
static void
iavf_watchdog_timeout(void *xsc)
{
struct iavf_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->sc_ec.ec_if;
mutex_enter(&sc->sc_cfg_lock);
if (ISSET(ifp->if_flags, IFF_RUNNING))
iavf_init_locked(sc);
mutex_exit(&sc->sc_cfg_lock);
}
static int
iavf_media_change(struct ifnet *ifp)
{
struct iavf_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->sc_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return EINVAL;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
break;
default:
return EINVAL;
}
return 0;
}
static void
iavf_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct iavf_softc *sc = ifp->if_softc;
KASSERT(mutex_owned(&sc->sc_cfg_lock));
ifmr->ifm_status = sc->sc_media_status;
ifmr->ifm_active = sc->sc_media_active;
}
static int
iavf_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct iavf_softc *sc = ifp->if_softc;
/* vlan hwfilter can not be disabled */
SET(ec->ec_capenable, ETHERCAP_VLAN_HWFILTER);
return iavf_iff(sc);
}
static int
iavf_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
{
struct ifnet *ifp = &ec->ec_if;
struct iavf_softc *sc = ifp->if_softc;
int rv;
mutex_enter(&sc->sc_cfg_lock);
if (sc->sc_resetting) {
mutex_exit(&sc->sc_cfg_lock);
/* all vlan id was already removed */
if (!set)
return 0;
return ENXIO;
}
/* ETHERCAP_VLAN_HWFILTER can not be disabled */
SET(sc->sc_ec.ec_capenable, ETHERCAP_VLAN_HWFILTER);
if (set) {
rv = iavf_config_vlan_id(sc, vid, IAVF_VC_OP_ADD_VLAN);
if (!ISSET(sc->sc_ec.ec_capenable, ETHERCAP_VLAN_HWTAGGING)) {
iavf_config_vlan_stripping(sc,
sc->sc_ec.ec_capenable);
}
} else {
rv = iavf_config_vlan_id(sc, vid, IAVF_VC_OP_DEL_VLAN);
}
mutex_exit(&sc->sc_cfg_lock);
if (rv != 0)
return EIO;
return 0;
}
static int
iavf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ifreq *ifr = (struct ifreq *)data;
struct iavf_softc *sc = (struct iavf_softc *)ifp->if_softc;
const struct sockaddr *sa;
uint8_t addrhi[ETHER_ADDR_LEN], addrlo[ETHER_ADDR_LEN];
int s, error = 0;
unsigned int nmtu;
switch (cmd) {
case SIOCSIFMTU:
nmtu = ifr->ifr_mtu;
if (nmtu < IAVF_MIN_MTU || nmtu > IAVF_MAX_MTU) {
error = EINVAL;
break;
}
if (ifp->if_mtu != nmtu) {
s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
if (error == ENETRESET)
error = iavf_init(ifp);
}
break;
case SIOCADDMULTI:
sa = ifreq_getaddr(SIOCADDMULTI, ifr);
if (ether_addmulti(sa, &sc->sc_ec) == ENETRESET) {
error = ether_multiaddr(sa, addrlo, addrhi);
if (error != 0)
return error;
error = iavf_add_multi(sc, addrlo, addrhi);
if (error != 0 && error != ENETRESET) {
ether_delmulti(sa, &sc->sc_ec);
error = EIO;
}
}
break;
case SIOCDELMULTI:
sa = ifreq_getaddr(SIOCDELMULTI, ifr);
if (ether_delmulti(sa, &sc->sc_ec) == ENETRESET) {
error = ether_multiaddr(sa, addrlo, addrhi);
if (error != 0)
return error;
error = iavf_del_multi(sc, addrlo, addrhi);
}
break;
default:
s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
}
if (error == ENETRESET)
error = iavf_iff(sc);
return error;
}
static int
iavf_iff(struct iavf_softc *sc)
{
int error;
mutex_enter(&sc->sc_cfg_lock);
error = iavf_iff_locked(sc);
mutex_exit(&sc->sc_cfg_lock);
return error;
}
static int
iavf_iff_locked(struct iavf_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
int unicast, multicast;
const uint8_t *enaddr;
KASSERT(mutex_owned(&sc->sc_cfg_lock));
if (!ISSET(ifp->if_flags, IFF_RUNNING))
return 0;
unicast = 0;
multicast = 0;
if (ISSET(ifp->if_flags, IFF_PROMISC)) {
unicast = 1;
multicast = 1;
} else if (ISSET(ifp->if_flags, IFF_ALLMULTI)) {
multicast = 1;
}
iavf_config_promisc_mode(sc, unicast, multicast);
iavf_config_vlan_stripping(sc, sc->sc_ec.ec_capenable);
enaddr = CLLADDR(ifp->if_sadl);
if (memcmp(enaddr, sc->sc_enaddr_added, ETHER_ADDR_LEN) != 0) {
if (!iavf_is_etheranyaddr(sc->sc_enaddr_added)) {
iavf_eth_addr(sc, sc->sc_enaddr_added,
IAVF_VC_OP_DEL_ETH_ADDR);
}
memcpy(sc->sc_enaddr_added, enaddr, ETHER_ADDR_LEN);
iavf_eth_addr(sc, enaddr, IAVF_VC_OP_ADD_ETH_ADDR);
}
return 0;
}
static const struct iavf_product *
iavf_lookup(const struct pci_attach_args *pa)
{
const struct iavf_product *iavfp;
for (iavfp = iavf_products; iavfp->vendor_id != 0; iavfp++) {
if (PCI_VENDOR(pa->pa_id) == iavfp->vendor_id &&
PCI_PRODUCT(pa->pa_id) == iavfp->product_id)
return iavfp;
}
return NULL;
}
static enum i40e_mac_type
iavf_mactype(pci_product_id_t id)
{
switch (id) {
case PCI_PRODUCT_INTEL_XL710_VF:
case PCI_PRODUCT_INTEL_XL710_VF_HV:
return I40E_MAC_VF;
case PCI_PRODUCT_INTEL_X722_VF:
return I40E_MAC_X722_VF;
}
return I40E_MAC_GENERIC;
}
static const struct iavf_link_speed *
iavf_find_link_speed(struct iavf_softc *sc, uint32_t link_speed)
{
size_t i;
for (i = 0; i < __arraycount(iavf_link_speeds); i++) {
if (link_speed & (1 << i))
return (&iavf_link_speeds[i]);
}
return NULL;
}
static void
iavf_pci_csr_setup(pci_chipset_tag_t pc, pcitag_t tag)
{
pcireg_t csr;
csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
csr |= (PCI_COMMAND_MASTER_ENABLE |
PCI_COMMAND_MEM_ENABLE);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr);
}
static int
iavf_wait_active(struct iavf_softc *sc)
{
int tries;
uint32_t reg;
for (tries = 0; tries < 100; tries++) {
reg = iavf_rd(sc, I40E_VFGEN_RSTAT) &
I40E_VFGEN_RSTAT_VFR_STATE_MASK;
if (reg == IAVF_VFR_VFACTIVE ||
reg == IAVF_VFR_COMPLETED)
return 0;
delaymsec(10);
}
return -1;
}
static bool
iavf_is_etheranyaddr(const uint8_t *enaddr)
{
static const uint8_t etheranyaddr[ETHER_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
if (memcmp(enaddr, etheranyaddr, ETHER_ADDR_LEN) != 0)
return false;
return true;
}
static void
iavf_prepare_fakeaddr(struct iavf_softc *sc)
{
uint64_t rndval;
if (!iavf_is_etheranyaddr(sc->sc_enaddr_fake))
return;
rndval = cprng_strong64();
memcpy(sc->sc_enaddr_fake, &rndval, sizeof(sc->sc_enaddr_fake));
sc->sc_enaddr_fake[0] &= 0xFE;
sc->sc_enaddr_fake[0] |= 0x02;
}
static int
iavf_replace_lla(struct ifnet *ifp, const uint8_t *prev, const uint8_t *next)
{
union {
struct sockaddr sa;
struct sockaddr_dl sdl;
struct sockaddr_storage ss;
} u;
struct psref psref_prev, psref_next;
struct ifaddr *ifa_prev, *ifa_next;
const struct sockaddr_dl *nsdl;
int s, error;
KASSERT(IFNET_LOCKED(ifp));
error = 0;
ifa_prev = ifa_next = NULL;
if (memcmp(prev, next, ETHER_ADDR_LEN) == 0) {
goto done;
}
if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), ifp->if_index,
ifp->if_type, ifp->if_xname, strlen(ifp->if_xname),
prev, ETHER_ADDR_LEN) == NULL) {
error = EINVAL;
goto done;
}
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa_prev, ifp) {
if (sockaddr_cmp(&u.sa, ifa_prev->ifa_addr) == 0) {
ifa_acquire(ifa_prev, &psref_prev);
break;
}
}
pserialize_read_exit(s);
if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), ifp->if_index,
ifp->if_type, ifp->if_xname, strlen(ifp->if_xname),
next, ETHER_ADDR_LEN) == NULL) {
error = EINVAL;
goto done;
}
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa_next, ifp) {
if (sockaddr_cmp(&u.sa, ifa_next->ifa_addr) == 0) {
ifa_acquire(ifa_next, &psref_next);
break;
}
}
pserialize_read_exit(s);
if (ifa_next == NULL) {
nsdl = &u.sdl;
ifa_next = if_dl_create(ifp, &nsdl);
if (ifa_next == NULL) {
error = ENOMEM;
goto done;
}
s = pserialize_read_enter();
ifa_acquire(ifa_next, &psref_next);
pserialize_read_exit(s);
sockaddr_copy(ifa_next->ifa_addr,
ifa_next->ifa_addr->sa_len, &u.sa);
ifa_insert(ifp, ifa_next);
} else {
nsdl = NULL;
}
if (ifa_prev != NULL && ifa_prev == ifp->if_dl) {
if_activate_sadl(ifp, ifa_next, nsdl);
}
ifa_release(ifa_next, &psref_next);
ifa_next = NULL;
if (ifa_prev != NULL && ifa_prev != ifp->if_hwdl) {
ifaref(ifa_prev);
ifa_release(ifa_prev, &psref_prev);
ifa_remove(ifp, ifa_prev);
KASSERTMSG(ifa_prev->ifa_refcnt == 1, "ifa_refcnt=%d",
ifa_prev->ifa_refcnt);
ifafree(ifa_prev);
ifa_prev = NULL;
}
if (ISSET(ifp->if_flags, IFF_RUNNING))
error = ENETRESET;
done:
if (ifa_prev != NULL)
ifa_release(ifa_prev, &psref_prev);
if (ifa_next != NULL)
ifa_release(ifa_next, &psref_next);
return error;
}
static int
iavf_add_multi(struct iavf_softc *sc, uint8_t *addrlo, uint8_t *addrhi)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
int rv;
if (ISSET(ifp->if_flags, IFF_ALLMULTI))
return 0;
if (memcmp(addrlo, addrhi, ETHER_ADDR_LEN) != 0) {
iavf_del_all_multi(sc);
SET(ifp->if_flags, IFF_ALLMULTI);
return ENETRESET;
}
rv = iavf_eth_addr(sc, addrlo, IAVF_VC_OP_ADD_ETH_ADDR);
if (rv == ENOSPC) {
iavf_del_all_multi(sc);
SET(ifp->if_flags, IFF_ALLMULTI);
return ENETRESET;
}
return rv;
}
static int
iavf_del_multi(struct iavf_softc *sc, uint8_t *addrlo, uint8_t *addrhi)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ethercom *ec = &sc->sc_ec;
struct ether_multi *enm, *enm_last;
struct ether_multistep step;
int error, rv = 0;
if (!ISSET(ifp->if_flags, IFF_ALLMULTI)) {
if (memcmp(addrlo, addrhi, ETHER_ADDR_LEN) != 0)
return 0;
iavf_eth_addr(sc, addrlo, IAVF_VC_OP_DEL_ETH_ADDR);
return 0;
}
ETHER_LOCK(ec);
for (ETHER_FIRST_MULTI(step, ec, enm); enm != NULL;
ETHER_NEXT_MULTI(step, enm)) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
goto out;
}
}
for (ETHER_FIRST_MULTI(step, ec, enm); enm != NULL;
ETHER_NEXT_MULTI(step, enm)) {
error = iavf_eth_addr(sc, enm->enm_addrlo,
IAVF_VC_OP_ADD_ETH_ADDR);
if (error != 0)
break;
}
if (enm != NULL) {
enm_last = enm;
for (ETHER_FIRST_MULTI(step, ec, enm); enm != NULL;
ETHER_NEXT_MULTI(step, enm)) {
if (enm == enm_last)
break;
iavf_eth_addr(sc, enm->enm_addrlo,
IAVF_VC_OP_DEL_ETH_ADDR);
}
} else {
CLR(ifp->if_flags, IFF_ALLMULTI);
rv = ENETRESET;
}
out:
ETHER_UNLOCK(ec);
return rv;
}
static void
iavf_del_all_multi(struct iavf_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ether_multi *enm;
struct ether_multistep step;
ETHER_LOCK(ec);
for (ETHER_FIRST_MULTI(step, ec, enm); enm != NULL;
ETHER_NEXT_MULTI(step, enm)) {
iavf_eth_addr(sc, enm->enm_addrlo,
IAVF_VC_OP_DEL_ETH_ADDR);
}
ETHER_UNLOCK(ec);
}
static int
iavf_setup_interrupts(struct iavf_softc *sc)
{
struct pci_attach_args *pa;
kcpuset_t *affinity = NULL;
char intrbuf[PCI_INTRSTR_LEN], xnamebuf[32];
char const *intrstr;
int counts[PCI_INTR_TYPE_SIZE];
int error, affinity_to;
unsigned int vector, qid, num;
/* queue pairs + misc interrupt */
num = sc->sc_nqps_alloc + 1;
num = MIN(num, iavf_calc_msix_count(sc));
if (num <= 0) {
return -1;
}
KASSERT(sc->sc_nqps_alloc > 0);
num = MIN(num, sc->sc_nqps_alloc + 1);
pa = &sc->sc_pa;
memset(counts, 0, sizeof(counts));
counts[PCI_INTR_TYPE_MSIX] = num;
error = pci_intr_alloc(pa, &sc->sc_ihp, counts, PCI_INTR_TYPE_MSIX);
if (error != 0) {
IAVF_LOG(sc, LOG_WARNING, "couldn't allocate interrupts\n");
return -1;
}
KASSERT(pci_intr_type(pa->pa_pc, sc->sc_ihp[0]) == PCI_INTR_TYPE_MSIX);
if (counts[PCI_INTR_TYPE_MSIX] < 1) {
IAVF_LOG(sc, LOG_ERR, "couldn't allocate interrupts\n");
} else if (counts[PCI_INTR_TYPE_MSIX] != (int)num) {
IAVF_LOG(sc, LOG_DEBUG,
"request %u intruppts, but allocate %d interrupts\n",
num, counts[PCI_INTR_TYPE_MSIX]);
num = counts[PCI_INTR_TYPE_MSIX];
}
sc->sc_ihs = kmem_zalloc(sizeof(sc->sc_ihs[0]) * num, KM_NOSLEEP);
if (sc->sc_ihs == NULL) {
IAVF_LOG(sc, LOG_ERR,
"couldn't allocate memory for interrupts\n");
goto fail;
}
/* vector #0 is Misc interrupt */
vector = 0;
pci_intr_setattr(pa->pa_pc, &sc->sc_ihp[vector], PCI_INTR_MPSAFE, true);
intrstr = pci_intr_string(pa->pa_pc, sc->sc_ihp[vector],
intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, sizeof(xnamebuf), "%s-Misc",
device_xname(sc->sc_dev));
sc->sc_ihs[vector] = pci_intr_establish_xname(pa->pa_pc,
sc->sc_ihp[vector], IPL_NET, iavf_intr, sc, xnamebuf);
if (sc->sc_ihs[vector] == NULL) {
IAVF_LOG(sc, LOG_WARNING,
"unable to establish interrupt at %s", intrstr);
goto fail;
}
kcpuset_create(&affinity, false);
affinity_to = 0;
qid = 0;
for (vector = 1; vector < num; vector++) {
pci_intr_setattr(pa->pa_pc, &sc->sc_ihp[vector],
PCI_INTR_MPSAFE, true);
intrstr = pci_intr_string(pa->pa_pc, sc->sc_ihp[vector],
intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, sizeof(xnamebuf), "%s-TXRX%u",
device_xname(sc->sc_dev), qid);
sc->sc_ihs[vector] = pci_intr_establish_xname(pa->pa_pc,
sc->sc_ihp[vector], IPL_NET, iavf_queue_intr,
(void *)&sc->sc_qps[qid], xnamebuf);
if (sc->sc_ihs[vector] == NULL) {
IAVF_LOG(sc, LOG_WARNING,
"unable to establish interrupt at %s\n", intrstr);
goto fail;
}
kcpuset_zero(affinity);
kcpuset_set(affinity, affinity_to);
error = interrupt_distribute(sc->sc_ihs[vector],
affinity, NULL);
if (error == 0) {
IAVF_LOG(sc, LOG_INFO,
"for TXRX%d interrupt at %s, affinity to %d\n",
qid, intrstr, affinity_to);
} else {
IAVF_LOG(sc, LOG_INFO,
"for TXRX%d interrupt at %s\n",
qid, intrstr);
}
qid++;
affinity_to = (affinity_to + 1) % ncpu;
}
vector = 0;
kcpuset_zero(affinity);
kcpuset_set(affinity, affinity_to);
intrstr = pci_intr_string(pa->pa_pc, sc->sc_ihp[vector],
intrbuf, sizeof(intrbuf));
error = interrupt_distribute(sc->sc_ihs[vector], affinity, NULL);
if (error == 0) {
IAVF_LOG(sc, LOG_INFO,
"for Misc interrupt at %s, affinity to %d\n",
intrstr, affinity_to);
} else {
IAVF_LOG(sc, LOG_INFO,
"for MISC interrupt at %s\n", intrstr);
}
kcpuset_destroy(affinity);
sc->sc_nintrs = num;
return 0;
fail:
if (affinity != NULL)
kcpuset_destroy(affinity);
for (vector = 0; vector < num; vector++) {
if (sc->sc_ihs[vector] == NULL)
continue;
pci_intr_disestablish(pa->pa_pc, sc->sc_ihs[vector]);
}
kmem_free(sc->sc_ihs, sizeof(sc->sc_ihs[0]) * num);
pci_intr_release(pa->pa_pc, sc->sc_ihp, num);
return -1;
}
static void
iavf_teardown_interrupts(struct iavf_softc *sc)
{
struct pci_attach_args *pa;
unsigned int i;
if (sc->sc_ihs == NULL)
return;
pa = &sc->sc_pa;
for (i = 0; i < sc->sc_nintrs; i++) {
pci_intr_disestablish(pa->pa_pc, sc->sc_ihs[i]);
}
kmem_free(sc->sc_ihs, sizeof(sc->sc_ihs[0]) * sc->sc_nintrs);
sc->sc_ihs = NULL;
pci_intr_release(pa->pa_pc, sc->sc_ihp, sc->sc_nintrs);
sc->sc_nintrs = 0;
}
static int
iavf_setup_sysctls(struct iavf_softc *sc)
{
const char *devname;
struct sysctllog **log;
const struct sysctlnode *rnode, *rxnode, *txnode;
int error;
log = &sc->sc_sysctllog;
devname = device_xname(sc->sc_dev);
error = sysctl_createv(log, 0, NULL, &rnode,
0, CTLTYPE_NODE, devname,
SYSCTL_DESCR("iavf information and settings"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "txrx_workqueue",
SYSCTL_DESCR("Use workqueue for packet processing"),
NULL, 0, &sc->sc_txrx_workqueue, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "debug_level",
SYSCTL_DESCR("Debug level"),
NULL, 0, &sc->sc_debuglevel, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, &rxnode,
0, CTLTYPE_NODE, "rx",
SYSCTL_DESCR("iavf information and settings for Rx"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "itr",
SYSCTL_DESCR("Interrupt Throttling"),
iavf_sysctl_itr_handler, 0,
(void *)sc, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READONLY, CTLTYPE_INT, "descriptor_num",
SYSCTL_DESCR("descriptor size"),
NULL, 0, &sc->sc_rx_ring_ndescs, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "intr_process_limit",
SYSCTL_DESCR("max number of Rx packets"
" to process for interrupt processing"),
NULL, 0, &sc->sc_rx_intr_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "process_limit",
SYSCTL_DESCR("max number of Rx packets"
" to process for deferred processing"),
NULL, 0, &sc->sc_rx_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, &txnode,
0, CTLTYPE_NODE, "tx",
SYSCTL_DESCR("iavf information and settings for Tx"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "itr",
SYSCTL_DESCR("Interrupt Throttling"),
iavf_sysctl_itr_handler, 0,
(void *)sc, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READONLY, CTLTYPE_INT, "descriptor_num",
SYSCTL_DESCR("the number of Tx descriptors"),
NULL, 0, &sc->sc_tx_ring_ndescs, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "intr_process_limit",
SYSCTL_DESCR("max number of Tx packets"
" to process for interrupt processing"),
NULL, 0, &sc->sc_tx_intr_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "process_limit",
SYSCTL_DESCR("max number of Tx packets"
" to process for deferred processing"),
NULL, 0, &sc->sc_tx_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
out:
return error;
}
static void
iavf_teardown_sysctls(struct iavf_softc *sc)
{
sysctl_teardown(&sc->sc_sysctllog);
}
static int
iavf_setup_stats(struct iavf_softc *sc)
{
struct iavf_stat_counters *isc;
const char *dn;
dn = device_xname(sc->sc_dev);
isc = &sc->sc_stat_counters;
iavf_evcnt_attach(&isc->isc_rx_bytes, dn, "Rx bytes");
iavf_evcnt_attach(&isc->isc_rx_unicast, dn, "Rx unicast");
iavf_evcnt_attach(&isc->isc_rx_multicast, dn, "Rx multicast");
iavf_evcnt_attach(&isc->isc_rx_broadcast, dn, "Rx broadcast");
iavf_evcnt_attach(&isc->isc_rx_discards, dn, "Rx discards");
iavf_evcnt_attach(&isc->isc_rx_unknown_protocol,
dn, "Rx unknown protocol");
iavf_evcnt_attach(&isc->isc_tx_bytes, dn, "Tx bytes");
iavf_evcnt_attach(&isc->isc_tx_unicast, dn, "Tx unicast");
iavf_evcnt_attach(&isc->isc_tx_multicast, dn, "Tx multicast");
iavf_evcnt_attach(&isc->isc_tx_broadcast, dn, "Tx broadcast");
iavf_evcnt_attach(&isc->isc_tx_discards, dn, "Tx discards");
iavf_evcnt_attach(&isc->isc_tx_errors, dn, "Tx errors");
return 0;
}
static void
iavf_teardown_stats(struct iavf_softc *sc)
{
struct iavf_stat_counters *isc;
isc = &sc->sc_stat_counters;
evcnt_detach(&isc->isc_rx_bytes);
evcnt_detach(&isc->isc_rx_unicast);
evcnt_detach(&isc->isc_rx_multicast);
evcnt_detach(&isc->isc_rx_broadcast);
evcnt_detach(&isc->isc_rx_discards);
evcnt_detach(&isc->isc_rx_unknown_protocol);
evcnt_detach(&isc->isc_tx_bytes);
evcnt_detach(&isc->isc_tx_unicast);
evcnt_detach(&isc->isc_tx_multicast);
evcnt_detach(&isc->isc_tx_broadcast);
evcnt_detach(&isc->isc_tx_discards);
evcnt_detach(&isc->isc_tx_errors);
}
static int
iavf_init_admin_queue(struct iavf_softc *sc)
{
uint32_t reg;
sc->sc_atq_cons = 0;
sc->sc_atq_prod = 0;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
iavf_wr(sc, sc->sc_aq_regs->atq_head, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_head, 0);
iavf_wr(sc, sc->sc_aq_regs->atq_tail, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_tail, 0);
iavf_barrier(sc, 0, sc->sc_mems, BUS_SPACE_BARRIER_WRITE);
iavf_wr(sc, sc->sc_aq_regs->atq_bal,
ixl_dmamem_lo(&sc->sc_atq));
iavf_wr(sc, sc->sc_aq_regs->atq_bah,
ixl_dmamem_hi(&sc->sc_atq));
iavf_wr(sc, sc->sc_aq_regs->atq_len,
sc->sc_aq_regs->atq_len_enable | IAVF_AQ_NUM);
iavf_wr(sc, sc->sc_aq_regs->arq_bal,
ixl_dmamem_lo(&sc->sc_arq));
iavf_wr(sc, sc->sc_aq_regs->arq_bah,
ixl_dmamem_hi(&sc->sc_arq));
iavf_wr(sc, sc->sc_aq_regs->arq_len,
sc->sc_aq_regs->arq_len_enable | IAVF_AQ_NUM);
iavf_wr(sc, sc->sc_aq_regs->arq_tail, sc->sc_arq_prod);
reg = iavf_rd(sc, sc->sc_aq_regs->atq_bal);
if (reg != ixl_dmamem_lo(&sc->sc_atq))
goto fail;
reg = iavf_rd(sc, sc->sc_aq_regs->arq_bal);
if (reg != ixl_dmamem_lo(&sc->sc_arq))
goto fail;
sc->sc_dead = false;
return 0;
fail:
iavf_wr(sc, sc->sc_aq_regs->atq_len, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_len, 0);
return -1;
}
static void
iavf_cleanup_admin_queue(struct iavf_softc *sc)
{
struct ixl_aq_buf *aqb;
iavf_wr(sc, sc->sc_aq_regs->atq_head, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_head, 0);
iavf_wr(sc, sc->sc_aq_regs->atq_tail, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_tail, 0);
iavf_wr(sc, sc->sc_aq_regs->atq_bal, 0);
iavf_wr(sc, sc->sc_aq_regs->atq_bah, 0);
iavf_wr(sc, sc->sc_aq_regs->atq_len, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_bal, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_bah, 0);
iavf_wr(sc, sc->sc_aq_regs->arq_len, 0);
iavf_flush(sc);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
sc->sc_atq_cons = 0;
sc->sc_atq_prod = 0;
sc->sc_arq_cons = 0;
sc->sc_arq_prod = 0;
memset(IXL_DMA_KVA(&sc->sc_arq), 0, IXL_DMA_LEN(&sc->sc_arq));
memset(IXL_DMA_KVA(&sc->sc_atq), 0, IXL_DMA_LEN(&sc->sc_atq));
while ((aqb = iavf_aqb_get_locked(&sc->sc_arq_live)) != NULL) {
bus_dmamap_sync(sc->sc_dmat, aqb->aqb_map, 0, aqb->aqb_size,
BUS_DMASYNC_POSTREAD);
iavf_aqb_put_locked(&sc->sc_arq_idle, aqb);
}
while ((aqb = iavf_aqb_get_locked(&sc->sc_atq_live)) != NULL) {
bus_dmamap_sync(sc->sc_dmat, aqb->aqb_map, 0, aqb->aqb_size,
BUS_DMASYNC_POSTREAD);
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
}
}
static unsigned int
iavf_calc_msix_count(struct iavf_softc *sc)
{
struct pci_attach_args *pa;
int count;
pa = &sc->sc_pa;
count = pci_msix_count(pa->pa_pc, pa->pa_tag);
if (count < 0) {
IAVF_LOG(sc, LOG_DEBUG,"MSIX config error\n");
count = 0;
}
return MIN(sc->sc_max_vectors, (unsigned int)count);
}
static unsigned int
iavf_calc_queue_pair_size(struct iavf_softc *sc)
{
unsigned int nqp, nvec;
nvec = iavf_calc_msix_count(sc);
if (sc->sc_max_vectors > 1) {
/* decrease the number of misc interrupt */
nvec -= 1;
}
nqp = ncpu;
nqp = MIN(nqp, sc->sc_nqps_vsi);
nqp = MIN(nqp, nvec);
nqp = MIN(nqp, (unsigned int)iavf_params.max_qps);
return nqp;
}
static struct iavf_tx_ring *
iavf_txr_alloc(struct iavf_softc *sc, unsigned int qid)
{
struct iavf_tx_ring *txr;
struct iavf_tx_map *maps;
unsigned int i;
int error;
txr = kmem_zalloc(sizeof(*txr), KM_NOSLEEP);
if (txr == NULL)
return NULL;
maps = kmem_zalloc(sizeof(maps[0]) * sc->sc_tx_ring_ndescs,
KM_NOSLEEP);
if (maps == NULL)
goto free_txr;
if (iavf_dmamem_alloc(sc->sc_dmat, &txr->txr_mem,
sizeof(struct ixl_tx_desc) * sc->sc_tx_ring_ndescs,
IAVF_TX_QUEUE_ALIGN) != 0) {
goto free_maps;
}
for (i = 0; i < sc->sc_tx_ring_ndescs; i++) {
error = bus_dmamap_create(sc->sc_dmat, IAVF_TX_PKT_MAXSIZE,
IAVF_TX_PKT_DESCS, IAVF_TX_PKT_MAXSIZE, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &maps[i].txm_map);
if (error)
goto destroy_maps;
}
txr->txr_intrq = pcq_create(sc->sc_tx_ring_ndescs, KM_NOSLEEP);
if (txr->txr_intrq == NULL)
goto destroy_maps;
txr->txr_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
iavf_deferred_transmit, txr);
if (txr->txr_si == NULL)
goto destroy_pcq;
snprintf(txr->txr_name, sizeof(txr->txr_name), "%s-tx%d",
device_xname(sc->sc_dev), qid);
iavf_evcnt_attach(&txr->txr_defragged,
txr->txr_name, "m_defrag successed");
iavf_evcnt_attach(&txr->txr_defrag_failed,
txr->txr_name, "m_defrag failed");
iavf_evcnt_attach(&txr->txr_pcqdrop,
txr->txr_name, "Dropped in pcq");
iavf_evcnt_attach(&txr->txr_transmitdef,
txr->txr_name, "Deferred transmit");
iavf_evcnt_attach(&txr->txr_watchdogto,
txr->txr_name, "Watchdog timedout on queue");
iavf_evcnt_attach(&txr->txr_defer,
txr->txr_name, "Handled queue in softint/workqueue");
evcnt_attach_dynamic(&txr->txr_intr, EVCNT_TYPE_INTR, NULL,
txr->txr_name, "Interrupt on queue");
txr->txr_qid = qid;
txr->txr_sc = sc;
txr->txr_maps = maps;
txr->txr_prod = txr->txr_cons = 0;
txr->txr_tail = I40E_QTX_TAIL1(qid);
mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
return txr;
destroy_pcq:
pcq_destroy(txr->txr_intrq);
destroy_maps:
for (i = 0; i < sc->sc_tx_ring_ndescs; i++) {
if (maps[i].txm_map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, maps[i].txm_map);
}
iavf_dmamem_free(sc->sc_dmat, &txr->txr_mem);
free_maps:
kmem_free(maps, sizeof(maps[0]) * sc->sc_tx_ring_ndescs);
free_txr:
kmem_free(txr, sizeof(*txr));
return NULL;
}
static void
iavf_txr_free(struct iavf_softc *sc, struct iavf_tx_ring *txr)
{
struct iavf_tx_map *maps;
unsigned int i;
maps = txr->txr_maps;
if (maps != NULL) {
for (i = 0; i < sc->sc_tx_ring_ndescs; i++) {
if (maps[i].txm_map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, maps[i].txm_map);
}
kmem_free(txr->txr_maps,
sizeof(maps[0]) * sc->sc_tx_ring_ndescs);
txr->txr_maps = NULL;
}
evcnt_detach(&txr->txr_defragged);
evcnt_detach(&txr->txr_defrag_failed);
evcnt_detach(&txr->txr_pcqdrop);
evcnt_detach(&txr->txr_transmitdef);
evcnt_detach(&txr->txr_watchdogto);
evcnt_detach(&txr->txr_defer);
evcnt_detach(&txr->txr_intr);
iavf_dmamem_free(sc->sc_dmat, &txr->txr_mem);
softint_disestablish(txr->txr_si);
pcq_destroy(txr->txr_intrq);
mutex_destroy(&txr->txr_lock);
kmem_free(txr, sizeof(*txr));
}
static struct iavf_rx_ring *
iavf_rxr_alloc(struct iavf_softc *sc, unsigned int qid)
{
struct iavf_rx_ring *rxr;
struct iavf_rx_map *maps;
unsigned int i;
int error;
rxr = kmem_zalloc(sizeof(*rxr), KM_NOSLEEP);
if (rxr == NULL)
return NULL;
maps = kmem_zalloc(sizeof(maps[0]) * sc->sc_rx_ring_ndescs,
KM_NOSLEEP);
if (maps == NULL)
goto free_rxr;
if (iavf_dmamem_alloc(sc->sc_dmat, &rxr->rxr_mem,
sizeof(struct ixl_rx_rd_desc_32) * sc->sc_rx_ring_ndescs,
IAVF_RX_QUEUE_ALIGN) != 0)
goto free_maps;
for (i = 0; i < sc->sc_rx_ring_ndescs; i++) {
error = bus_dmamap_create(sc->sc_dmat, IAVF_MCLBYTES,
1, IAVF_MCLBYTES, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &maps[i].rxm_map);
if (error)
goto destroy_maps;
}
snprintf(rxr->rxr_name, sizeof(rxr->rxr_name), "%s-rx%d",
device_xname(sc->sc_dev), qid);
iavf_evcnt_attach(&rxr->rxr_mgethdr_failed,
rxr->rxr_name, "MGETHDR failed");
iavf_evcnt_attach(&rxr->rxr_mgetcl_failed,
rxr->rxr_name, "MCLGET failed");
iavf_evcnt_attach(&rxr->rxr_mbuf_load_failed,
rxr->rxr_name, "bus_dmamap_load_mbuf failed");
iavf_evcnt_attach(&rxr->rxr_defer,
rxr->rxr_name, "Handled queue in softint/workqueue");
evcnt_attach_dynamic(&rxr->rxr_intr, EVCNT_TYPE_INTR, NULL,
rxr->rxr_name, "Interrupt on queue");
rxr->rxr_qid = qid;
rxr->rxr_sc = sc;
rxr->rxr_cons = rxr->rxr_prod = 0;
rxr->rxr_m_head = NULL;
rxr->rxr_m_tail = &rxr->rxr_m_head;
rxr->rxr_maps = maps;
rxr->rxr_tail = I40E_QRX_TAIL1(qid);
mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
return rxr;
destroy_maps:
for (i = 0; i < sc->sc_rx_ring_ndescs; i++) {
if (maps[i].rxm_map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, maps[i].rxm_map);
}
iavf_dmamem_free(sc->sc_dmat, &rxr->rxr_mem);
free_maps:
kmem_free(maps, sizeof(maps[0]) * sc->sc_rx_ring_ndescs);
free_rxr:
kmem_free(rxr, sizeof(*rxr));
return NULL;
}
static void
iavf_rxr_free(struct iavf_softc *sc, struct iavf_rx_ring *rxr)
{
struct iavf_rx_map *maps;
unsigned int i;
maps = rxr->rxr_maps;
if (maps != NULL) {
for (i = 0; i < sc->sc_rx_ring_ndescs; i++) {
if (maps[i].rxm_map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, maps[i].rxm_map);
}
kmem_free(maps, sizeof(maps[0]) * sc->sc_rx_ring_ndescs);
rxr->rxr_maps = NULL;
}
evcnt_detach(&rxr->rxr_mgethdr_failed);
evcnt_detach(&rxr->rxr_mgetcl_failed);
evcnt_detach(&rxr->rxr_mbuf_load_failed);
evcnt_detach(&rxr->rxr_defer);
evcnt_detach(&rxr->rxr_intr);
iavf_dmamem_free(sc->sc_dmat, &rxr->rxr_mem);
mutex_destroy(&rxr->rxr_lock);
kmem_free(rxr, sizeof(*rxr));
}
static int
iavf_queue_pairs_alloc(struct iavf_softc *sc)
{
struct iavf_queue_pair *qp;
unsigned int i, num;
num = iavf_calc_queue_pair_size(sc);
if (num <= 0) {
return -1;
}
sc->sc_qps = kmem_zalloc(sizeof(sc->sc_qps[0]) * num, KM_NOSLEEP);
if (sc->sc_qps == NULL) {
return -1;
}
for (i = 0; i < num; i++) {
qp = &sc->sc_qps[i];
qp->qp_rxr = iavf_rxr_alloc(sc, i);
qp->qp_txr = iavf_txr_alloc(sc, i);
if (qp->qp_rxr == NULL || qp->qp_txr == NULL)
goto free;
qp->qp_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
iavf_handle_queue, qp);
if (qp->qp_si == NULL)
goto free;
}
sc->sc_nqps_alloc = num;
return 0;
free:
for (i = 0; i < num; i++) {
qp = &sc->sc_qps[i];
if (qp->qp_si != NULL)
softint_disestablish(qp->qp_si);
if (qp->qp_rxr != NULL)
iavf_rxr_free(sc, qp->qp_rxr);
if (qp->qp_txr != NULL)
iavf_txr_free(sc, qp->qp_txr);
}
kmem_free(sc->sc_qps, sizeof(sc->sc_qps[0]) * num);
sc->sc_qps = NULL;
return -1;
}
static void
iavf_queue_pairs_free(struct iavf_softc *sc)
{
struct iavf_queue_pair *qp;
unsigned int i;
size_t sz;
if (sc->sc_qps == NULL)
return;
for (i = 0; i < sc->sc_nqps_alloc; i++) {
qp = &sc->sc_qps[i];
if (qp->qp_si != NULL)
softint_disestablish(qp->qp_si);
if (qp->qp_rxr != NULL)
iavf_rxr_free(sc, qp->qp_rxr);
if (qp->qp_txr != NULL)
iavf_txr_free(sc, qp->qp_txr);
}
sz = sizeof(sc->sc_qps[0]) * sc->sc_nqps_alloc;
kmem_free(sc->sc_qps, sz);
sc->sc_qps = NULL;
sc->sc_nqps_alloc = 0;
}
static int
iavf_rxfill(struct iavf_softc *sc, struct iavf_rx_ring *rxr)
{
struct ixl_rx_rd_desc_32 *ring, *rxd;
struct iavf_rx_map *rxm;
bus_dmamap_t map;
struct mbuf *m;
unsigned int slots, prod, mask;
int error, post;
slots = ixl_rxr_unrefreshed(rxr->rxr_prod, rxr->rxr_cons,
sc->sc_rx_ring_ndescs);
if (slots == 0)
return 0;
error = 0;
prod = rxr->rxr_prod;
ring = IXL_DMA_KVA(&rxr->rxr_mem);
mask = sc->sc_rx_ring_ndescs - 1;
do {
rxm = &rxr->rxr_maps[prod];
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
rxr->rxr_mgethdr_failed.ev_count++;
error = -1;
break;
}
MCLGET(m, M_DONTWAIT);
if (!ISSET(m->m_flags, M_EXT)) {
rxr->rxr_mgetcl_failed.ev_count++;
error = -1;
m_freem(m);
break;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
map = rxm->rxm_map;
if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_READ|BUS_DMA_NOWAIT) != 0) {
rxr->rxr_mbuf_load_failed.ev_count++;
error = -1;
m_freem(m);
break;
}
rxm->rxm_m = m;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxd = &ring[prod];
rxd->paddr = htole64(map->dm_segs[0].ds_addr);
rxd->haddr = htole64(0);
prod++;
prod &= mask;
post = 1;
} while (--slots);
if (post) {
rxr->rxr_prod = prod;
iavf_wr(sc, rxr->rxr_tail, prod);
}
return error;
}
static inline void
iavf_rx_csum(struct mbuf *m, uint64_t qword)
{
int flags_mask;
if (!ISSET(qword, IXL_RX_DESC_L3L4P)) {
/* No L3 or L4 checksum was calculated */
return;
}
switch (__SHIFTOUT(qword, IXL_RX_DESC_PTYPE_MASK)) {
case IXL_RX_DESC_PTYPE_IPV4FRAG:
case IXL_RX_DESC_PTYPE_IPV4:
case IXL_RX_DESC_PTYPE_SCTPV4:
case IXL_RX_DESC_PTYPE_ICMPV4:
flags_mask = M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
break;
case IXL_RX_DESC_PTYPE_TCPV4:
flags_mask = M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
flags_mask |= M_CSUM_TCPv4 | M_CSUM_TCP_UDP_BAD;
break;
case IXL_RX_DESC_PTYPE_UDPV4:
flags_mask = M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
flags_mask |= M_CSUM_UDPv4 | M_CSUM_TCP_UDP_BAD;
break;
case IXL_RX_DESC_PTYPE_TCPV6:
flags_mask = M_CSUM_TCPv6 | M_CSUM_TCP_UDP_BAD;
break;
case IXL_RX_DESC_PTYPE_UDPV6:
flags_mask = M_CSUM_UDPv6 | M_CSUM_TCP_UDP_BAD;
break;
default:
flags_mask = 0;
}
m->m_pkthdr.csum_flags |= (flags_mask & (M_CSUM_IPv4 |
M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6));
if (ISSET(qword, IXL_RX_DESC_IPE)) {
m->m_pkthdr.csum_flags |= (flags_mask & M_CSUM_IPv4_BAD);
}
if (ISSET(qword, IXL_RX_DESC_L4E)) {
m->m_pkthdr.csum_flags |= (flags_mask & M_CSUM_TCP_UDP_BAD);
}
}
static int
iavf_rxeof(struct iavf_softc *sc, struct iavf_rx_ring *rxr, u_int rxlimit,
struct evcnt *ecnt)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ixl_rx_wb_desc_32 *ring, *rxd;
struct iavf_rx_map *rxm;
bus_dmamap_t map;
unsigned int cons, prod;
struct mbuf *m;
uint64_t word, word0;
unsigned int len;
unsigned int mask;
int done = 0, more = 0;
KASSERT(mutex_owned(&rxr->rxr_lock));
if (!ISSET(ifp->if_flags, IFF_RUNNING))
return 0;
prod = rxr->rxr_prod;
cons = rxr->rxr_cons;
if (cons == prod)
return 0;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&rxr->rxr_mem),
0, IXL_DMA_LEN(&rxr->rxr_mem),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
ring = IXL_DMA_KVA(&rxr->rxr_mem);
mask = sc->sc_rx_ring_ndescs - 1;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
do {
if (rxlimit-- <= 0) {
more = 1;
break;
}
rxd = &ring[cons];
word = le64toh(rxd->qword1);
if (!ISSET(word, IXL_RX_DESC_DD))
break;
rxm = &rxr->rxr_maps[cons];
map = rxm->rxm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, map);
m = rxm->rxm_m;
rxm->rxm_m = NULL;
KASSERT(m != NULL);
len = (word & IXL_RX_DESC_PLEN_MASK) >> IXL_RX_DESC_PLEN_SHIFT;
m->m_len = len;
m->m_pkthdr.len = 0;
m->m_next = NULL;
*rxr->rxr_m_tail = m;
rxr->rxr_m_tail = &m->m_next;
m = rxr->rxr_m_head;
m->m_pkthdr.len += len;
if (ISSET(word, IXL_RX_DESC_EOP)) {
word0 = le64toh(rxd->qword0);
if (ISSET(word, IXL_RX_DESC_L2TAG1P)) {
uint16_t vtag;
vtag = __SHIFTOUT(word0, IXL_RX_DESC_L2TAG1_MASK);
vlan_set_tag(m, le16toh(vtag));
}
if ((ifp->if_capenable & IAVF_IFCAP_RXCSUM) != 0)
iavf_rx_csum(m, word);
if (!ISSET(word,
IXL_RX_DESC_RXE | IXL_RX_DESC_OVERSIZE)) {
m_set_rcvif(m, ifp);
if_statinc_ref(nsr, if_ipackets);
if_statadd_ref(nsr, if_ibytes,
m->m_pkthdr.len);
if_percpuq_enqueue(sc->sc_ipq, m);
} else {
if_statinc_ref(nsr, if_ierrors);
m_freem(m);
}
rxr->rxr_m_head = NULL;
rxr->rxr_m_tail = &rxr->rxr_m_head;
}
cons++;
cons &= mask;
done = 1;
} while (cons != prod);
if (done) {
ecnt->ev_count++;
rxr->rxr_cons = cons;
if (iavf_rxfill(sc, rxr) == -1)
if_statinc_ref(nsr, if_iqdrops);
}
IF_STAT_PUTREF(ifp);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&rxr->rxr_mem),
0, IXL_DMA_LEN(&rxr->rxr_mem),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return more;
}
static void
iavf_rxr_clean(struct iavf_softc *sc, struct iavf_rx_ring *rxr)
{
struct iavf_rx_map *maps, *rxm;
bus_dmamap_t map;
unsigned int i;
KASSERT(mutex_owned(&rxr->rxr_lock));
maps = rxr->rxr_maps;
for (i = 0; i < sc->sc_rx_ring_ndescs; i++) {
rxm = &maps[i];
if (rxm->rxm_m == NULL)
continue;
map = rxm->rxm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
m_freem(rxm->rxm_m);
rxm->rxm_m = NULL;
}
m_freem(rxr->rxr_m_head);
rxr->rxr_m_head = NULL;
rxr->rxr_m_tail = &rxr->rxr_m_head;
memset(IXL_DMA_KVA(&rxr->rxr_mem), 0, IXL_DMA_LEN(&rxr->rxr_mem));
rxr->rxr_prod = rxr->rxr_cons = 0;
}
static int
iavf_txeof(struct iavf_softc *sc, struct iavf_tx_ring *txr, u_int txlimit,
struct evcnt *ecnt)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ixl_tx_desc *ring, *txd;
struct iavf_tx_map *txm;
struct mbuf *m;
bus_dmamap_t map;
unsigned int cons, prod, last;
unsigned int mask;
uint64_t dtype;
int done = 0, more = 0;
KASSERT(mutex_owned(&txr->txr_lock));
prod = txr->txr_prod;
cons = txr->txr_cons;
if (cons == prod)
return 0;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&txr->txr_mem),
0, IXL_DMA_LEN(&txr->txr_mem), BUS_DMASYNC_POSTREAD);
ring = IXL_DMA_KVA(&txr->txr_mem);
mask = sc->sc_tx_ring_ndescs - 1;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
do {
if (txlimit-- <= 0) {
more = 1;
break;
}
txm = &txr->txr_maps[cons];
last = txm->txm_eop;
txd = &ring[last];
dtype = txd->cmd & htole64(IXL_TX_DESC_DTYPE_MASK);
if (dtype != htole64(IXL_TX_DESC_DTYPE_DONE))
break;
map = txm->txm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
m = txm->txm_m;
if (m != NULL) {
if_statinc_ref(nsr, if_opackets);
if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
if (ISSET(m->m_flags, M_MCAST))
if_statinc_ref(nsr, if_omcasts);
m_freem(m);
}
txm->txm_m = NULL;
txm->txm_eop = -1;
cons = last + 1;
cons &= mask;
done = 1;
} while (cons != prod);
IF_STAT_PUTREF(ifp);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&txr->txr_mem),
0, IXL_DMA_LEN(&txr->txr_mem), BUS_DMASYNC_PREREAD);
txr->txr_cons = cons;
if (done) {
ecnt->ev_count++;
softint_schedule(txr->txr_si);
if (txr->txr_qid == 0) {
CLR(ifp->if_flags, IFF_OACTIVE);
if_schedule_deferred_start(ifp);
}
}
if (txr->txr_cons == txr->txr_prod) {
txr->txr_watchdog = IAVF_WATCHDOG_STOP;
}
return more;
}
static inline int
iavf_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf **m0,
struct iavf_tx_ring *txr)
{
struct mbuf *m;
int error;
KASSERT(mutex_owned(&txr->txr_lock));
m = *m0;
error = bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_STREAMING|BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error != EFBIG)
return error;
m = m_defrag(m, M_DONTWAIT);
if (m != NULL) {
*m0 = m;
txr->txr_defragged.ev_count++;
error = bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_STREAMING|BUS_DMA_WRITE|BUS_DMA_NOWAIT);
} else {
txr->txr_defrag_failed.ev_count++;
error = ENOBUFS;
}
return error;
}
static inline int
iavf_tx_setup_offloads(struct mbuf *m, uint64_t *cmd_txd)
{
struct ether_header *eh;
size_t len;
uint64_t cmd;
cmd = 0;
eh = mtod(m, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
len = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
len = 0;
}
cmd |= ((len >> 1) << IXL_TX_DESC_MACLEN_SHIFT);
if (m->m_pkthdr.csum_flags &
(M_CSUM_TSOv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
cmd |= IXL_TX_DESC_CMD_IIPT_IPV4;
}
if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) {
cmd |= IXL_TX_DESC_CMD_IIPT_IPV4_CSUM;
}
if (m->m_pkthdr.csum_flags &
(M_CSUM_TSOv6 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
cmd |= IXL_TX_DESC_CMD_IIPT_IPV6;
}
switch (cmd & IXL_TX_DESC_CMD_IIPT_MASK) {
case IXL_TX_DESC_CMD_IIPT_IPV4:
case IXL_TX_DESC_CMD_IIPT_IPV4_CSUM:
len = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
break;
case IXL_TX_DESC_CMD_IIPT_IPV6:
len = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
break;
default:
len = 0;
}
cmd |= ((len >> 2) << IXL_TX_DESC_IPLEN_SHIFT);
if (m->m_pkthdr.csum_flags &
(M_CSUM_TSOv4 | M_CSUM_TSOv6 | M_CSUM_TCPv4 | M_CSUM_TCPv6)) {
len = sizeof(struct tcphdr);
cmd |= IXL_TX_DESC_CMD_L4T_EOFT_TCP;
} else if (m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) {
len = sizeof(struct udphdr);
cmd |= IXL_TX_DESC_CMD_L4T_EOFT_UDP;
} else {
len = 0;
}
cmd |= ((len >> 2) << IXL_TX_DESC_L4LEN_SHIFT);
*cmd_txd |= cmd;
return 0;
}
static void
iavf_tx_common_locked(struct ifnet *ifp, struct iavf_tx_ring *txr,
bool is_transmit)
{
struct iavf_softc *sc;
struct ixl_tx_desc *ring, *txd;
struct iavf_tx_map *txm;
bus_dmamap_t map;
struct mbuf *m;
unsigned int prod, free, last, i;
unsigned int mask;
uint64_t cmd, cmd_txd;
int post = 0;
KASSERT(mutex_owned(&txr->txr_lock));
sc = ifp->if_softc;
if (!ISSET(ifp->if_flags, IFF_RUNNING)
|| (!is_transmit && ISSET(ifp->if_flags, IFF_OACTIVE))) {
if (!is_transmit)
IFQ_PURGE(&ifp->if_snd);
return;
}
prod = txr->txr_prod;
free = txr->txr_cons;
if (free <= prod)
free += sc->sc_tx_ring_ndescs;
free -= prod;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&txr->txr_mem),
0, IXL_DMA_LEN(&txr->txr_mem), BUS_DMASYNC_POSTWRITE);
ring = IXL_DMA_KVA(&txr->txr_mem);
mask = sc->sc_tx_ring_ndescs - 1;
last = prod;
cmd = 0;
txd = NULL;
for (;;) {
if (free < IAVF_TX_PKT_DESCS) {
if (!is_transmit)
SET(ifp->if_flags, IFF_OACTIVE);
break;
}
if (is_transmit)
m = pcq_get(txr->txr_intrq);
else
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
txm = &txr->txr_maps[prod];
map = txm->txm_map;
if (iavf_load_mbuf(sc->sc_dmat, map, &m, txr) != 0) {
if_statinc(ifp, if_oerrors);
m_freem(m);
continue;
}
cmd_txd = 0;
if (m->m_pkthdr.csum_flags & IAVF_CSUM_ALL_OFFLOAD) {
iavf_tx_setup_offloads(m, &cmd_txd);
}
if (vlan_has_tag(m)) {
uint16_t vtag;
vtag = htole16(vlan_get_tag(m));
cmd_txd |= IXL_TX_DESC_CMD_IL2TAG1 |
((uint64_t)vtag << IXL_TX_DESC_L2TAG1_SHIFT);
}
bus_dmamap_sync(sc->sc_dmat, map, 0,
map->dm_mapsize, BUS_DMASYNC_PREWRITE);
for (i = 0; i < (unsigned int)map->dm_nsegs; i++) {
txd = &ring[prod];
cmd = (uint64_t)map->dm_segs[i].ds_len <<
IXL_TX_DESC_BSIZE_SHIFT;
cmd |= IXL_TX_DESC_DTYPE_DATA|IXL_TX_DESC_CMD_ICRC|
cmd_txd;
txd->addr = htole64(map->dm_segs[i].ds_addr);
txd->cmd = htole64(cmd);
last = prod;
prod++;
prod &= mask;
}
cmd |= IXL_TX_DESC_CMD_EOP|IXL_TX_DESC_CMD_RS;
txd->cmd = htole64(cmd);
txm->txm_m = m;
txm->txm_eop = last;
bpf_mtap(ifp, m, BPF_D_OUT);
free -= i;
post = 1;
}
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&txr->txr_mem),
0, IXL_DMA_LEN(&txr->txr_mem), BUS_DMASYNC_PREWRITE);
if (post) {
txr->txr_prod = prod;
iavf_wr(sc, txr->txr_tail, prod);
txr->txr_watchdog = IAVF_WATCHDOG_TICKS;
}
}
static inline int
iavf_handle_queue_common(struct iavf_softc *sc, struct iavf_queue_pair *qp,
u_int txlimit, struct evcnt *txevcnt,
u_int rxlimit, struct evcnt *rxevcnt)
{
struct iavf_tx_ring *txr;
struct iavf_rx_ring *rxr;
int txmore, rxmore;
int rv;
txr = qp->qp_txr;
rxr = qp->qp_rxr;
mutex_enter(&txr->txr_lock);
txmore = iavf_txeof(sc, txr, txlimit, txevcnt);
mutex_exit(&txr->txr_lock);
mutex_enter(&rxr->rxr_lock);
rxmore = iavf_rxeof(sc, rxr, rxlimit, rxevcnt);
mutex_exit(&rxr->rxr_lock);
rv = txmore | (rxmore << 1);
return rv;
}
static void
iavf_sched_handle_queue(struct iavf_softc *sc, struct iavf_queue_pair *qp)
{
if (qp->qp_workqueue)
workqueue_enqueue(sc->sc_workq_txrx, &qp->qp_work, NULL);
else
softint_schedule(qp->qp_si);
}
static void
iavf_start(struct ifnet *ifp)
{
struct iavf_softc *sc;
struct iavf_tx_ring *txr;
sc = ifp->if_softc;
txr = sc->sc_qps[0].qp_txr;
mutex_enter(&txr->txr_lock);
iavf_tx_common_locked(ifp, txr, false);
mutex_exit(&txr->txr_lock);
}
static inline unsigned int
iavf_select_txqueue(struct iavf_softc *sc, struct mbuf *m)
{
u_int cpuid;
cpuid = cpu_index(curcpu());
return (unsigned int)(cpuid % sc->sc_nqueue_pairs);
}
static int
iavf_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct iavf_softc *sc;
struct iavf_tx_ring *txr;
unsigned int qid;
sc = ifp->if_softc;
qid = iavf_select_txqueue(sc, m);
txr = sc->sc_qps[qid].qp_txr;
if (__predict_false(!pcq_put(txr->txr_intrq, m))) {
mutex_enter(&txr->txr_lock);
txr->txr_pcqdrop.ev_count++;
mutex_exit(&txr->txr_lock);
m_freem(m);
return ENOBUFS;
}
if (mutex_tryenter(&txr->txr_lock)) {
iavf_tx_common_locked(ifp, txr, true);
mutex_exit(&txr->txr_lock);
} else {
kpreempt_disable();
softint_schedule(txr->txr_si);
kpreempt_enable();
}
return 0;
}
static void
iavf_deferred_transmit(void *xtxr)
{
struct iavf_tx_ring *txr;
struct iavf_softc *sc;
struct ifnet *ifp;
txr = xtxr;
sc = txr->txr_sc;
ifp = &sc->sc_ec.ec_if;
mutex_enter(&txr->txr_lock);
txr->txr_transmitdef.ev_count++;
if (pcq_peek(txr->txr_intrq) != NULL)
iavf_tx_common_locked(ifp, txr, true);
mutex_exit(&txr->txr_lock);
}
static void
iavf_txr_clean(struct iavf_softc *sc, struct iavf_tx_ring *txr)
{
struct iavf_tx_map *maps, *txm;
bus_dmamap_t map;
unsigned int i;
KASSERT(mutex_owned(&txr->txr_lock));
maps = txr->txr_maps;
for (i = 0; i < sc->sc_tx_ring_ndescs; i++) {
txm = &maps[i];
if (txm->txm_m == NULL)
continue;
map = txm->txm_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
m_freem(txm->txm_m);
txm->txm_m = NULL;
}
memset(IXL_DMA_KVA(&txr->txr_mem), 0, IXL_DMA_LEN(&txr->txr_mem));
txr->txr_prod = txr->txr_cons = 0;
}
static int
iavf_intr(void *xsc)
{
struct iavf_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct iavf_rx_ring *rxr;
struct iavf_tx_ring *txr;
uint32_t icr;
unsigned int i;
/* read I40E_VFINT_ICR_ENA1 to clear status */
(void)iavf_rd(sc, I40E_VFINT_ICR0_ENA1);
iavf_intr_enable(sc);
icr = iavf_rd(sc, I40E_VFINT_ICR01);
if (icr == IAVF_REG_VFR) {
log(LOG_INFO, "%s: VF reset in progress\n",
ifp->if_xname);
iavf_work_set(&sc->sc_reset_task, iavf_reset_start, sc);
iavf_work_add(sc->sc_workq, &sc->sc_reset_task);
return 1;
}
if (ISSET(icr, I40E_VFINT_ICR01_ADMINQ_MASK)) {
mutex_enter(&sc->sc_adminq_lock);
iavf_atq_done(sc);
iavf_arq(sc);
mutex_exit(&sc->sc_adminq_lock);
}
if (ISSET(icr, I40E_VFINT_ICR01_QUEUE_0_MASK)) {
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
rxr = sc->sc_qps[i].qp_rxr;
txr = sc->sc_qps[i].qp_txr;
mutex_enter(&rxr->rxr_lock);
while (iavf_rxeof(sc, rxr, UINT_MAX,
&rxr->rxr_intr) != 0) {
/* do nothing */
}
mutex_exit(&rxr->rxr_lock);
mutex_enter(&txr->txr_lock);
while (iavf_txeof(sc, txr, UINT_MAX,
&txr->txr_intr) != 0) {
/* do nothing */
}
mutex_exit(&txr->txr_lock);
}
}
return 0;
}
static int
iavf_queue_intr(void *xqp)
{
struct iavf_queue_pair *qp = xqp;
struct iavf_tx_ring *txr;
struct iavf_rx_ring *rxr;
struct iavf_softc *sc;
unsigned int qid;
u_int txlimit, rxlimit;
int more;
txr = qp->qp_txr;
rxr = qp->qp_rxr;
sc = txr->txr_sc;
qid = txr->txr_qid;
txlimit = sc->sc_tx_intr_process_limit;
rxlimit = sc->sc_rx_intr_process_limit;
qp->qp_workqueue = sc->sc_txrx_workqueue;
more = iavf_handle_queue_common(sc, qp,
txlimit, &txr->txr_intr, rxlimit, &rxr->rxr_intr);
if (more != 0) {
iavf_sched_handle_queue(sc, qp);
} else {
/* for ALTQ */
if (txr->txr_qid == 0)
if_schedule_deferred_start(&sc->sc_ec.ec_if);
softint_schedule(txr->txr_si);
iavf_queue_intr_enable(sc, qid);
}
return 0;
}
static void
iavf_handle_queue_wk(struct work *wk, void *xsc __unused)
{
struct iavf_queue_pair *qp;
qp = container_of(wk, struct iavf_queue_pair, qp_work);
iavf_handle_queue(qp);
}
static void
iavf_handle_queue(void *xqp)
{
struct iavf_queue_pair *qp = xqp;
struct iavf_tx_ring *txr;
struct iavf_rx_ring *rxr;
struct iavf_softc *sc;
unsigned int qid;
u_int txlimit, rxlimit;
int more;
txr = qp->qp_txr;
rxr = qp->qp_rxr;
sc = txr->txr_sc;
qid = txr->txr_qid;
txlimit = sc->sc_tx_process_limit;
rxlimit = sc->sc_rx_process_limit;
more = iavf_handle_queue_common(sc, qp,
txlimit, &txr->txr_defer, rxlimit, &rxr->rxr_defer);
if (more != 0)
iavf_sched_handle_queue(sc, qp);
else
iavf_queue_intr_enable(sc, qid);
}
static void
iavf_tick(void *xsc)
{
struct iavf_softc *sc;
unsigned int i;
int timedout;
sc = xsc;
timedout = 0;
mutex_enter(&sc->sc_cfg_lock);
if (sc->sc_resetting) {
iavf_work_add(sc->sc_workq, &sc->sc_reset_task);
mutex_exit(&sc->sc_cfg_lock);
return;
}
iavf_get_stats(sc);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
timedout |= iavf_watchdog(sc->sc_qps[i].qp_txr);
}
if (timedout != 0) {
iavf_work_add(sc->sc_workq, &sc->sc_wdto_task);
} else {
callout_schedule(&sc->sc_tick, IAVF_TICK_INTERVAL);
}
mutex_exit(&sc->sc_cfg_lock);
}
static void
iavf_tick_halt(void *unused __unused)
{
/* do nothing */
}
static void
iavf_reset_request(void *xsc)
{
struct iavf_softc *sc = xsc;
iavf_reset_vf(sc);
iavf_reset_start(sc);
}
static void
iavf_reset_start(void *xsc)
{
struct iavf_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
mutex_enter(&sc->sc_cfg_lock);
if (sc->sc_resetting)
goto do_reset;
sc->sc_resetting = true;
if_link_state_change(ifp, LINK_STATE_DOWN);
if (ISSET(ifp->if_flags, IFF_RUNNING)) {
iavf_stop_locked(sc);
sc->sc_reset_up = true;
}
memcpy(sc->sc_enaddr_reset, sc->sc_enaddr, ETHER_ADDR_LEN);
do_reset:
iavf_work_set(&sc->sc_reset_task, iavf_reset, sc);
mutex_exit(&sc->sc_cfg_lock);
iavf_reset((void *)sc);
}
static void
iavf_reset(void *xsc)
{
struct iavf_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ixl_aq_buf *aqb;
bool realloc_qps, realloc_intrs;
mutex_enter(&sc->sc_cfg_lock);
mutex_enter(&sc->sc_adminq_lock);
iavf_cleanup_admin_queue(sc);
mutex_exit(&sc->sc_adminq_lock);
sc->sc_major_ver = UINT_MAX;
sc->sc_minor_ver = UINT_MAX;
sc->sc_got_vf_resources = 0;
sc->sc_got_irq_map = 0;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
goto failed;
if (iavf_wait_active(sc) != 0) {
log(LOG_WARNING, "%s: VF reset timed out\n",
ifp->if_xname);
goto failed;
}
if (!iavf_arq_fill(sc)) {
log(LOG_ERR, "%s: unable to fill arq descriptors\n",
ifp->if_xname);
goto failed;
}
if (iavf_init_admin_queue(sc) != 0) {
log(LOG_ERR, "%s: unable to initialize admin queue\n",
ifp->if_xname);
goto failed;
}
if (iavf_get_version(sc, aqb) != 0) {
log(LOG_ERR, "%s: unable to get VF interface version\n",
ifp->if_xname);
goto failed;
}
if (iavf_get_vf_resources(sc, aqb) != 0) {
log(LOG_ERR, "%s: timed out waiting for VF resources\n",
ifp->if_xname);
goto failed;
}
if (sc->sc_nqps_alloc < iavf_calc_queue_pair_size(sc)) {
realloc_qps = true;
} else {
realloc_qps = false;
}
if (sc->sc_nintrs < iavf_calc_msix_count(sc)) {
realloc_intrs = true;
} else {
realloc_intrs = false;
}
if (realloc_qps || realloc_intrs)
iavf_teardown_interrupts(sc);
if (realloc_qps) {
iavf_queue_pairs_free(sc);
if (iavf_queue_pairs_alloc(sc) != 0) {
log(LOG_ERR, "%s: failed to allocate queue pairs\n",
ifp->if_xname);
goto failed;
}
}
if (realloc_qps || realloc_intrs) {
if (iavf_setup_interrupts(sc) != 0) {
sc->sc_nintrs = 0;
log(LOG_ERR, "%s: failed to allocate interrupts\n",
ifp->if_xname);
goto failed;
}
log(LOG_INFO, "%s: reallocated queues\n", ifp->if_xname);
}
if (iavf_config_irq_map(sc, aqb) != 0) {
log(LOG_ERR, "%s: timed out configuring IRQ map\n",
ifp->if_xname);
goto failed;
}
mutex_enter(&sc->sc_adminq_lock);
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
mutex_exit(&sc->sc_adminq_lock);
iavf_reset_finish(sc);
mutex_exit(&sc->sc_cfg_lock);
return;
failed:
mutex_enter(&sc->sc_adminq_lock);
iavf_cleanup_admin_queue(sc);
if (aqb != NULL) {
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
}
mutex_exit(&sc->sc_adminq_lock);
callout_schedule(&sc->sc_tick, IAVF_TICK_INTERVAL);
mutex_exit(&sc->sc_cfg_lock);
}
static void
iavf_reset_finish(struct iavf_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ether_multi *enm;
struct ether_multistep step;
struct ifnet *ifp = &ec->ec_if;
struct vlanid_list *vlanidp;
uint8_t enaddr_prev[ETHER_ADDR_LEN], enaddr_next[ETHER_ADDR_LEN];
KASSERT(mutex_owned(&sc->sc_cfg_lock));
callout_stop(&sc->sc_tick);
iavf_intr_enable(sc);
if (!iavf_is_etheranyaddr(sc->sc_enaddr_added)) {
iavf_eth_addr(sc, sc->sc_enaddr_added, IAVF_VC_OP_ADD_ETH_ADDR);
}
ETHER_LOCK(ec);
if (!ISSET(ifp->if_flags, IFF_ALLMULTI)) {
for (ETHER_FIRST_MULTI(step, ec, enm); enm != NULL;
ETHER_NEXT_MULTI(step, enm)) {
iavf_add_multi(sc, enm->enm_addrlo, enm->enm_addrhi);
}
}
SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
ETHER_UNLOCK(ec);
iavf_config_vlan_id(sc, vlanidp->vid, IAVF_VC_OP_ADD_VLAN);
ETHER_LOCK(ec);
}
ETHER_UNLOCK(ec);
if (memcmp(sc->sc_enaddr, sc->sc_enaddr_reset, ETHER_ADDR_LEN) != 0) {
memcpy(enaddr_prev, sc->sc_enaddr_reset, sizeof(enaddr_prev));
memcpy(enaddr_next, sc->sc_enaddr, sizeof(enaddr_next));
log(LOG_INFO, "%s: Ethernet address changed to %s\n",
ifp->if_xname, ether_sprintf(enaddr_next));
mutex_exit(&sc->sc_cfg_lock);
IFNET_LOCK(ifp);
kpreempt_disable();
/*XXX we need an API to change ethernet address. */
iavf_replace_lla(ifp, enaddr_prev, enaddr_next);
kpreempt_enable();
IFNET_UNLOCK(ifp);
mutex_enter(&sc->sc_cfg_lock);
}
sc->sc_resetting = false;
if (sc->sc_reset_up) {
iavf_init_locked(sc);
}
if (sc->sc_link_state != LINK_STATE_DOWN) {
if_link_state_change(ifp, sc->sc_link_state);
}
}
static int
iavf_dmamem_alloc(bus_dma_tag_t dmat, struct ixl_dmamem *ixm,
bus_size_t size, bus_size_t align)
{
ixm->ixm_size = size;
if (bus_dmamap_create(dmat, ixm->ixm_size, 1,
ixm->ixm_size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&ixm->ixm_map) != 0)
return 1;
if (bus_dmamem_alloc(dmat, ixm->ixm_size,
align, 0, &ixm->ixm_seg, 1, &ixm->ixm_nsegs,
BUS_DMA_WAITOK) != 0)
goto destroy;
if (bus_dmamem_map(dmat, &ixm->ixm_seg, ixm->ixm_nsegs,
ixm->ixm_size, &ixm->ixm_kva, BUS_DMA_WAITOK) != 0)
goto free;
if (bus_dmamap_load(dmat, ixm->ixm_map, ixm->ixm_kva,
ixm->ixm_size, NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
memset(ixm->ixm_kva, 0, ixm->ixm_size);
return 0;
unmap:
bus_dmamem_unmap(dmat, ixm->ixm_kva, ixm->ixm_size);
free:
bus_dmamem_free(dmat, &ixm->ixm_seg, 1);
destroy:
bus_dmamap_destroy(dmat, ixm->ixm_map);
return 1;
}
static void
iavf_dmamem_free(bus_dma_tag_t dmat, struct ixl_dmamem *ixm)
{
bus_dmamap_unload(dmat, ixm->ixm_map);
bus_dmamem_unmap(dmat, ixm->ixm_kva, ixm->ixm_size);
bus_dmamem_free(dmat, &ixm->ixm_seg, 1);
bus_dmamap_destroy(dmat, ixm->ixm_map);
}
static struct ixl_aq_buf *
iavf_aqb_alloc(bus_dma_tag_t dmat, size_t buflen)
{
struct ixl_aq_buf *aqb;
aqb = kmem_alloc(sizeof(*aqb), KM_NOSLEEP);
if (aqb == NULL)
return NULL;
aqb->aqb_size = buflen;
if (bus_dmamap_create(dmat, aqb->aqb_size, 1,
aqb->aqb_size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &aqb->aqb_map) != 0)
goto free;
if (bus_dmamem_alloc(dmat, aqb->aqb_size,
IAVF_AQ_ALIGN, 0, &aqb->aqb_seg, 1, &aqb->aqb_nsegs,
BUS_DMA_WAITOK) != 0)
goto destroy;
if (bus_dmamem_map(dmat, &aqb->aqb_seg, aqb->aqb_nsegs,
aqb->aqb_size, &aqb->aqb_data, BUS_DMA_WAITOK) != 0)
goto dma_free;
if (bus_dmamap_load(dmat, aqb->aqb_map, aqb->aqb_data,
aqb->aqb_size, NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
return aqb;
unmap:
bus_dmamem_unmap(dmat, aqb->aqb_data, aqb->aqb_size);
dma_free:
bus_dmamem_free(dmat, &aqb->aqb_seg, 1);
destroy:
bus_dmamap_destroy(dmat, aqb->aqb_map);
free:
kmem_free(aqb, sizeof(*aqb));
return NULL;
}
static void
iavf_aqb_free(bus_dma_tag_t dmat, struct ixl_aq_buf *aqb)
{
bus_dmamap_unload(dmat, aqb->aqb_map);
bus_dmamem_unmap(dmat, aqb->aqb_data, aqb->aqb_size);
bus_dmamem_free(dmat, &aqb->aqb_seg, 1);
bus_dmamap_destroy(dmat, aqb->aqb_map);
kmem_free(aqb, sizeof(*aqb));
}
static struct ixl_aq_buf *
iavf_aqb_get_locked(struct ixl_aq_bufs *q)
{
struct ixl_aq_buf *aqb;
aqb = SIMPLEQ_FIRST(q);
if (aqb != NULL) {
SIMPLEQ_REMOVE(q, aqb, ixl_aq_buf, aqb_entry);
}
return aqb;
}
static struct ixl_aq_buf *
iavf_aqb_get(struct iavf_softc *sc, struct ixl_aq_bufs *q)
{
struct ixl_aq_buf *aqb;
if (q != NULL) {
mutex_enter(&sc->sc_adminq_lock);
aqb = iavf_aqb_get_locked(q);
mutex_exit(&sc->sc_adminq_lock);
} else {
aqb = NULL;
}
if (aqb == NULL) {
aqb = iavf_aqb_alloc(sc->sc_dmat, IAVF_AQ_BUFLEN);
}
return aqb;
}
static void
iavf_aqb_put_locked(struct ixl_aq_bufs *q, struct ixl_aq_buf *aqb)
{
SIMPLEQ_INSERT_TAIL(q, aqb, aqb_entry);
}
static void
iavf_aqb_clean(struct ixl_aq_bufs *q, bus_dma_tag_t dmat)
{
struct ixl_aq_buf *aqb;
while ((aqb = SIMPLEQ_FIRST(q)) != NULL) {
SIMPLEQ_REMOVE(q, aqb, ixl_aq_buf, aqb_entry);
iavf_aqb_free(dmat, aqb);
}
}
static const char *
iavf_aq_vc_opcode_str(const struct ixl_aq_desc *iaq)
{
switch (iavf_aq_vc_get_opcode(iaq)) {
case IAVF_VC_OP_VERSION:
return "GET_VERSION";
case IAVF_VC_OP_RESET_VF:
return "RESET_VF";
case IAVF_VC_OP_GET_VF_RESOURCES:
return "GET_VF_RESOURCES";
case IAVF_VC_OP_CONFIG_TX_QUEUE:
return "CONFIG_TX_QUEUE";
case IAVF_VC_OP_CONFIG_RX_QUEUE:
return "CONFIG_RX_QUEUE";
case IAVF_VC_OP_CONFIG_VSI_QUEUES:
return "CONFIG_VSI_QUEUES";
case IAVF_VC_OP_CONFIG_IRQ_MAP:
return "CONFIG_IRQ_MAP";
case IAVF_VC_OP_ENABLE_QUEUES:
return "ENABLE_QUEUES";
case IAVF_VC_OP_DISABLE_QUEUES:
return "DISABLE_QUEUES";
case IAVF_VC_OP_ADD_ETH_ADDR:
return "ADD_ETH_ADDR";
case IAVF_VC_OP_DEL_ETH_ADDR:
return "DEL_ETH_ADDR";
case IAVF_VC_OP_CONFIG_PROMISC:
return "CONFIG_PROMISC";
case IAVF_VC_OP_GET_STATS:
return "GET_STATS";
case IAVF_VC_OP_EVENT:
return "EVENT";
case IAVF_VC_OP_CONFIG_RSS_KEY:
return "CONFIG_RSS_KEY";
case IAVF_VC_OP_CONFIG_RSS_LUT:
return "CONFIG_RSS_LUT";
case IAVF_VC_OP_GET_RSS_HENA_CAPS:
return "GET_RS_HENA_CAPS";
case IAVF_VC_OP_SET_RSS_HENA:
return "SET_RSS_HENA";
case IAVF_VC_OP_ENABLE_VLAN_STRIP:
return "ENABLE_VLAN_STRIPPING";
case IAVF_VC_OP_DISABLE_VLAN_STRIP:
return "DISABLE_VLAN_STRIPPING";
case IAVF_VC_OP_REQUEST_QUEUES:
return "REQUEST_QUEUES";
}
return "unknown";
}
static void
iavf_aq_dump(const struct iavf_softc *sc, const struct ixl_aq_desc *iaq,
const char *msg)
{
char buf[512];
size_t len;
len = sizeof(buf);
buf[--len] = '\0';
device_printf(sc->sc_dev, "%s\n", msg);
snprintb(buf, len, IXL_AQ_FLAGS_FMT, le16toh(iaq->iaq_flags));
device_printf(sc->sc_dev, "flags %s opcode %04x\n",
buf, le16toh(iaq->iaq_opcode));
device_printf(sc->sc_dev, "datalen %u retval %u\n",
le16toh(iaq->iaq_datalen), le16toh(iaq->iaq_retval));
device_printf(sc->sc_dev, "vc-opcode %u (%s)\n",
iavf_aq_vc_get_opcode(iaq),
iavf_aq_vc_opcode_str(iaq));
device_printf(sc->sc_dev, "vc-retval %u\n",
iavf_aq_vc_get_retval(iaq));
device_printf(sc->sc_dev, "cookie %016" PRIx64 "\n", iaq->iaq_cookie);
device_printf(sc->sc_dev, "%08x %08x %08x %08x\n",
le32toh(iaq->iaq_param[0]), le32toh(iaq->iaq_param[1]),
le32toh(iaq->iaq_param[2]), le32toh(iaq->iaq_param[3]));
}
static int
iavf_arq_fill(struct iavf_softc *sc)
{
struct ixl_aq_buf *aqb;
struct ixl_aq_desc *arq, *iaq;
unsigned int prod = sc->sc_arq_prod;
unsigned int n;
int filled;
n = ixl_rxr_unrefreshed(sc->sc_arq_prod, sc->sc_arq_cons,
IAVF_AQ_NUM);
if (__predict_false(n <= 0))
return 0;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
arq = IXL_DMA_KVA(&sc->sc_arq);
do {
iaq = &arq[prod];
if (ixl_aq_has_dva(iaq)) {
/* already filled */
break;
}
aqb = iavf_aqb_get_locked(&sc->sc_arq_idle);
if (aqb == NULL)
break;
memset(aqb->aqb_data, 0, aqb->aqb_size);
bus_dmamap_sync(sc->sc_dmat, aqb->aqb_map, 0,
aqb->aqb_size, BUS_DMASYNC_PREREAD);
iaq->iaq_flags = htole16(IXL_AQ_BUF |
(aqb->aqb_size > I40E_AQ_LARGE_BUF ?
IXL_AQ_LB : 0));
iaq->iaq_opcode = 0;
iaq->iaq_datalen = htole16(aqb->aqb_size);
iaq->iaq_retval = 0;
iaq->iaq_cookie = 0;
iaq->iaq_param[0] = 0;
iaq->iaq_param[1] = 0;
ixl_aq_dva(iaq, IXL_AQB_DVA(aqb));
iavf_aqb_put_locked(&sc->sc_arq_live, aqb);
prod++;
prod &= IAVF_AQ_MASK;
filled = 1;
} while (--n);
sc->sc_arq_prod = prod;
if (filled) {
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
iavf_wr(sc, sc->sc_aq_regs->arq_tail, sc->sc_arq_prod);
}
return filled;
}
static int
iavf_arq_wait(struct iavf_softc *sc, uint32_t opcode)
{
int error;
KASSERT(mutex_owned(&sc->sc_adminq_lock));
while ((error = cv_timedwait(&sc->sc_adminq_cv,
&sc->sc_adminq_lock, mstohz(IAVF_EXEC_TIMEOUT))) == 0) {
if (opcode == sc->sc_arq_opcode)
break;
}
if (error != 0 &&
atomic_load_relaxed(&sc->sc_debuglevel) >= 2)
device_printf(sc->sc_dev, "cv_timedwait error=%d\n", error);
return error;
}
static void
iavf_arq_refill(void *xsc)
{
struct iavf_softc *sc = xsc;
struct ixl_aq_bufs aqbs;
struct ixl_aq_buf *aqb;
unsigned int n, i;
mutex_enter(&sc->sc_adminq_lock);
iavf_arq_fill(sc);
n = ixl_rxr_unrefreshed(sc->sc_arq_prod, sc->sc_arq_cons,
IAVF_AQ_NUM);
mutex_exit(&sc->sc_adminq_lock);
if (n == 0)
return;
if (atomic_load_relaxed(&sc->sc_debuglevel) >= 1)
device_printf(sc->sc_dev, "Allocate %d bufs for arq\n", n);
SIMPLEQ_INIT(&aqbs);
for (i = 0; i < n; i++) {
aqb = iavf_aqb_get(sc, NULL);
if (aqb == NULL)
continue;
SIMPLEQ_INSERT_TAIL(&aqbs, aqb, aqb_entry);
}
mutex_enter(&sc->sc_adminq_lock);
while ((aqb = SIMPLEQ_FIRST(&aqbs)) != NULL) {
SIMPLEQ_REMOVE(&aqbs, aqb, ixl_aq_buf, aqb_entry);
iavf_aqb_put_locked(&sc->sc_arq_idle, aqb);
}
iavf_arq_fill(sc);
mutex_exit(&sc->sc_adminq_lock);
}
static uint32_t
iavf_process_arq(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
uint32_t vc_retval, vc_opcode;
int dbg;
dbg = atomic_load_relaxed(&sc->sc_debuglevel);
if (dbg >= 3)
iavf_aq_dump(sc, iaq, "arq proc");
if (dbg >= 2) {
vc_retval = iavf_aq_vc_get_retval(iaq);
if (vc_retval != IAVF_VC_RC_SUCCESS) {
device_printf(sc->sc_dev, "%s failed=%d(arq)\n",
iavf_aq_vc_opcode_str(iaq), vc_retval);
}
}
vc_opcode = iavf_aq_vc_get_opcode(iaq);
switch (vc_opcode) {
case IAVF_VC_OP_VERSION:
iavf_process_version(sc, iaq, aqb);
break;
case IAVF_VC_OP_GET_VF_RESOURCES:
iavf_process_vf_resources(sc, iaq, aqb);
break;
case IAVF_VC_OP_CONFIG_IRQ_MAP:
iavf_process_irq_map(sc, iaq);
break;
case IAVF_VC_OP_EVENT:
iavf_process_vc_event(sc, iaq, aqb);
break;
case IAVF_VC_OP_GET_STATS:
iavf_process_stats(sc, iaq, aqb);
break;
case IAVF_VC_OP_REQUEST_QUEUES:
iavf_process_req_queues(sc, iaq, aqb);
break;
}
return vc_opcode;
}
static int
iavf_arq_poll(struct iavf_softc *sc, uint32_t wait_opcode, int retry)
{
struct ixl_aq_desc *arq, *iaq;
struct ixl_aq_buf *aqb;
unsigned int cons = sc->sc_arq_cons;
unsigned int prod;
uint32_t vc_opcode;
bool received;
int i;
for (i = 0, received = false; i < retry && !received; i++) {
prod = iavf_rd(sc, sc->sc_aq_regs->arq_head);
prod &= sc->sc_aq_regs->arq_head_mask;
if (prod == cons) {
delaymsec(1);
continue;
}
if (prod >= IAVF_AQ_NUM) {
return EIO;
}
arq = IXL_DMA_KVA(&sc->sc_arq);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
do {
iaq = &arq[cons];
aqb = iavf_aqb_get_locked(&sc->sc_arq_live);
KASSERT(aqb != NULL);
bus_dmamap_sync(sc->sc_dmat, aqb->aqb_map, 0,
IAVF_AQ_BUFLEN, BUS_DMASYNC_POSTREAD);
vc_opcode = iavf_process_arq(sc, iaq, aqb);
if (vc_opcode == wait_opcode)
received = true;
memset(iaq, 0, sizeof(*iaq));
iavf_aqb_put_locked(&sc->sc_arq_idle, aqb);
cons++;
cons &= IAVF_AQ_MASK;
} while (cons != prod);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_arq_cons = cons;
iavf_arq_fill(sc);
}
if (!received)
return ETIMEDOUT;
return 0;
}
static int
iavf_arq(struct iavf_softc *sc)
{
struct ixl_aq_desc *arq, *iaq;
struct ixl_aq_buf *aqb;
unsigned int cons = sc->sc_arq_cons;
unsigned int prod;
uint32_t vc_opcode;
KASSERT(mutex_owned(&sc->sc_adminq_lock));
prod = iavf_rd(sc, sc->sc_aq_regs->arq_head);
prod &= sc->sc_aq_regs->arq_head_mask;
/* broken value at resetting */
if (prod >= IAVF_AQ_NUM) {
iavf_work_set(&sc->sc_reset_task, iavf_reset_start, sc);
iavf_work_add(sc->sc_workq, &sc->sc_reset_task);
return 0;
}
if (cons == prod)
return 0;
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_arq),
0, IXL_DMA_LEN(&sc->sc_arq),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
arq = IXL_DMA_KVA(&sc->sc_arq);
do {
iaq = &arq[cons];
aqb = iavf_aqb_get_locked(&sc->sc_arq_live);
KASSERT(aqb != NULL);
bus_dmamap_sync(sc->sc_dmat, aqb->aqb_map, 0, IAVF_AQ_BUFLEN,
BUS_DMASYNC_POSTREAD);
vc_opcode = iavf_process_arq(sc, iaq, aqb);
switch (vc_opcode) {
case IAVF_VC_OP_CONFIG_TX_QUEUE:
case IAVF_VC_OP_CONFIG_RX_QUEUE:
case IAVF_VC_OP_CONFIG_VSI_QUEUES:
case IAVF_VC_OP_ENABLE_QUEUES:
case IAVF_VC_OP_DISABLE_QUEUES:
case IAVF_VC_OP_GET_RSS_HENA_CAPS:
case IAVF_VC_OP_SET_RSS_HENA:
case IAVF_VC_OP_ADD_ETH_ADDR:
case IAVF_VC_OP_DEL_ETH_ADDR:
case IAVF_VC_OP_CONFIG_PROMISC:
case IAVF_VC_OP_ADD_VLAN:
case IAVF_VC_OP_DEL_VLAN:
case IAVF_VC_OP_ENABLE_VLAN_STRIP:
case IAVF_VC_OP_DISABLE_VLAN_STRIP:
case IAVF_VC_OP_CONFIG_RSS_KEY:
case IAVF_VC_OP_CONFIG_RSS_LUT:
sc->sc_arq_retval = iavf_aq_vc_get_retval(iaq);
sc->sc_arq_opcode = vc_opcode;
cv_signal(&sc->sc_adminq_cv);
break;
}
memset(iaq, 0, sizeof(*iaq));
iavf_aqb_put_locked(&sc->sc_arq_idle, aqb);
cons++;
cons &= IAVF_AQ_MASK;
} while (cons != prod);
sc->sc_arq_cons = cons;
iavf_work_add(sc->sc_workq, &sc->sc_arq_refill);
return 1;
}
static int
iavf_atq_post(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct ixl_aq_desc *atq, *slot;
unsigned int prod;
atq = IXL_DMA_KVA(&sc->sc_atq);
prod = sc->sc_atq_prod;
slot = &atq[prod];
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq), BUS_DMASYNC_POSTWRITE);
*slot = *iaq;
slot->iaq_flags |= htole16(IXL_AQ_SI);
if (aqb != NULL) {
ixl_aq_dva(slot, IXL_AQB_DVA(aqb));
bus_dmamap_sync(sc->sc_dmat, IXL_AQB_MAP(aqb),
0, IXL_AQB_LEN(aqb), BUS_DMASYNC_PREWRITE);
iavf_aqb_put_locked(&sc->sc_atq_live, aqb);
} else {
ixl_aq_dva(slot, (bus_addr_t)0);
}
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq), BUS_DMASYNC_PREWRITE);
if (atomic_load_relaxed(&sc->sc_debuglevel) >= 3)
iavf_aq_dump(sc, slot, "post");
prod++;
prod &= IAVF_AQ_MASK;
sc->sc_atq_prod = prod;
iavf_wr(sc, sc->sc_aq_regs->atq_tail, prod);
return prod;
}
static int
iavf_atq_poll(struct iavf_softc *sc, unsigned int tm)
{
struct ixl_aq_desc *atq, *slot;
struct ixl_aq_desc iaq;
unsigned int prod;
unsigned int t;
int dbg;
dbg = atomic_load_relaxed(&sc->sc_debuglevel);
atq = IXL_DMA_KVA(&sc->sc_atq);
prod = sc->sc_atq_prod;
slot = &atq[prod];
t = 0;
while (iavf_rd(sc, sc->sc_aq_regs->atq_head) != prod) {
delaymsec(1);
if (t++ > tm) {
if (dbg >= 2) {
device_printf(sc->sc_dev,
"atq timedout\n");
}
return ETIMEDOUT;
}
}
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq), BUS_DMASYNC_POSTREAD);
iaq = *slot;
memset(slot, 0, sizeof(*slot));
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq), BUS_DMASYNC_PREREAD);
if (iaq.iaq_retval != htole16(IXL_AQ_RC_OK)) {
if (dbg >= 2) {
device_printf(sc->sc_dev,
"atq retcode=0x%04x\n", le16toh(iaq.iaq_retval));
}
return EIO;
}
return 0;
}
static void
iavf_atq_done(struct iavf_softc *sc)
{
struct ixl_aq_desc *atq, *slot;
struct ixl_aq_buf *aqb;
unsigned int cons;
unsigned int prod;
KASSERT(mutex_owned(&sc->sc_adminq_lock));
prod = sc->sc_atq_prod;
cons = sc->sc_atq_cons;
if (prod == cons)
return;
atq = IXL_DMA_KVA(&sc->sc_atq);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
do {
slot = &atq[cons];
if (!ISSET(slot->iaq_flags, htole16(IXL_AQ_DD)))
break;
if (ixl_aq_has_dva(slot) &&
(aqb = iavf_aqb_get_locked(&sc->sc_atq_live)) != NULL) {
bus_dmamap_sync(sc->sc_dmat, IXL_AQB_MAP(aqb),
0, IXL_AQB_LEN(aqb), BUS_DMASYNC_POSTWRITE);
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
}
memset(slot, 0, sizeof(*slot));
cons++;
cons &= IAVF_AQ_MASK;
} while (cons != prod);
bus_dmamap_sync(sc->sc_dmat, IXL_DMA_MAP(&sc->sc_atq),
0, IXL_DMA_LEN(&sc->sc_atq),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_atq_cons = cons;
}
static int
iavf_adminq_poll(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb, int retry)
{
int error;
mutex_enter(&sc->sc_adminq_lock);
error = iavf_adminq_poll_locked(sc, iaq, aqb, retry);
mutex_exit(&sc->sc_adminq_lock);
return error;
}
static int
iavf_adminq_poll_locked(struct iavf_softc *sc,
struct ixl_aq_desc *iaq, struct ixl_aq_buf *aqb, int retry)
{
uint32_t opcode;
int error;
KASSERT(!sc->sc_attached || mutex_owned(&sc->sc_adminq_lock));
opcode = iavf_aq_vc_get_opcode(iaq);
iavf_atq_post(sc, iaq, aqb);
error = iavf_atq_poll(sc, retry);
/*
* collect the aqb used in the current command and
* added to sc_atq_live at iavf_atq_post(),
* whether or not the command succeeded.
*/
if (aqb != NULL) {
(void)iavf_aqb_get_locked(&sc->sc_atq_live);
bus_dmamap_sync(sc->sc_dmat, IXL_AQB_MAP(aqb),
0, IXL_AQB_LEN(aqb), BUS_DMASYNC_POSTWRITE);
}
if (error)
return error;
error = iavf_arq_poll(sc, opcode, retry);
if (error != 0 &&
atomic_load_relaxed(&sc->sc_debuglevel) >= 1) {
device_printf(sc->sc_dev, "%s failed=%d(polling)\n",
iavf_aq_vc_opcode_str(iaq), error);
}
return error;
}
static int
iavf_adminq_exec(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
int error;
uint32_t opcode;
opcode = iavf_aq_vc_get_opcode(iaq);
mutex_enter(&sc->sc_adminq_lock);
iavf_atq_post(sc, iaq, aqb);
error = iavf_arq_wait(sc, opcode);
if (error == 0) {
error = sc->sc_arq_retval;
if (error != IAVF_VC_RC_SUCCESS &&
atomic_load_relaxed(&sc->sc_debuglevel) >= 1) {
device_printf(sc->sc_dev, "%s failed=%d\n",
iavf_aq_vc_opcode_str(iaq), error);
}
}
mutex_exit(&sc->sc_adminq_lock);
return error;
}
static void
iavf_process_version(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct iavf_vc_version_info *ver;
ver = (struct iavf_vc_version_info *)aqb->aqb_data;
sc->sc_major_ver = le32toh(ver->major);
sc->sc_minor_ver = le32toh(ver->minor);
}
static void
iavf_process_vf_resources(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct iavf_vc_vf_resource *vf_res;
struct iavf_vc_vsi_resource *vsi_res;
uint8_t *enaddr;
int mtu, dbg;
char buf[512];
dbg = atomic_load_relaxed(&sc->sc_debuglevel);
sc->sc_got_vf_resources = 1;
vf_res = aqb->aqb_data;
sc->sc_max_vectors = le16toh(vf_res->max_vectors);
if (le16toh(vf_res->num_vsis) == 0) {
if (dbg >= 1) {
device_printf(sc->sc_dev, "no vsi available\n");
}
return;
}
sc->sc_vf_cap = le32toh(vf_res->offload_flags);
if (dbg >= 2) {
snprintb(buf, sizeof(buf),
IAVF_VC_OFFLOAD_FMT, sc->sc_vf_cap);
device_printf(sc->sc_dev, "VF cap=%s\n", buf);
}
mtu = le16toh(vf_res->max_mtu);
if (IAVF_MIN_MTU < mtu && mtu < IAVF_MAX_MTU) {
sc->sc_max_mtu = MIN(IAVF_MAX_MTU, mtu);
}
vsi_res = &vf_res->vsi_res[0];
sc->sc_vsi_id = le16toh(vsi_res->vsi_id);
sc->sc_vf_id = le32toh(iaq->iaq_param[0]);
sc->sc_qset_handle = le16toh(vsi_res->qset_handle);
sc->sc_nqps_vsi = le16toh(vsi_res->num_queue_pairs);
if (!iavf_is_etheranyaddr(vsi_res->default_mac)) {
enaddr = vsi_res->default_mac;
} else {
enaddr = sc->sc_enaddr_fake;
}
memcpy(sc->sc_enaddr, enaddr, ETHER_ADDR_LEN);
}
static void
iavf_process_irq_map(struct iavf_softc *sc, struct ixl_aq_desc *iaq)
{
uint32_t retval;
retval = iavf_aq_vc_get_retval(iaq);
if (retval != IAVF_VC_RC_SUCCESS) {
return;
}
sc->sc_got_irq_map = 1;
}
static void
iavf_process_vc_event(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct iavf_vc_pf_event *event;
struct ifnet *ifp = &sc->sc_ec.ec_if;
const struct iavf_link_speed *speed;
int link;
event = aqb->aqb_data;
switch (event->event) {
case IAVF_VC_EVENT_LINK_CHANGE:
sc->sc_media_status = IFM_AVALID;
sc->sc_media_active = IFM_ETHER;
link = LINK_STATE_DOWN;
if (event->link_status) {
link = LINK_STATE_UP;
sc->sc_media_status |= IFM_ACTIVE;
sc->sc_media_active |= IFM_FDX;
ifp->if_baudrate = 0;
speed = iavf_find_link_speed(sc, event->link_speed);
if (speed != NULL) {
sc->sc_media_active |= speed->media;
ifp->if_baudrate = speed->baudrate;
}
}
if (sc->sc_link_state != link) {
sc->sc_link_state = link;
if (sc->sc_attached) {
if_link_state_change(ifp, link);
}
}
break;
case IAVF_VC_EVENT_RESET_IMPENDING:
log(LOG_INFO, "%s: Reset warning received from the PF\n",
ifp->if_xname);
iavf_work_set(&sc->sc_reset_task, iavf_reset_request, sc);
iavf_work_add(sc->sc_workq, &sc->sc_reset_task);
break;
}
}
static void
iavf_process_stats(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct iavf_stat_counters *isc;
struct i40e_eth_stats *st;
KASSERT(mutex_owned(&sc->sc_adminq_lock));
st = aqb->aqb_data;
isc = &sc->sc_stat_counters;
isc->isc_rx_bytes.ev_count = st->rx_bytes;
isc->isc_rx_unicast.ev_count = st->rx_unicast;
isc->isc_rx_multicast.ev_count = st->rx_multicast;
isc->isc_rx_broadcast.ev_count = st->rx_broadcast;
isc->isc_rx_discards.ev_count = st->rx_discards;
isc->isc_rx_unknown_protocol.ev_count = st->rx_unknown_protocol;
isc->isc_tx_bytes.ev_count = st->tx_bytes;
isc->isc_tx_unicast.ev_count = st->tx_unicast;
isc->isc_tx_multicast.ev_count = st->tx_multicast;
isc->isc_tx_broadcast.ev_count = st->tx_broadcast;
isc->isc_tx_discards.ev_count = st->tx_discards;
isc->isc_tx_errors.ev_count = st->tx_errors;
}
static void
iavf_process_req_queues(struct iavf_softc *sc, struct ixl_aq_desc *iaq,
struct ixl_aq_buf *aqb)
{
struct iavf_vc_res_request *req;
struct ifnet *ifp;
uint32_t vc_retval;
ifp = &sc->sc_ec.ec_if;
req = aqb->aqb_data;
vc_retval = iavf_aq_vc_get_retval(iaq);
if (vc_retval != IAVF_VC_RC_SUCCESS) {
return;
}
if (sc->sc_nqps_req < req->num_queue_pairs) {
log(LOG_INFO,
"%s: requested %d queues, but only %d left.\n",
ifp->if_xname,
sc->sc_nqps_req, req->num_queue_pairs);
}
if (sc->sc_nqps_vsi < req->num_queue_pairs) {
if (!sc->sc_req_queues_retried) {
/* req->num_queue_pairs indicates max qps */
sc->sc_nqps_req = req->num_queue_pairs;
sc->sc_req_queues_retried = true;
iavf_work_add(sc->sc_workq, &sc->sc_req_queues_task);
}
}
}
static int
iavf_get_version(struct iavf_softc *sc, struct ixl_aq_buf *aqb)
{
struct ixl_aq_desc iaq;
struct iavf_vc_version_info *ver;
int error;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_VERSION);
iaq.iaq_datalen = htole16(sizeof(struct iavf_vc_version_info));
ver = IXL_AQB_KVA(aqb);
ver->major = htole32(IAVF_VF_MAJOR);
ver->minor = htole32(IAVF_VF_MINOR);
sc->sc_major_ver = UINT_MAX;
sc->sc_minor_ver = UINT_MAX;
if (sc->sc_attached) {
error = iavf_adminq_poll(sc, &iaq, aqb, 250);
} else {
error = iavf_adminq_poll_locked(sc, &iaq, aqb, 250);
}
if (error)
return -1;
return 0;
}
static int
iavf_get_vf_resources(struct iavf_softc *sc, struct ixl_aq_buf *aqb)
{
struct ixl_aq_desc iaq;
uint32_t *cap, cap0;
int error;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_GET_VF_RESOURCES);
if (sc->sc_major_ver > 0) {
cap0 = IAVF_VC_OFFLOAD_L2 |
IAVF_VC_OFFLOAD_VLAN |
IAVF_VC_OFFLOAD_RSS_PF |
IAVF_VC_OFFLOAD_REQ_QUEUES;
cap = IXL_AQB_KVA(aqb);
*cap = htole32(cap0);
iaq.iaq_datalen = htole16(sizeof(*cap));
}
sc->sc_got_vf_resources = 0;
if (sc->sc_attached) {
error = iavf_adminq_poll(sc, &iaq, aqb, 250);
} else {
error = iavf_adminq_poll_locked(sc, &iaq, aqb, 250);
}
if (error)
return -1;
return 0;
}
static int
iavf_get_stats(struct iavf_softc *sc)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_queue_select *qsel;
int error;
mutex_enter(&sc->sc_adminq_lock);
aqb = iavf_aqb_get_locked(&sc->sc_atq_idle);
mutex_exit(&sc->sc_adminq_lock);
if (aqb == NULL)
return ENOMEM;
qsel = IXL_AQB_KVA(aqb);
memset(qsel, 0, sizeof(*qsel));
qsel->vsi_id = htole16(sc->sc_vsi_id);
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_GET_STATS);
iaq.iaq_datalen = htole16(sizeof(*qsel));
if (atomic_load_relaxed(&sc->sc_debuglevel) >= 3) {
device_printf(sc->sc_dev, "post GET_STATS command\n");
}
mutex_enter(&sc->sc_adminq_lock);
error = iavf_atq_post(sc, &iaq, aqb);
mutex_exit(&sc->sc_adminq_lock);
return error;
}
static int
iavf_config_irq_map(struct iavf_softc *sc, struct ixl_aq_buf *aqb)
{
struct ixl_aq_desc iaq;
struct iavf_vc_vector_map *vec;
struct iavf_vc_irq_map_info *map;
struct iavf_rx_ring *rxr;
struct iavf_tx_ring *txr;
unsigned int num_vec;
int error;
map = IXL_AQB_KVA(aqb);
vec = map->vecmap;
num_vec = 0;
if (sc->sc_nintrs == 1) {
vec[0].vsi_id = htole16(sc->sc_vsi_id);
vec[0].vector_id = htole16(0);
vec[0].rxq_map = htole16(iavf_allqueues(sc));
vec[0].txq_map = htole16(iavf_allqueues(sc));
vec[0].rxitr_idx = htole16(IAVF_NOITR);
vec[0].rxitr_idx = htole16(IAVF_NOITR);
num_vec = 1;
} else if (sc->sc_nintrs > 1) {
KASSERT(sc->sc_nqps_alloc >= (sc->sc_nintrs - 1));
for (; num_vec < (sc->sc_nintrs - 1); num_vec++) {
rxr = sc->sc_qps[num_vec].qp_rxr;
txr = sc->sc_qps[num_vec].qp_txr;
vec[num_vec].vsi_id = htole16(sc->sc_vsi_id);
vec[num_vec].vector_id = htole16(num_vec + 1);
vec[num_vec].rxq_map = htole16(__BIT(rxr->rxr_qid));
vec[num_vec].txq_map = htole16(__BIT(txr->txr_qid));
vec[num_vec].rxitr_idx = htole16(IAVF_ITR_RX);
vec[num_vec].txitr_idx = htole16(IAVF_ITR_TX);
}
vec[num_vec].vsi_id = htole16(sc->sc_vsi_id);
vec[num_vec].vector_id = htole16(0);
vec[num_vec].rxq_map = htole16(0);
vec[num_vec].txq_map = htole16(0);
num_vec++;
}
map->num_vectors = htole16(num_vec);
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_CONFIG_IRQ_MAP);
iaq.iaq_datalen = htole16(sizeof(*map) + sizeof(*vec) * num_vec);
if (sc->sc_attached) {
error = iavf_adminq_poll(sc, &iaq, aqb, 250);
} else {
error = iavf_adminq_poll_locked(sc, &iaq, aqb, 250);
}
if (error)
return -1;
return 0;
}
static int
iavf_config_vsi_queues(struct iavf_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_queue_config_info *config;
struct iavf_vc_txq_info *txq;
struct iavf_vc_rxq_info *rxq;
struct iavf_rx_ring *rxr;
struct iavf_tx_ring *txr;
uint32_t rxmtu_max;
unsigned int i;
int error;
rxmtu_max = ifp->if_mtu + IAVF_MTU_ETHERLEN;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
config = IXL_AQB_KVA(aqb);
memset(config, 0, sizeof(*config));
config->vsi_id = htole16(sc->sc_vsi_id);
config->num_queue_pairs = htole16(sc->sc_nqueue_pairs);
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
rxr = sc->sc_qps[i].qp_rxr;
txr = sc->sc_qps[i].qp_txr;
txq = &config->qpair[i].txq;
txq->vsi_id = htole16(sc->sc_vsi_id);
txq->queue_id = htole16(txr->txr_qid);
txq->ring_len = htole16(sc->sc_tx_ring_ndescs);
txq->headwb_ena = 0;
txq->dma_ring_addr = htole64(IXL_DMA_DVA(&txr->txr_mem));
txq->dma_headwb_addr = 0;
rxq = &config->qpair[i].rxq;
rxq->vsi_id = htole16(sc->sc_vsi_id);
rxq->queue_id = htole16(rxr->rxr_qid);
rxq->ring_len = htole16(sc->sc_rx_ring_ndescs);
rxq->splithdr_ena = 0;
rxq->databuf_size = htole32(IAVF_MCLBYTES);
rxq->max_pkt_size = htole32(rxmtu_max);
rxq->dma_ring_addr = htole64(IXL_DMA_DVA(&rxr->rxr_mem));
rxq->rx_split_pos = 0;
}
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_CONFIG_VSI_QUEUES);
iaq.iaq_datalen = htole16(sizeof(*config) +
sizeof(config->qpair[0]) * sc->sc_nqueue_pairs);
error = iavf_adminq_exec(sc, &iaq, aqb);
if (error != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_config_hena(struct iavf_softc *sc)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
uint64_t *caps;
int error;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
caps = IXL_AQB_KVA(aqb);
if (sc->sc_mac_type == I40E_MAC_X722_VF)
*caps = IXL_RSS_HENA_DEFAULT_X722;
else
*caps = IXL_RSS_HENA_DEFAULT_XL710;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_SET_RSS_HENA);
iaq.iaq_datalen = htole16(sizeof(*caps));
error = iavf_adminq_exec(sc, &iaq, aqb);
if (error != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static inline void
iavf_get_default_rss_key(uint8_t *buf, size_t len)
{
uint8_t rss_seed[RSS_KEYSIZE];
size_t cplen;
cplen = MIN(len, sizeof(rss_seed));
rss_getkey(rss_seed);
memcpy(buf, rss_seed, cplen);
if (cplen < len)
memset(buf + cplen, 0, len - cplen);
}
static int
iavf_config_rss_key(struct iavf_softc *sc)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_rss_key *rss_key;
size_t key_len;
int rv;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
rss_key = IXL_AQB_KVA(aqb);
rss_key->vsi_id = htole16(sc->sc_vsi_id);
key_len = IXL_RSS_KEY_SIZE;
iavf_get_default_rss_key(rss_key->key, key_len);
rss_key->key_len = key_len;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_CONFIG_RSS_KEY);
iaq.iaq_datalen = htole16(sizeof(*rss_key) - sizeof(rss_key->pad)
+ (sizeof(rss_key->key[0]) * key_len));
rv = iavf_adminq_exec(sc, &iaq, aqb);
if (rv != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_config_rss_lut(struct iavf_softc *sc)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_rss_lut *rss_lut;
uint8_t *lut, v;
int rv, i;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
rss_lut = IXL_AQB_KVA(aqb);
rss_lut->vsi_id = htole16(sc->sc_vsi_id);
rss_lut->lut_entries = htole16(IXL_RSS_VSI_LUT_SIZE);
lut = rss_lut->lut;
for (i = 0; i < IXL_RSS_VSI_LUT_SIZE; i++) {
v = i % sc->sc_nqueue_pairs;
v &= IAVF_RSS_VSI_LUT_ENTRY_MASK;
lut[i] = v;
}
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_CONFIG_RSS_LUT);
iaq.iaq_datalen = htole16(sizeof(*rss_lut) - sizeof(rss_lut->pad)
+ (sizeof(rss_lut->lut[0]) * IXL_RSS_VSI_LUT_SIZE));
rv = iavf_adminq_exec(sc, &iaq, aqb);
if (rv != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_queue_select(struct iavf_softc *sc, int opcode)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_queue_select *qsel;
int error;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
qsel = IXL_AQB_KVA(aqb);
qsel->vsi_id = htole16(sc->sc_vsi_id);
qsel->rx_queues = htole32(iavf_allqueues(sc));
qsel->tx_queues = htole32(iavf_allqueues(sc));
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, opcode);
iaq.iaq_datalen = htole16(sizeof(*qsel));
error = iavf_adminq_exec(sc, &iaq, aqb);
if (error != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_request_queues(struct iavf_softc *sc, unsigned int req_num)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_res_request *req;
int rv;
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return ENOMEM;
req = IXL_AQB_KVA(aqb);
req->num_queue_pairs = req_num;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_REQUEST_QUEUES);
iaq.iaq_datalen = htole16(sizeof(*req));
mutex_enter(&sc->sc_adminq_lock);
rv = iavf_atq_post(sc, &iaq, aqb);
mutex_exit(&sc->sc_adminq_lock);
return rv;
}
static int
iavf_reset_vf(struct iavf_softc *sc)
{
struct ixl_aq_desc iaq;
int error;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_RESET_VF);
iaq.iaq_datalen = htole16(0);
iavf_wr(sc, I40E_VFGEN_RSTAT, IAVF_VFR_INPROGRESS);
mutex_enter(&sc->sc_adminq_lock);
error = iavf_atq_post(sc, &iaq, NULL);
mutex_exit(&sc->sc_adminq_lock);
return error;
}
static int
iavf_eth_addr(struct iavf_softc *sc, const uint8_t *addr, uint32_t opcode)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_eth_addr_list *addrs;
struct iavf_vc_eth_addr *vcaddr;
int rv;
KASSERT(sc->sc_attached);
KASSERT(opcode == IAVF_VC_OP_ADD_ETH_ADDR ||
opcode == IAVF_VC_OP_DEL_ETH_ADDR);
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
addrs = IXL_AQB_KVA(aqb);
addrs->vsi_id = htole16(sc->sc_vsi_id);
addrs->num_elements = htole16(1);
vcaddr = addrs->list;
memcpy(vcaddr->addr, addr, ETHER_ADDR_LEN);
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, opcode);
iaq.iaq_datalen = htole16(sizeof(*addrs) + sizeof(*vcaddr));
if (sc->sc_resetting) {
mutex_enter(&sc->sc_adminq_lock);
rv = iavf_adminq_poll_locked(sc, &iaq, aqb, 250);
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
mutex_exit(&sc->sc_adminq_lock);
} else {
rv = iavf_adminq_exec(sc, &iaq, aqb);
}
if (rv != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_config_promisc_mode(struct iavf_softc *sc, int unicast, int multicast)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_promisc_info *promisc;
int flags;
KASSERT(sc->sc_attached);
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
flags = 0;
if (unicast)
flags |= IAVF_FLAG_VF_UNICAST_PROMISC;
if (multicast)
flags |= IAVF_FLAG_VF_MULTICAST_PROMISC;
promisc = IXL_AQB_KVA(aqb);
promisc->vsi_id = htole16(sc->sc_vsi_id);
promisc->flags = htole16(flags);
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, IAVF_VC_OP_CONFIG_PROMISC);
iaq.iaq_datalen = htole16(sizeof(*promisc));
if (iavf_adminq_exec(sc, &iaq, aqb) != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_config_vlan_stripping(struct iavf_softc *sc, int eccap)
{
struct ixl_aq_desc iaq;
uint32_t opcode;
opcode = ISSET(eccap, ETHERCAP_VLAN_HWTAGGING) ?
IAVF_VC_OP_ENABLE_VLAN_STRIP : IAVF_VC_OP_DISABLE_VLAN_STRIP;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, opcode);
iaq.iaq_datalen = htole16(0);
if (iavf_adminq_exec(sc, &iaq, NULL) != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static int
iavf_config_vlan_id(struct iavf_softc *sc, uint16_t vid, uint32_t opcode)
{
struct ixl_aq_desc iaq;
struct ixl_aq_buf *aqb;
struct iavf_vc_vlan_filter *vfilter;
int rv;
KASSERT(opcode == IAVF_VC_OP_ADD_VLAN || opcode == IAVF_VC_OP_DEL_VLAN);
aqb = iavf_aqb_get(sc, &sc->sc_atq_idle);
if (aqb == NULL)
return -1;
vfilter = IXL_AQB_KVA(aqb);
vfilter->vsi_id = htole16(sc->sc_vsi_id);
vfilter->num_vlan_id = htole16(1);
vfilter->vlan_id[0] = vid;
memset(&iaq, 0, sizeof(iaq));
iaq.iaq_flags = htole16(IXL_AQ_BUF | IXL_AQ_RD);
iaq.iaq_opcode = htole16(IAVF_AQ_OP_SEND_TO_PF);
iavf_aq_vc_set_opcode(&iaq, opcode);
iaq.iaq_datalen = htole16(sizeof(*vfilter) + sizeof(vid));
if (sc->sc_resetting) {
mutex_enter(&sc->sc_adminq_lock);
rv = iavf_adminq_poll_locked(sc, &iaq, aqb, 250);
iavf_aqb_put_locked(&sc->sc_atq_idle, aqb);
mutex_exit(&sc->sc_adminq_lock);
} else {
rv = iavf_adminq_exec(sc, &iaq, aqb);
}
if (rv != IAVF_VC_RC_SUCCESS) {
return -1;
}
return 0;
}
static void
iavf_post_request_queues(void *xsc)
{
struct iavf_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->sc_ec.ec_if;
if (!ISSET(sc->sc_vf_cap, IAVF_VC_OFFLOAD_REQ_QUEUES)) {
log(LOG_DEBUG, "%s: the VF has no REQ_QUEUES capability\n",
ifp->if_xname);
return;
}
log(LOG_INFO, "%s: try to change the number of queue pairs"
" (vsi %u, %u allocated, request %u)\n",
ifp->if_xname,
sc->sc_nqps_vsi, sc->sc_nqps_alloc, sc->sc_nqps_req);
iavf_request_queues(sc, sc->sc_nqps_req);
}
static bool
iavf_sysctlnode_is_rx(struct sysctlnode *node)
{
if (strstr(node->sysctl_parent->sysctl_name, "rx") != NULL)
return true;
return false;
}
static int
iavf_sysctl_itr_handler(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
struct iavf_softc *sc = (struct iavf_softc *)node.sysctl_data;
uint32_t newitr, *itrptr;
unsigned int i;
int itr, error;
if (iavf_sysctlnode_is_rx(&node)) {
itrptr = &sc->sc_rx_itr;
itr = IAVF_ITR_RX;
} else {
itrptr = &sc->sc_tx_itr;
itr = IAVF_ITR_TX;
}
newitr = *itrptr;
node.sysctl_data = &newitr;
node.sysctl_size = sizeof(newitr);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newitr > 0x07FF)
return EINVAL;
*itrptr = newitr;
for (i = 0; i < sc->sc_nqueue_pairs; i++) {
iavf_wr(sc, I40E_VFINT_ITRN1(itr, i), *itrptr);
}
iavf_wr(sc, I40E_VFINT_ITR01(itr), *itrptr);
return 0;
}
static void
iavf_workq_work(struct work *wk, void *context)
{
struct iavf_work *work;
work = container_of(wk, struct iavf_work, ixw_cookie);
atomic_swap_uint(&work->ixw_added, 0);
work->ixw_func(work->ixw_arg);
}
static struct workqueue *
iavf_workq_create(const char *name, pri_t prio, int ipl, int flags)
{
struct workqueue *wq;
int error;
error = workqueue_create(&wq, name, iavf_workq_work, NULL,
prio, ipl, flags);
if (error)
return NULL;
return wq;
}
static void
iavf_workq_destroy(struct workqueue *wq)
{
workqueue_destroy(wq);
}
static int
iavf_work_set(struct iavf_work *work, void (*func)(void *), void *arg)
{
if (work->ixw_added != 0)
return -1;
memset(work, 0, sizeof(*work));
work->ixw_func = func;
work->ixw_arg = arg;
return 0;
}
static void
iavf_work_add(struct workqueue *wq, struct iavf_work *work)
{
if (atomic_cas_uint(&work->ixw_added, 0, 1) != 0)
return;
kpreempt_disable();
workqueue_enqueue(wq, &work->ixw_cookie, NULL);
kpreempt_enable();
}
static void
iavf_work_wait(struct workqueue *wq, struct iavf_work *work)
{
workqueue_wait(wq, &work->ixw_cookie);
}
static void
iavf_evcnt_attach(struct evcnt *ec,
const char *n0, const char *n1)
{
evcnt_attach_dynamic(ec, EVCNT_TYPE_MISC,
NULL, n0, n1);
}
MODULE(MODULE_CLASS_DRIVER, if_iavf, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
#ifdef _MODULE
static void
iavf_parse_modprop(prop_dictionary_t dict)
{
prop_object_t obj;
int64_t val;
uint32_t n;
if (dict == NULL)
return;
obj = prop_dictionary_get(dict, "debug_level");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
if (val > 0) {
iavf_params.debug = val;
printf("iavf: debug level=%d\n", iavf_params.debug);
}
}
obj = prop_dictionary_get(dict, "max_qps");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
if (val < 1 || val > I40E_MAX_VF_QUEUES) {
printf("iavf: invalid queue size(1 <= n <= %d)",
I40E_MAX_VF_QUEUES);
} else {
iavf_params.max_qps = val;
printf("iavf: request queue pair = %u\n",
iavf_params.max_qps);
}
}
obj = prop_dictionary_get(dict, "tx_itr");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
if (val > 0x07FF) {
printf("iavf: TX ITR too big (%" PRId64 " <= %d)",
val, 0x7FF);
} else {
iavf_params.tx_itr = val;
printf("iavf: TX ITR = 0x%" PRIx32,
iavf_params.tx_itr);
}
}
obj = prop_dictionary_get(dict, "rx_itr");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
if (val > 0x07FF) {
printf("iavf: RX ITR too big (%" PRId64 " <= %d)",
val, 0x7FF);
} else {
iavf_params.rx_itr = val;
printf("iavf: RX ITR = 0x%" PRIx32,
iavf_params.rx_itr);
}
}
obj = prop_dictionary_get(dict, "tx_ndescs");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
n = 1U << (fls32(val) - 1);
if (val != (int64_t) n) {
printf("iavf: TX desc invalid size"
"(%" PRId64 " != %" PRIu32 ")\n", val, n);
} else if (val > (8192 - 32)) {
printf("iavf: Tx desc too big (%" PRId64 " > %d)",
val, (8192 - 32));
} else {
iavf_params.tx_ndescs = val;
printf("iavf: TX descriptors = 0x%04x",
iavf_params.tx_ndescs);
}
}
obj = prop_dictionary_get(dict, "rx_ndescs");
if (obj != NULL && prop_object_type(obj) == PROP_TYPE_NUMBER) {
val = prop_number_signed_value((prop_number_t)obj);
n = 1U << (fls32(val) - 1);
if (val != (int64_t) n) {
printf("iavf: RX desc invalid size"
"(%" PRId64 " != %" PRIu32 ")\n", val, n);
} else if (val > (8192 - 32)) {
printf("iavf: Rx desc too big (%" PRId64 " > %d)",
val, (8192 - 32));
} else {
iavf_params.rx_ndescs = val;
printf("iavf: RX descriptors = 0x%04x",
iavf_params.rx_ndescs);
}
}
}
#endif
static int
if_iavf_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
#ifdef _MODULE
switch (cmd) {
case MODULE_CMD_INIT:
iavf_parse_modprop((prop_dictionary_t)opaque);
error = config_init_component(cfdriver_ioconf_if_iavf,
cfattach_ioconf_if_iavf, cfdata_ioconf_if_iavf);
break;
case MODULE_CMD_FINI:
error = config_fini_component(cfdriver_ioconf_if_iavf,
cfattach_ioconf_if_iavf, cfdata_ioconf_if_iavf);
break;
default:
error = ENOTTY;
break;
}
#endif
return error;
}