Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*	$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: William V. Courtright II
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
  DAGs specific to parity logging are created here
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");

#ifdef _KERNEL_OPT
#include "opt_raid_diagnostic.h"
#endif

#include "rf_archs.h"

#if RF_INCLUDE_PARITYLOGGING > 0

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_paritylog.h"
#include "rf_general.h"

#include "rf_parityloggingdags.h"

/******************************************************************************
 *
 * creates a DAG to perform a large-write operation:
 *
 *         / Rod \     / Wnd \
 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
 *         \ Rod /     \ Xor - Lpo /
 *
 * The writes are not done until the reads complete because if they were done in
 * parallel, a failure on one of the reads could leave the parity in an inconsistent
 * state, so that the retry with a new DAG would produce erroneous parity.
 *
 * Note:  this DAG has the nasty property that none of the buffers allocated for reading
 *        old data can be freed until the XOR node fires.  Need to fix this.
 *
 * The last two arguments are the number of faults tolerated, and function for the
 * redundancy calculation. The undo for the redundancy calc is assumed to be null
 *
 *****************************************************************************/

void
rf_CommonCreateParityLoggingLargeWriteDAG(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_DagHeader_t * dag_h,
    void *bp,
    RF_RaidAccessFlags_t flags,
    RF_AllocListElem_t * allocList,
    int nfaults,
    void (*redFunc) (RF_DagNode_t *))
{
	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
	       *lpoNode, *blockNode, *unblockNode, *termNode;
	int     nWndNodes, nRodNodes, i;
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_AccessStripeMapHeader_t *new_asm_h[2];
	int     nodeNum, asmNum;
	RF_ReconUnitNum_t which_ru;
	char   *sosBuffer, *eosBuffer;
	RF_PhysDiskAddr_t *pda;
	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);

	if (rf_dagDebug)
		printf("[Creating parity-logging large-write DAG]\n");
	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
	dag_h->creator = "ParityLoggingLargeWriteDAG";

	/* alloc the Wnd nodes, the xor node, and the Lpo node */
	nWndNodes = asmap->numStripeUnitsAccessed;
	nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
	i = 0;
	wndNodes = &nodes[i];
	i += nWndNodes;
	xorNode = &nodes[i];
	i += 1;
	lpoNode = &nodes[i];
	i += 1;
	blockNode = &nodes[i];
	i += 1;
	syncNode = &nodes[i];
	i += 1;
	unblockNode = &nodes[i];
	i += 1;
	termNode = &nodes[i];
	i += 1;

	dag_h->numCommitNodes = nWndNodes + 1;
	dag_h->numCommits = 0;
	dag_h->numSuccedents = 1;

	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
	if (nRodNodes > 0)
		rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
		      allocList);

	/* begin node initialization */
	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);

	/* initialize the Rod nodes */
	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
		if (new_asm_h[asmNum]) {
			pda = new_asm_h[asmNum]->stripeMap->physInfo;
			while (pda) {
				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
				rodNodes[nodeNum].params[0].p = pda;
				rodNodes[nodeNum].params[1].p = pda->bufPtr;
				rodNodes[nodeNum].params[2].v = parityStripeID;
				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
				nodeNum++;
				pda = pda->next;
			}
		}
	}
	RF_ASSERT(nodeNum == nRodNodes);

	/* initialize the wnd nodes */
	pda = asmap->physInfo;
	for (i = 0; i < nWndNodes; i++) {
		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
		RF_ASSERT(pda != NULL);
		wndNodes[i].params[0].p = pda;
		wndNodes[i].params[1].p = pda->bufPtr;
		wndNodes[i].params[2].v = parityStripeID;
		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
		pda = pda->next;
	}

	/* initialize the redundancy node */
	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
	for (i = 0; i < nWndNodes; i++) {
		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
	}
	for (i = 0; i < nRodNodes; i++) {
		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
	}
	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
									 * at RAID information */

	/* look for an Rod node that reads a complete SU.  If none, alloc a
	 * buffer to receive the parity info. Note that we can't use a new
	 * data buffer because it will not have gotten written when the xor
	 * occurs. */
	for (i = 0; i < nRodNodes; i++)
		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
			break;
	if (i == nRodNodes) {
		xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
		    raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
	} else {
		xorNode->results[0] = rodNodes[i].params[1].p;
	}

	/* initialize the Lpo node */
	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);

	lpoNode->params[0].p = asmap->parityInfo;
	lpoNode->params[1].p = xorNode->results[0];
	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
							 * describe entire
							 * parity unit */

	/* connect nodes to form graph */

	/* connect dag header to block node */
	RF_ASSERT(dag_h->numSuccedents == 1);
	RF_ASSERT(blockNode->numAntecedents == 0);
	dag_h->succedents[0] = blockNode;

	/* connect the block node to the Rod nodes */
	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
	for (i = 0; i < nRodNodes; i++) {
		RF_ASSERT(rodNodes[i].numAntecedents == 1);
		blockNode->succedents[i] = &rodNodes[i];
		rodNodes[i].antecedents[0] = blockNode;
		rodNodes[i].antType[0] = rf_control;
	}

	/* connect the block node to the sync node */
	/* necessary if nRodNodes == 0 */
	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
	blockNode->succedents[nRodNodes] = syncNode;
	syncNode->antecedents[0] = blockNode;
	syncNode->antType[0] = rf_control;

	/* connect the Rod nodes to the syncNode */
	for (i = 0; i < nRodNodes; i++) {
		rodNodes[i].succedents[0] = syncNode;
		syncNode->antecedents[1 + i] = &rodNodes[i];
		syncNode->antType[1 + i] = rf_control;
	}

	/* connect the sync node to the xor node */
	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
	RF_ASSERT(xorNode->numAntecedents == 1);
	syncNode->succedents[0] = xorNode;
	xorNode->antecedents[0] = syncNode;
	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */

	/* connect the sync node to the Wnd nodes */
	for (i = 0; i < nWndNodes; i++) {
		RF_ASSERT(wndNodes->numAntecedents == 1);
		syncNode->succedents[1 + i] = &wndNodes[i];
		wndNodes[i].antecedents[0] = syncNode;
		wndNodes[i].antType[0] = rf_control;
	}

	/* connect the xor node to the Lpo node */
	RF_ASSERT(xorNode->numSuccedents == 1);
	RF_ASSERT(lpoNode->numAntecedents == 1);
	xorNode->succedents[0] = lpoNode;
	lpoNode->antecedents[0] = xorNode;
	lpoNode->antType[0] = rf_trueData;

	/* connect the Wnd nodes to the unblock node */
	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
	for (i = 0; i < nWndNodes; i++) {
		RF_ASSERT(wndNodes->numSuccedents == 1);
		wndNodes[i].succedents[0] = unblockNode;
		unblockNode->antecedents[i] = &wndNodes[i];
		unblockNode->antType[i] = rf_control;
	}

	/* connect the Lpo node to the unblock node */
	RF_ASSERT(lpoNode->numSuccedents == 1);
	lpoNode->succedents[0] = unblockNode;
	unblockNode->antecedents[nWndNodes] = lpoNode;
	unblockNode->antType[nWndNodes] = rf_control;

	/* connect unblock node to terminator */
	RF_ASSERT(unblockNode->numSuccedents == 1);
	RF_ASSERT(termNode->numAntecedents == 1);
	RF_ASSERT(termNode->numSuccedents == 0);
	unblockNode->succedents[0] = termNode;
	termNode->antecedents[0] = unblockNode;
	termNode->antType[0] = rf_control;
}




/******************************************************************************
 *
 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
 *
 *                                     Header
 *                                       |
 *                                     Block
 *                                 / |  ... \   \
 *                                /  |       \   \
 *                             Rod  Rod      Rod  Rop
 *                             | \ /| \    / |  \/ |
 *                             |    |        |  /\ |
 *                             Wnd  Wnd      Wnd   X
 *                              |    \       /     |
 *                              |     \     /      |
 *                               \     \   /      Lpo
 *                                \     \ /       /
 *                                 +-> Unblock <-+
 *                                       |
 *                                       T
 *
 *
 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
 * When the access spans a stripe unit boundary and is less than one SU in size, there will
 * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
 * The second output from each Rod node goes to the X node.  In the double-XOR
 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
 *
 * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
 *
 * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
 *        it also has the nasty property that none of the buffers allocated for reading
 *        old data & parity can be freed until the XOR node fires.  Need to fix this.
 *
 * A null qfuncs indicates single fault tolerant
 *****************************************************************************/

void
rf_CommonCreateParityLoggingSmallWriteDAG(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_DagHeader_t * dag_h,
    void *bp,
    RF_RaidAccessFlags_t flags,
    RF_AllocListElem_t * allocList,
    const RF_RedFuncs_t * pfuncs,
    const RF_RedFuncs_t * qfuncs)
{
	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
	RF_DagNode_t *readDataNodes, *readParityNodes;
	RF_DagNode_t *writeDataNodes, *lpuNodes;
	RF_DagNode_t *termNode;
	RF_PhysDiskAddr_t *pda = asmap->physInfo;
	int     numDataNodes = asmap->numStripeUnitsAccessed;
	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
	int     i, j, nNodes, totalNumNodes;
	RF_ReconUnitNum_t which_ru;
	void    (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
	const char   *name;
	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
	long    nfaults __unused = qfuncs ? 2 : 1;

	if (rf_dagDebug)
		printf("[Creating parity-logging small-write DAG]\n");
	RF_ASSERT(numDataNodes > 0);
	RF_ASSERT(nfaults == 1);
	dag_h->creator = "ParityLoggingSmallWriteDAG";

	/* DAG creation occurs in three steps: 1. count the number of nodes in
	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
	 * nodes */

	/* Step 1. compute number of nodes in the graph */

	/* number of nodes: a read and write for each data unit a redundancy
	 * computation node for each parity node a read and Lpu for each
	 * parity unit a block and unblock node (2) a terminator node if
	 * atomic RMW an unlock node for each data unit, redundancy unit */
	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;

	nNodes = numDataNodes + numParityNodes;

	dag_h->numCommitNodes = numDataNodes + numParityNodes;
	dag_h->numCommits = 0;
	dag_h->numSuccedents = 1;

	/* Step 2. create the nodes */
	nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
	i = 0;
	blockNode = &nodes[i];
	i += 1;
	unblockNode = &nodes[i];
	i += 1;
	readDataNodes = &nodes[i];
	i += numDataNodes;
	readParityNodes = &nodes[i];
	i += numParityNodes;
	writeDataNodes = &nodes[i];
	i += numDataNodes;
	lpuNodes = &nodes[i];
	i += numParityNodes;
	xorNodes = &nodes[i];
	i += numParityNodes;
	termNode = &nodes[i];
	i += 1;

	RF_ASSERT(i == totalNumNodes);

	/* Step 3. initialize the nodes */
	/* initialize block node (Nil) */
	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);

	/* initialize unblock node (Nil) */
	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);

	/* initialize terminatory node (Trm) */
	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);

	/* initialize nodes which read old data (Rod) */
	for (i = 0; i < numDataNodes; i++) {
		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
		RF_ASSERT(pda != NULL);
		readDataNodes[i].params[0].p = pda;	/* physical disk addr
							 * desc */
		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old data */
		readDataNodes[i].params[2].v = parityStripeID;
		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
		pda = pda->next;
		readDataNodes[i].propList[0] = NULL;
		readDataNodes[i].propList[1] = NULL;
	}

	/* initialize nodes which read old parity (Rop) */
	pda = asmap->parityInfo;
	i = 0;
	for (i = 0; i < numParityNodes; i++) {
		RF_ASSERT(pda != NULL);
		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
		readParityNodes[i].params[0].p = pda;
		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old parity */
		readParityNodes[i].params[2].v = parityStripeID;
		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
		readParityNodes[i].propList[0] = NULL;
		pda = pda->next;
	}

	/* initialize nodes which write new data (Wnd) */
	pda = asmap->physInfo;
	for (i = 0; i < numDataNodes; i++) {
		RF_ASSERT(pda != NULL);
		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
							 * desc */
		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
								 * data to be written */
		writeDataNodes[i].params[2].v = parityStripeID;
		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);

		pda = pda->next;
	}


	/* initialize nodes which compute new parity */
	/* we use the simple XOR func in the double-XOR case, and when we're
	 * accessing only a portion of one stripe unit. the distinction
	 * between the two is that the regular XOR func assumes that the
	 * targbuf is a full SU in size, and examines the pda associated with
	 * the buffer to decide where within the buffer to XOR the data,
	 * whereas the simple XOR func just XORs the data into the start of
	 * the buffer. */
	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
		func = pfuncs->simple;
		undoFunc = rf_NullNodeUndoFunc;
		name = pfuncs->SimpleName;
	} else {
		func = pfuncs->regular;
		undoFunc = rf_NullNodeUndoFunc;
		name = pfuncs->RegularName;
	}
	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
	 * nodes, and raidPtr  */
	if (numParityNodes == 2) {	/* double-xor case */
		for (i = 0; i < numParityNodes; i++) {
			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
																	 * xor */
			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
			xorNodes[i].params[0] = readDataNodes[i].params[0];
			xorNodes[i].params[1] = readDataNodes[i].params[1];
			xorNodes[i].params[2] = readParityNodes[i].params[0];
			xorNodes[i].params[3] = readParityNodes[i].params[1];
			xorNodes[i].params[4] = writeDataNodes[i].params[0];
			xorNodes[i].params[5] = writeDataNodes[i].params[1];
			xorNodes[i].params[6].p = raidPtr;
			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
											 * target buf */
		}
	} else {
		/* there is only one xor node in this case */
		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
		for (i = 0; i < numDataNodes + 1; i++) {
			/* set up params related to Rod and Rop nodes */
			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
		}
		for (i = 0; i < numDataNodes; i++) {
			/* set up params related to Wnd and Wnp nodes */
			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
		}
		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
											 * at RAID information */
		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
	}

	/* initialize the log node(s) */
	pda = asmap->parityInfo;
	for (i = 0; i < numParityNodes; i++) {
		RF_ASSERT(pda);
		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
									 * parity */
		pda = pda->next;
	}


	/* Step 4. connect the nodes */

	/* connect header to block node */
	RF_ASSERT(dag_h->numSuccedents == 1);
	RF_ASSERT(blockNode->numAntecedents == 0);
	dag_h->succedents[0] = blockNode;

	/* connect block node to read old data nodes */
	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
	for (i = 0; i < numDataNodes; i++) {
		blockNode->succedents[i] = &readDataNodes[i];
		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
		readDataNodes[i].antecedents[0] = blockNode;
		readDataNodes[i].antType[0] = rf_control;
	}

	/* connect block node to read old parity nodes */
	for (i = 0; i < numParityNodes; i++) {
		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
		readParityNodes[i].antecedents[0] = blockNode;
		readParityNodes[i].antType[0] = rf_control;
	}

	/* connect read old data nodes to write new data nodes */
	for (i = 0; i < numDataNodes; i++) {
		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
		for (j = 0; j < numDataNodes; j++) {
			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
			readDataNodes[i].succedents[j] = &writeDataNodes[j];
			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
			if (i == j)
				writeDataNodes[j].antType[i] = rf_antiData;
			else
				writeDataNodes[j].antType[i] = rf_control;
		}
	}

	/* connect read old data nodes to xor nodes */
	for (i = 0; i < numDataNodes; i++)
		for (j = 0; j < numParityNodes; j++) {
			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
			xorNodes[j].antecedents[i] = &readDataNodes[i];
			xorNodes[j].antType[i] = rf_trueData;
		}

	/* connect read old parity nodes to write new data nodes */
	for (i = 0; i < numParityNodes; i++) {
		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
		for (j = 0; j < numDataNodes; j++) {
			readParityNodes[i].succedents[j] = &writeDataNodes[j];
			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
		}
	}

	/* connect read old parity nodes to xor nodes */
	for (i = 0; i < numParityNodes; i++)
		for (j = 0; j < numParityNodes; j++) {
			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
		}

	/* connect xor nodes to write new parity nodes */
	for (i = 0; i < numParityNodes; i++) {
		RF_ASSERT(xorNodes[i].numSuccedents == 1);
		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
		xorNodes[i].succedents[0] = &lpuNodes[i];
		lpuNodes[i].antecedents[0] = &xorNodes[i];
		lpuNodes[i].antType[0] = rf_trueData;
	}

	for (i = 0; i < numDataNodes; i++) {
		/* connect write new data nodes to unblock node */
		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
		writeDataNodes[i].succedents[0] = unblockNode;
		unblockNode->antecedents[i] = &writeDataNodes[i];
		unblockNode->antType[i] = rf_control;
	}

	/* connect write new parity nodes to unblock node */
	for (i = 0; i < numParityNodes; i++) {
		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
		lpuNodes[i].succedents[0] = unblockNode;
		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
		unblockNode->antType[numDataNodes + i] = rf_control;
	}

	/* connect unblock node to terminator */
	RF_ASSERT(unblockNode->numSuccedents == 1);
	RF_ASSERT(termNode->numAntecedents == 1);
	RF_ASSERT(termNode->numSuccedents == 0);
	unblockNode->succedents[0] = termNode;
	termNode->antecedents[0] = unblockNode;
	termNode->antType[0] = rf_control;
}


void
rf_CreateParityLoggingSmallWriteDAG(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_DagHeader_t * dag_h,
    void *bp,
    RF_RaidAccessFlags_t flags,
    RF_AllocListElem_t * allocList,
    const RF_RedFuncs_t * pfuncs,
    const RF_RedFuncs_t * qfuncs)
{
	dag_h->creator = "ParityLoggingSmallWriteDAG";
	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
}


void
rf_CreateParityLoggingLargeWriteDAG(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_DagHeader_t * dag_h,
    void *bp,
    RF_RaidAccessFlags_t flags,
    RF_AllocListElem_t * allocList,
    int nfaults,
    void (*redFunc) (RF_DagNode_t *))
{
	dag_h->creator = "ParityLoggingSmallWriteDAG";
	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
}
#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */