/* $NetBSD: usbnet.c,v 1.113 2022/09/22 07:02:21 riastradh Exp $ */
/*
* Copyright (c) 2019 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Common code shared between USB network drivers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usbnet.c,v 1.113 2022/09/22 07:02:21 riastradh Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/atomic.h>
#include <dev/usb/usbnet.h>
#include <dev/usb/usbhist.h>
struct usbnet_cdata {
struct usbnet_chain *uncd_tx_chain;
struct usbnet_chain *uncd_rx_chain;
int uncd_tx_prod;
int uncd_tx_cnt;
};
struct usbnet_private {
/*
* - unp_miilock protects the MII / media data and tick scheduling.
* - unp_rxlock protects the rx path and its data
* - unp_txlock protects the tx path and its data
*
* the lock ordering is:
* ifnet lock -> unp_miilock
* -> unp_rxlock
* -> unp_txlock
* -> unp_mcastlock
*/
kmutex_t unp_miilock;
kmutex_t unp_rxlock;
kmutex_t unp_txlock;
kmutex_t unp_mcastlock;
bool unp_mcastactive;
struct usbnet_cdata unp_cdata;
struct ethercom unp_ec;
struct mii_data unp_mii;
struct usb_task unp_ticktask;
struct callout unp_stat_ch;
struct usbd_pipe *unp_ep[USBNET_ENDPT_MAX];
volatile bool unp_dying;
bool unp_stopped;
bool unp_rxstopped;
bool unp_txstopped;
bool unp_attached;
bool unp_ifp_attached;
bool unp_link;
int unp_timer;
unsigned short unp_if_flags;
unsigned unp_number;
krndsource_t unp_rndsrc;
struct timeval unp_rx_notice;
struct timeval unp_tx_notice;
struct timeval unp_intr_notice;
};
#define un_cdata(un) (&(un)->un_pri->unp_cdata)
volatile unsigned usbnet_number;
static void usbnet_isowned_rx(struct usbnet *);
static void usbnet_isowned_tx(struct usbnet *);
static inline void
usbnet_isowned_mii(struct usbnet *un)
{
KASSERT(mutex_owned(&un->un_pri->unp_miilock));
}
static int usbnet_modcmd(modcmd_t, void *);
#ifdef USB_DEBUG
#ifndef USBNET_DEBUG
#define usbnetdebug 0
#else
static int usbnetdebug = 0;
SYSCTL_SETUP(sysctl_hw_usbnet_setup, "sysctl hw.usbnet setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "usbnet",
SYSCTL_DESCR("usbnet global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &usbnetdebug, sizeof(usbnetdebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* USBNET_DEBUG */
#endif /* USB_DEBUG */
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,1,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,N,FMT,A,B,C,D)
#define USBNETHIST_FUNC() USBHIST_FUNC()
#define USBNETHIST_CALLED(name) USBHIST_CALLED(usbnetdebug)
#define USBNETHIST_CALLARGS(FMT,A,B,C,D) \
USBHIST_CALLARGS(usbnetdebug,FMT,A,B,C,D)
#define USBNETHIST_CALLARGSN(N,FMT,A,B,C,D) \
USBHIST_CALLARGSN(usbnetdebug,N,FMT,A,B,C,D)
/* Callback vectors. */
static void
uno_stop(struct usbnet *un, struct ifnet *ifp, int disable)
{
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
if (un->un_ops->uno_stop)
(*un->un_ops->uno_stop)(ifp, disable);
}
static int
uno_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data)
{
KASSERTMSG(cmd != SIOCADDMULTI, "%s", ifp->if_xname);
KASSERTMSG(cmd != SIOCDELMULTI, "%s", ifp->if_xname);
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
if (un->un_ops->uno_ioctl)
return (*un->un_ops->uno_ioctl)(ifp, cmd, data);
return 0;
}
static int
uno_override_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data)
{
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
default:
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
}
return (*un->un_ops->uno_override_ioctl)(ifp, cmd, data);
}
static int
uno_init(struct usbnet *un, struct ifnet *ifp)
{
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
return un->un_ops->uno_init ? (*un->un_ops->uno_init)(ifp) : 0;
}
static int
uno_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
usbnet_isowned_mii(un);
return (*un->un_ops->uno_read_reg)(un, phy, reg, val);
}
static int
uno_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
{
usbnet_isowned_mii(un);
return (*un->un_ops->uno_write_reg)(un, phy, reg, val);
}
static void
uno_mii_statchg(struct usbnet *un, struct ifnet *ifp)
{
usbnet_isowned_mii(un);
(*un->un_ops->uno_statchg)(ifp);
}
static unsigned
uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
usbnet_isowned_tx(un);
return (*un->un_ops->uno_tx_prepare)(un, m, c);
}
static void
uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
usbnet_isowned_rx(un);
(*un->un_ops->uno_rx_loop)(un, c, total_len);
}
static void
uno_tick(struct usbnet *un)
{
if (un->un_ops->uno_tick)
(*un->un_ops->uno_tick)(un);
}
static void
uno_intr(struct usbnet *un, usbd_status status)
{
if (un->un_ops->uno_intr)
(*un->un_ops->uno_intr)(un, status);
}
/* Interrupt handling. */
static struct mbuf *
usbnet_newbuf(size_t buflen)
{
struct mbuf *m;
if (buflen > MCLBYTES - ETHER_ALIGN)
return NULL;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
if (buflen > MHLEN - ETHER_ALIGN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return NULL;
}
}
m->m_len = m->m_pkthdr.len = ETHER_ALIGN + buflen;
m_adj(m, ETHER_ALIGN);
return m;
}
/*
* usbnet_rxeof() is designed to be the done callback for rx completion.
* it provides generic setup and finalisation, calls a different usbnet
* rx_loop callback in the middle, which can use usbnet_enqueue() to
* enqueue a packet for higher levels (or usbnet_input() if previously
* using if_input() path.)
*/
void
usbnet_enqueue(struct usbnet * const un, uint8_t *buf, size_t buflen,
int csum_flags, uint32_t csum_data, int mbuf_flags)
{
USBNETHIST_FUNC();
struct ifnet * const ifp = usbnet_ifp(un);
struct usbnet_private * const unp __unused = un->un_pri;
struct mbuf *m;
USBNETHIST_CALLARGSN(5, "%jd: enter: len=%ju csf %#jx mbf %#jx",
unp->unp_number, buflen, csum_flags, mbuf_flags);
usbnet_isowned_rx(un);
m = usbnet_newbuf(buflen);
if (m == NULL) {
DPRINTF("%jd: no memory", unp->unp_number, 0, 0, 0);
if_statinc(ifp, if_ierrors);
return;
}
m_set_rcvif(m, ifp);
m->m_pkthdr.csum_flags = csum_flags;
m->m_pkthdr.csum_data = csum_data;
m->m_flags |= mbuf_flags;
memcpy(mtod(m, uint8_t *), buf, buflen);
/* push the packet up */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
void
usbnet_input(struct usbnet * const un, uint8_t *buf, size_t buflen)
{
USBNETHIST_FUNC();
struct ifnet * const ifp = usbnet_ifp(un);
struct usbnet_private * const unp __unused = un->un_pri;
struct mbuf *m;
USBNETHIST_CALLARGSN(5, "%jd: enter: buf %#jx len %ju",
unp->unp_number, (uintptr_t)buf, buflen, 0);
usbnet_isowned_rx(un);
m = usbnet_newbuf(buflen);
if (m == NULL) {
if_statinc(ifp, if_ierrors);
return;
}
m_set_rcvif(m, ifp);
memcpy(mtod(m, char *), buf, buflen);
/* push the packet up */
if_input(ifp, m);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
usbnet_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
USBNETHIST_FUNC();
struct usbnet_chain * const c = priv;
struct usbnet * const un = c->unc_un;
struct usbnet_private * const unp = un->un_pri;
uint32_t total_len;
USBNETHIST_CALLARGSN(5, "%jd: enter: status %#jx xfer %#jx",
unp->unp_number, status, (uintptr_t)xfer, 0);
mutex_enter(&unp->unp_rxlock);
if (usbnet_isdying(un) || unp->unp_rxstopped ||
status == USBD_INVAL || status == USBD_NOT_STARTED ||
status == USBD_CANCELLED)
goto out;
if (status != USBD_NORMAL_COMPLETION) {
if (usbd_ratecheck(&unp->unp_rx_notice))
device_printf(un->un_dev, "usb errors on rx: %s\n",
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
if (total_len > un->un_rx_bufsz) {
aprint_error_dev(un->un_dev,
"rxeof: too large transfer (%u > %u)\n",
total_len, un->un_rx_bufsz);
goto done;
}
uno_rx_loop(un, c, total_len);
usbnet_isowned_rx(un);
done:
if (usbnet_isdying(un) || unp->unp_rxstopped)
goto out;
mutex_exit(&unp->unp_rxlock);
/* Setup new transfer. */
usbd_setup_xfer(xfer, c, c->unc_buf, un->un_rx_bufsz,
un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof);
usbd_transfer(xfer);
return;
out:
mutex_exit(&unp->unp_rxlock);
}
static void
usbnet_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet_chain * const c = priv;
struct usbnet * const un = c->unc_un;
struct usbnet_cdata * const cd = un_cdata(un);
struct usbnet_private * const unp = un->un_pri;
struct ifnet * const ifp = usbnet_ifp(un);
USBNETHIST_CALLARGSN(5, "%jd: enter: status %#jx xfer %#jx",
unp->unp_number, status, (uintptr_t)xfer, 0);
mutex_enter(&unp->unp_txlock);
if (unp->unp_txstopped || usbnet_isdying(un)) {
mutex_exit(&unp->unp_txlock);
return;
}
KASSERT(cd->uncd_tx_cnt > 0);
cd->uncd_tx_cnt--;
unp->unp_timer = 0;
switch (status) {
case USBD_NOT_STARTED:
case USBD_CANCELLED:
break;
case USBD_NORMAL_COMPLETION:
if_statinc(ifp, if_opackets);
break;
default:
if_statinc(ifp, if_oerrors);
if (usbd_ratecheck(&unp->unp_tx_notice))
device_printf(un->un_dev, "usb error on tx: %s\n",
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_TX]);
break;
}
mutex_exit(&unp->unp_txlock);
if (status == USBD_NORMAL_COMPLETION && !IFQ_IS_EMPTY(&ifp->if_snd))
(*ifp->if_start)(ifp);
}
static void
usbnet_pipe_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
USBNETHIST_FUNC();
struct usbnet * const un = priv;
struct usbnet_private * const unp = un->un_pri;
struct usbnet_intr * const uni __unused = un->un_intr;
if (usbnet_isdying(un) ||
status == USBD_INVAL || status == USBD_NOT_STARTED ||
status == USBD_CANCELLED) {
USBNETHIST_CALLARGS("%jd: uni %#jx dying %#jx status %#jx",
unp->unp_number, (uintptr_t)uni,
usbnet_isdying(un), status);
return;
}
if (status != USBD_NORMAL_COMPLETION) {
if (usbd_ratecheck(&unp->unp_intr_notice)) {
aprint_error_dev(un->un_dev, "usb error on intr: %s\n",
usbd_errstr(status));
}
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_INTR]);
USBNETHIST_CALLARGS("%jd: not normal status %#jx",
unp->unp_number, status, 0, 0);
return;
}
uno_intr(un, status);
}
static void
usbnet_start_locked(struct ifnet *ifp)
{
USBNETHIST_FUNC();
struct usbnet * const un = ifp->if_softc;
struct usbnet_cdata * const cd = un_cdata(un);
struct usbnet_private * const unp = un->un_pri;
struct mbuf *m;
unsigned length;
bool done_transmit = false;
int idx, count;
USBNETHIST_CALLARGS("%jd: tx_cnt %jd list_cnt %jd link %jd",
unp->unp_number, cd->uncd_tx_cnt, un->un_tx_list_cnt,
unp->unp_link);
usbnet_isowned_tx(un);
KASSERT(cd->uncd_tx_cnt <= un->un_tx_list_cnt);
KASSERT(!unp->unp_txstopped);
if (!unp->unp_link) {
DPRINTF("start called no link (%jx)",
unp->unp_link, 0, 0, 0);
return;
}
if (cd->uncd_tx_cnt == un->un_tx_list_cnt) {
DPRINTF("start called, tx busy (%#jx == %#jx)",
cd->uncd_tx_cnt, un->un_tx_list_cnt, 0, 0);
return;
}
idx = cd->uncd_tx_prod;
count = 0;
while (cd->uncd_tx_cnt < un->un_tx_list_cnt) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL) {
DPRINTF("start called, queue empty", 0, 0, 0, 0);
break;
}
KASSERT(m->m_pkthdr.len <= un->un_tx_bufsz);
struct usbnet_chain *c = &cd->uncd_tx_chain[idx];
length = uno_tx_prepare(un, m, c);
if (length == 0) {
DPRINTF("uno_tx_prepare gave zero length", 0, 0, 0, 0);
if_statinc(ifp, if_oerrors);
break;
}
if (__predict_false(c->unc_xfer == NULL)) {
DPRINTF("unc_xfer is NULL", 0, 0, 0, 0);
if_statinc(ifp, if_oerrors);
break;
}
usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, length,
un->un_tx_xfer_flags, 10000, usbnet_txeof);
/* Transmit */
usbd_status err = usbd_transfer(c->unc_xfer);
if (err != USBD_IN_PROGRESS) {
DPRINTF("usbd_transfer on %#jx for %ju bytes: %jd",
(uintptr_t)c->unc_buf, length, err, 0);
if_statinc(ifp, if_oerrors);
break;
}
done_transmit = true;
IFQ_DEQUEUE(&ifp->if_snd, m);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m, BPF_D_OUT);
m_freem(m);
idx = (idx + 1) % un->un_tx_list_cnt;
cd->uncd_tx_cnt++;
count++;
}
cd->uncd_tx_prod = idx;
DPRINTF("finished with start; tx_cnt %jd list_cnt %jd link %jd",
cd->uncd_tx_cnt, un->un_tx_list_cnt, unp->unp_link, 0);
/*
* Set a timeout in case the chip goes out to lunch.
*/
if (done_transmit)
unp->unp_timer = 5;
if (count != 0)
rnd_add_uint32(&unp->unp_rndsrc, count);
}
static void
usbnet_if_start(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct usbnet_private * const unp = un->un_pri;
USBNETHIST_FUNC();
USBNETHIST_CALLARGS("%jd: txstopped %jd",
unp->unp_number, unp->unp_txstopped, 0, 0);
mutex_enter(&unp->unp_txlock);
if (!unp->unp_txstopped)
usbnet_start_locked(ifp);
mutex_exit(&unp->unp_txlock);
}
/*
* Chain management.
*
* RX and TX are identical. Keep them that way.
*/
/* Start of common RX functions */
static size_t
usbnet_rx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un)
{
return sizeof(*cd->uncd_rx_chain) * un->un_rx_list_cnt;
}
static void
usbnet_rx_list_alloc(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
cd->uncd_rx_chain = kmem_zalloc(usbnet_rx_list_size(cd, un), KM_SLEEP);
}
static void
usbnet_rx_list_free(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
if (cd->uncd_rx_chain) {
kmem_free(cd->uncd_rx_chain, usbnet_rx_list_size(cd, un));
cd->uncd_rx_chain = NULL;
}
}
static int
usbnet_rx_list_init(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
struct usbnet_private * const unp = un->un_pri;
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
c->unc_un = un;
if (c->unc_xfer == NULL) {
int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_RX],
un->un_rx_bufsz, un->un_rx_xfer_flags, 0,
&c->unc_xfer);
if (err)
return err;
c->unc_buf = usbd_get_buffer(c->unc_xfer);
}
}
return 0;
}
static void
usbnet_rx_list_fini(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
if (c->unc_xfer != NULL) {
usbd_destroy_xfer(c->unc_xfer);
c->unc_xfer = NULL;
c->unc_buf = NULL;
}
}
}
/* End of common RX functions */
static void
usbnet_rx_start_pipes(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
struct usbnet_private * const unp = un->un_pri;
mutex_enter(&unp->unp_rxlock);
KASSERT(unp->unp_rxstopped);
unp->unp_rxstopped = false;
for (size_t i = 0; i < un->un_rx_list_cnt; i++) {
struct usbnet_chain *c = &cd->uncd_rx_chain[i];
usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, un->un_rx_bufsz,
un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof);
usbd_transfer(c->unc_xfer);
}
mutex_exit(&unp->unp_rxlock);
}
/* Start of common TX functions */
static size_t
usbnet_tx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un)
{
return sizeof(*cd->uncd_tx_chain) * un->un_tx_list_cnt;
}
static void
usbnet_tx_list_alloc(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
cd->uncd_tx_chain = kmem_zalloc(usbnet_tx_list_size(cd, un), KM_SLEEP);
}
static void
usbnet_tx_list_free(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
if (cd->uncd_tx_chain) {
kmem_free(cd->uncd_tx_chain, usbnet_tx_list_size(cd, un));
cd->uncd_tx_chain = NULL;
}
}
static int
usbnet_tx_list_init(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
struct usbnet_private * const unp = un->un_pri;
for (size_t i = 0; i < un->un_tx_list_cnt; i++) {
struct usbnet_chain *c = &cd->uncd_tx_chain[i];
c->unc_un = un;
if (c->unc_xfer == NULL) {
int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_TX],
un->un_tx_bufsz, un->un_tx_xfer_flags, 0,
&c->unc_xfer);
if (err)
return err;
c->unc_buf = usbd_get_buffer(c->unc_xfer);
}
}
return 0;
}
static void
usbnet_tx_list_fini(struct usbnet * const un)
{
struct usbnet_cdata * const cd = un_cdata(un);
for (size_t i = 0; i < un->un_tx_list_cnt; i++) {
struct usbnet_chain *c = &cd->uncd_tx_chain[i];
if (c->unc_xfer != NULL) {
usbd_destroy_xfer(c->unc_xfer);
c->unc_xfer = NULL;
c->unc_buf = NULL;
}
}
cd->uncd_tx_prod = cd->uncd_tx_cnt = 0;
}
/* End of common TX functions */
/* Endpoint pipe management. */
static void
usbnet_ep_close_pipes(struct usbnet * const un)
{
struct usbnet_private * const unp = un->un_pri;
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
if (unp->unp_ep[i] == NULL)
continue;
usbd_close_pipe(unp->unp_ep[i]);
unp->unp_ep[i] = NULL;
}
}
static usbd_status
usbnet_ep_open_pipes(struct usbnet * const un)
{
struct usbnet_intr * const uni = un->un_intr;
struct usbnet_private * const unp = un->un_pri;
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
usbd_status err;
if (un->un_ed[i] == 0)
continue;
if (i == USBNET_ENDPT_INTR && uni) {
err = usbd_open_pipe_intr(un->un_iface, un->un_ed[i],
USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i], un,
uni->uni_buf, uni->uni_bufsz, usbnet_pipe_intr,
uni->uni_interval);
} else {
err = usbd_open_pipe(un->un_iface, un->un_ed[i],
USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i]);
}
if (err) {
usbnet_ep_close_pipes(un);
return err;
}
}
return USBD_NORMAL_COMPLETION;
}
static void
usbnet_ep_stop_pipes(struct usbnet * const un)
{
struct usbnet_private * const unp = un->un_pri;
for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) {
if (unp->unp_ep[i] == NULL)
continue;
usbd_abort_pipe(unp->unp_ep[i]);
}
}
static int
usbnet_init_rx_tx(struct usbnet * const un)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet_private * const unp = un->un_pri;
struct ifnet * const ifp = usbnet_ifp(un);
usbd_status err;
int error = 0;
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
if (usbnet_isdying(un)) {
return EIO;
}
/* Open RX and TX pipes. */
err = usbnet_ep_open_pipes(un);
if (err) {
aprint_error_dev(un->un_dev, "open rx/tx pipes failed: %s\n",
usbd_errstr(err));
error = EIO;
goto out;
}
/* Init RX ring. */
if (usbnet_rx_list_init(un)) {
aprint_error_dev(un->un_dev, "rx list init failed\n");
error = ENOBUFS;
goto out;
}
/* Init TX ring. */
if (usbnet_tx_list_init(un)) {
aprint_error_dev(un->un_dev, "tx list init failed\n");
error = ENOBUFS;
goto out;
}
/* Indicate we are up and running. */
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
ifp->if_flags |= IFF_RUNNING;
/*
* If the hardware has a multicast filter, program it and then
* allow updates to it while we're running.
*/
if (un->un_ops->uno_mcast) {
mutex_enter(&unp->unp_mcastlock);
(*un->un_ops->uno_mcast)(ifp);
unp->unp_mcastactive = true;
mutex_exit(&unp->unp_mcastlock);
}
/* Allow transmit. */
mutex_enter(&unp->unp_txlock);
KASSERT(unp->unp_txstopped);
unp->unp_txstopped = false;
mutex_exit(&unp->unp_txlock);
/* Start up the receive pipe(s). */
usbnet_rx_start_pipes(un);
/* Kick off the watchdog/stats/mii tick. */
mutex_enter(&unp->unp_miilock);
unp->unp_stopped = false;
callout_schedule(&unp->unp_stat_ch, hz);
mutex_exit(&unp->unp_miilock);
out:
if (error) {
usbnet_rx_list_fini(un);
usbnet_tx_list_fini(un);
usbnet_ep_close_pipes(un);
}
/*
* For devices without any media autodetection, treat success
* here as an active link.
*/
if (un->un_ops->uno_statchg == NULL) {
mutex_enter(&unp->unp_miilock);
usbnet_set_link(un, error == 0);
mutex_exit(&unp->unp_miilock);
}
return error;
}
/* MII management. */
static int
usbnet_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
USBNETHIST_FUNC();
struct usbnet * const un = device_private(dev);
int err;
/* MII layer ensures miilock is held. */
usbnet_isowned_mii(un);
if (usbnet_isdying(un)) {
return EIO;
}
err = uno_read_reg(un, phy, reg, val);
if (err) {
USBNETHIST_CALLARGS("%jd: read PHY failed: %jd",
un->un_pri->unp_number, err, 0, 0);
return err;
}
return 0;
}
static int
usbnet_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
{
USBNETHIST_FUNC();
struct usbnet * const un = device_private(dev);
int err;
/* MII layer ensures miilock is held. */
usbnet_isowned_mii(un);
if (usbnet_isdying(un)) {
return EIO;
}
err = uno_write_reg(un, phy, reg, val);
if (err) {
USBNETHIST_CALLARGS("%jd: write PHY failed: %jd",
un->un_pri->unp_number, err, 0, 0);
return err;
}
return 0;
}
static void
usbnet_mii_statchg(struct ifnet *ifp)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = ifp->if_softc;
/* MII layer ensures miilock is held. */
usbnet_isowned_mii(un);
uno_mii_statchg(un, ifp);
}
static int
usbnet_media_upd(struct ifnet *ifp)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = ifp->if_softc;
struct usbnet_private * const unp = un->un_pri;
struct mii_data * const mii = usbnet_mii(un);
/* ifmedia layer ensures miilock is held. */
usbnet_isowned_mii(un);
/* ifmedia changes only with IFNET_LOCK held. */
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
if (usbnet_isdying(un))
return EIO;
unp->unp_link = false;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
return ether_mediachange(ifp);
}
/* ioctl */
static int
usbnet_ifflags_cb(struct ethercom *ec)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct ifnet *ifp = &ec->ec_if;
struct usbnet *un = ifp->if_softc;
struct usbnet_private * const unp = un->un_pri;
int rv = 0;
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
const u_short changed = ifp->if_flags ^ unp->unp_if_flags;
if ((changed & ~(IFF_CANTCHANGE | IFF_DEBUG)) == 0) {
mutex_enter(&unp->unp_mcastlock);
unp->unp_if_flags = ifp->if_flags;
mutex_exit(&unp->unp_mcastlock);
/*
* XXX Can we just do uno_mcast synchronously here
* instead of resetting the whole interface?
*
* Not yet, because some usbnet drivers (e.g., aue(4))
* initialize the hardware differently in uno_init
* depending on IFF_PROMISC. But some (again, aue(4))
* _also_ need to know whether IFF_PROMISC is set in
* uno_mcast and do something different with it there.
* Maybe the logic can be unified, but it will require
* an audit and testing of all the usbnet drivers.
*/
if (changed & IFF_PROMISC)
rv = ENETRESET;
} else {
rv = ENETRESET;
}
return rv;
}
bool
usbnet_ispromisc(struct usbnet *un)
{
struct ifnet * const ifp = usbnet_ifp(un);
struct usbnet_private * const unp = un->un_pri;
KASSERTMSG(mutex_owned(&unp->unp_mcastlock) || IFNET_LOCKED(ifp),
"%s", ifp->if_xname);
return unp->unp_if_flags & IFF_PROMISC;
}
static int
usbnet_if_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
USBNETHIST_FUNC();
struct usbnet * const un = ifp->if_softc;
struct usbnet_private * const unp __unused = un->un_pri;
int error;
USBNETHIST_CALLARGSN(11, "%jd: enter %#jx data %#jx",
unp->unp_number, cmd, (uintptr_t)data, 0);
if (un->un_ops->uno_override_ioctl)
return uno_override_ioctl(un, ifp, cmd, data);
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* If there's a hardware multicast filter, and
* it has been programmed by usbnet_init_rx_tx
* and is active, update it now. Otherwise,
* drop the update on the floor -- it will be
* observed by usbnet_init_rx_tx next time we
* bring the interface up.
*/
if (un->un_ops->uno_mcast) {
mutex_enter(&unp->unp_mcastlock);
if (unp->unp_mcastactive)
(*un->un_ops->uno_mcast)(ifp);
mutex_exit(&unp->unp_mcastlock);
}
error = 0;
break;
default:
error = uno_ioctl(un, ifp, cmd, data);
}
}
return error;
}
/*
* Generic stop network function:
* - mark as stopping
* - call DD routine to stop the device
* - turn off running, timer, statchg callout, link
* - stop transfers
* - free RX and TX resources
* - close pipes
*
* usbnet_if_stop() is for the if_stop handler.
*/
static void
usbnet_stop(struct usbnet *un, struct ifnet *ifp, int disable)
{
struct usbnet_private * const unp = un->un_pri;
struct mii_data * const mii = usbnet_mii(un);
USBNETHIST_FUNC(); USBNETHIST_CALLED();
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
/*
* For drivers with hardware multicast filter update callbacks:
* Prevent concurrent access to the hardware registers by
* multicast filter updates, which happens without IFNET_LOCK.
*/
if (un->un_ops->uno_mcast) {
mutex_enter(&unp->unp_mcastlock);
unp->unp_mcastactive = false;
mutex_exit(&unp->unp_mcastlock);
}
/*
* Prevent new activity (rescheduling ticks, xfers, &c.) and
* clear the watchdog timer.
*/
mutex_enter(&unp->unp_miilock);
unp->unp_stopped = true;
mutex_exit(&unp->unp_miilock);
mutex_enter(&unp->unp_rxlock);
unp->unp_rxstopped = true;
mutex_exit(&unp->unp_rxlock);
mutex_enter(&unp->unp_txlock);
unp->unp_txstopped = true;
unp->unp_timer = 0;
mutex_exit(&unp->unp_txlock);
/*
* Stop the timer first, then the task -- if the timer was
* already firing, we stop the task or wait for it complete
* only after it last fired. Setting unp_stopped prevents the
* timer task from being scheduled again.
*/
callout_halt(&unp->unp_stat_ch, NULL);
usb_rem_task_wait(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER,
NULL);
/*
* Now that we have stopped calling mii_tick, bring the MII
* state machine down.
*/
if (mii) {
mutex_enter(&unp->unp_miilock);
mii_down(mii);
mutex_exit(&unp->unp_miilock);
}
/* Stop transfers. */
usbnet_ep_stop_pipes(un);
/*
* Now that the software is quiescent, ask the driver to stop
* the hardware. The driver's uno_stop routine now has
* exclusive access to any registers that might previously have
* been used by to ifmedia, mii, or ioctl callbacks.
*
* Don't bother if the device is being detached, though -- if
* it's been unplugged then there's no point in trying to touch
* the registers.
*/
if (!usbnet_isdying(un))
uno_stop(un, ifp, disable);
/* Free RX/TX resources. */
usbnet_rx_list_fini(un);
usbnet_tx_list_fini(un);
/* Close pipes. */
usbnet_ep_close_pipes(un);
/* Everything is quesced now. */
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
ifp->if_flags &= ~IFF_RUNNING;
}
static void
usbnet_if_stop(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
/*
* If we're already stopped, nothing to do.
*
* XXX This should be an assertion, but it may require some
* analysis -- and possibly some tweaking -- of sys/net to
* ensure.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
usbnet_stop(un, ifp, disable);
}
/*
* Generic tick task function.
*
* usbnet_tick() is triggered from a callout, and triggers a call to
* usbnet_tick_task() from the usb_task subsystem.
*/
static void
usbnet_tick(void *arg)
{
USBNETHIST_FUNC();
struct usbnet * const un = arg;
struct usbnet_private * const unp = un->un_pri;
USBNETHIST_CALLARGSN(10, "%jd: enter", unp->unp_number, 0, 0, 0);
/* Perform periodic stuff in process context */
usb_add_task(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER);
}
static void
usbnet_watchdog(struct ifnet *ifp)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = ifp->if_softc;
struct usbnet_private * const unp = un->un_pri;
struct usbnet_cdata * const cd = un_cdata(un);
if_statinc(ifp, if_oerrors);
device_printf(un->un_dev, "watchdog timeout\n");
if (cd->uncd_tx_cnt > 0) {
DPRINTF("uncd_tx_cnt=%ju non zero, aborting pipe", 0, 0, 0, 0);
usbd_abort_pipe(unp->unp_ep[USBNET_ENDPT_TX]);
if (cd->uncd_tx_cnt != 0)
DPRINTF("uncd_tx_cnt now %ju", cd->uncd_tx_cnt, 0, 0, 0);
}
if (!IFQ_IS_EMPTY(&ifp->if_snd))
(*ifp->if_start)(ifp);
}
static void
usbnet_tick_task(void *arg)
{
USBNETHIST_FUNC();
struct usbnet * const un = arg;
struct usbnet_private * const unp = un->un_pri;
struct ifnet * const ifp = usbnet_ifp(un);
struct mii_data * const mii = usbnet_mii(un);
USBNETHIST_CALLARGSN(8, "%jd: enter", unp->unp_number, 0, 0, 0);
mutex_enter(&unp->unp_txlock);
const bool timeout = unp->unp_timer != 0 && --unp->unp_timer == 0;
mutex_exit(&unp->unp_txlock);
if (timeout)
usbnet_watchdog(ifp);
/* Call driver if requested. */
uno_tick(un);
mutex_enter(&unp->unp_miilock);
DPRINTFN(8, "mii %#jx ifp %#jx", (uintptr_t)mii, (uintptr_t)ifp, 0, 0);
if (mii) {
mii_tick(mii);
if (!unp->unp_link)
(*mii->mii_statchg)(ifp);
}
if (!unp->unp_stopped && !usbnet_isdying(un))
callout_schedule(&unp->unp_stat_ch, hz);
mutex_exit(&unp->unp_miilock);
}
static int
usbnet_if_init(struct ifnet *ifp)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = ifp->if_softc;
int error;
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
/*
* Prevent anyone from bringing the interface back up once
* we're detaching.
*/
if (usbnet_isdying(un))
return EIO;
/*
* If we're already running, nothing to do.
*
* XXX This should be an assertion, but it may require some
* analysis -- and possibly some tweaking -- of sys/net to
* ensure.
*/
if (ifp->if_flags & IFF_RUNNING)
return 0;
error = uno_init(un, ifp);
if (error)
return error;
error = usbnet_init_rx_tx(un);
if (error)
return error;
return 0;
}
/* Various accessors. */
void
usbnet_set_link(struct usbnet *un, bool link)
{
usbnet_isowned_mii(un);
un->un_pri->unp_link = link;
}
struct ifnet *
usbnet_ifp(struct usbnet *un)
{
return &un->un_pri->unp_ec.ec_if;
}
struct ethercom *
usbnet_ec(struct usbnet *un)
{
return &un->un_pri->unp_ec;
}
struct mii_data *
usbnet_mii(struct usbnet *un)
{
return un->un_pri->unp_ec.ec_mii;
}
krndsource_t *
usbnet_rndsrc(struct usbnet *un)
{
return &un->un_pri->unp_rndsrc;
}
void *
usbnet_softc(struct usbnet *un)
{
return un->un_sc;
}
bool
usbnet_havelink(struct usbnet *un)
{
return un->un_pri->unp_link;
}
bool
usbnet_isdying(struct usbnet *un)
{
return atomic_load_relaxed(&un->un_pri->unp_dying);
}
/* Locking. */
static void
usbnet_isowned_rx(struct usbnet *un)
{
KASSERT(mutex_owned(&un->un_pri->unp_rxlock));
}
static void
usbnet_isowned_tx(struct usbnet *un)
{
KASSERT(mutex_owned(&un->un_pri->unp_txlock));
}
/* Autoconf management. */
static bool
usbnet_empty_eaddr(struct usbnet * const un)
{
return (un->un_eaddr[0] == 0 && un->un_eaddr[1] == 0 &&
un->un_eaddr[2] == 0 && un->un_eaddr[3] == 0 &&
un->un_eaddr[4] == 0 && un->un_eaddr[5] == 0);
}
/*
* usbnet_attach() and usbnet_attach_ifp() perform setup of the relevant
* 'usbnet'. The first is enough to enable device access (eg, endpoints
* are connected and commands can be sent), and the second connects the
* device to the system networking.
*
* Always call usbnet_detach(), even if usbnet_attach_ifp() is skippped.
* Also usable as driver detach directly.
*
* To skip ethernet configuration (eg, point-to-point), make sure that
* the un_eaddr[] is fully zero.
*/
void
usbnet_attach(struct usbnet *un)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
/* Required inputs. */
KASSERT(un->un_ops->uno_tx_prepare);
KASSERT(un->un_ops->uno_rx_loop);
KASSERT(un->un_rx_bufsz);
KASSERT(un->un_tx_bufsz);
KASSERT(un->un_rx_list_cnt);
KASSERT(un->un_tx_list_cnt);
/* Unfortunate fact. */
KASSERT(un == device_private(un->un_dev));
un->un_pri = kmem_zalloc(sizeof(*un->un_pri), KM_SLEEP);
struct usbnet_private * const unp = un->un_pri;
usb_init_task(&unp->unp_ticktask, usbnet_tick_task, un,
USB_TASKQ_MPSAFE);
callout_init(&unp->unp_stat_ch, CALLOUT_MPSAFE);
callout_setfunc(&unp->unp_stat_ch, usbnet_tick, un);
mutex_init(&unp->unp_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&unp->unp_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&unp->unp_miilock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&unp->unp_mcastlock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
rnd_attach_source(&unp->unp_rndsrc, device_xname(un->un_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
usbnet_rx_list_alloc(un);
usbnet_tx_list_alloc(un);
unp->unp_number = atomic_inc_uint_nv(&usbnet_number);
unp->unp_stopped = true;
unp->unp_rxstopped = true;
unp->unp_txstopped = true;
unp->unp_attached = true;
}
static void
usbnet_attach_mii(struct usbnet *un, const struct usbnet_mii *unm)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet_private * const unp = un->un_pri;
struct mii_data * const mii = &unp->unp_mii;
struct ifnet * const ifp = usbnet_ifp(un);
KASSERT(un->un_ops->uno_read_reg);
KASSERT(un->un_ops->uno_write_reg);
KASSERT(un->un_ops->uno_statchg);
mii->mii_ifp = ifp;
mii->mii_readreg = usbnet_mii_readreg;
mii->mii_writereg = usbnet_mii_writereg;
mii->mii_statchg = usbnet_mii_statchg;
mii->mii_flags = MIIF_AUTOTSLEEP;
usbnet_ec(un)->ec_mii = mii;
ifmedia_init_with_lock(&mii->mii_media, 0,
usbnet_media_upd, ether_mediastatus, &unp->unp_miilock);
mii_attach(un->un_dev, mii, unm->un_mii_capmask, unm->un_mii_phyloc,
unm->un_mii_offset, unm->un_mii_flags);
if (LIST_FIRST(&mii->mii_phys) == NULL) {
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
} else
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
}
void
usbnet_attach_ifp(struct usbnet *un,
unsigned if_flags, /* additional if_flags */
unsigned if_extflags, /* additional if_extflags */
const struct usbnet_mii *unm) /* additional mii_attach flags */
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet_private * const unp = un->un_pri;
struct ifnet * const ifp = usbnet_ifp(un);
KASSERT(unp->unp_attached);
KASSERT(!unp->unp_ifp_attached);
ifp->if_softc = un;
strlcpy(ifp->if_xname, device_xname(un->un_dev), IFNAMSIZ);
ifp->if_flags = if_flags;
ifp->if_extflags = IFEF_MPSAFE | if_extflags;
ifp->if_ioctl = usbnet_if_ioctl;
ifp->if_start = usbnet_if_start;
ifp->if_init = usbnet_if_init;
ifp->if_stop = usbnet_if_stop;
if (unm)
usbnet_attach_mii(un, unm);
else
unp->unp_link = true;
/* Attach the interface. */
if_initialize(ifp);
if (ifp->_if_input == NULL)
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
unp->unp_ifp_attached = true;
/*
* If ethernet address is all zero, skip ether_ifattach() and
* instead attach bpf here..
*/
if (!usbnet_empty_eaddr(un)) {
ether_set_ifflags_cb(&unp->unp_ec, usbnet_ifflags_cb);
aprint_normal_dev(un->un_dev, "Ethernet address %s\n",
ether_sprintf(un->un_eaddr));
ether_ifattach(ifp, un->un_eaddr);
} else {
if_alloc_sadl(ifp);
bpf_attach(ifp, DLT_RAW, 0);
}
/* Now ready, and attached. */
IFQ_SET_READY(&ifp->if_snd);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, un->un_udev, un->un_dev);
if (!pmf_device_register(un->un_dev, NULL, NULL))
aprint_error_dev(un->un_dev, "couldn't establish power handler\n");
}
int
usbnet_detach(device_t self, int flags)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = device_private(self);
struct usbnet_private * const unp = un->un_pri;
/* Detached before attached finished, so just bail out. */
if (unp == NULL || !unp->unp_attached)
return 0;
struct ifnet * const ifp = usbnet_ifp(un);
struct mii_data * const mii = usbnet_mii(un);
/*
* Prevent new activity. After we stop the interface, it
* cannot be brought back up.
*/
atomic_store_relaxed(&unp->unp_dying, true);
/*
* If we're still running on the network, stop and wait for all
* asynchronous activity to finish.
*
* If usbnet_attach_ifp never ran, IFNET_LOCK won't work, but
* no activity is possible, so just skip this part.
*/
if (unp->unp_ifp_attached) {
IFNET_LOCK(ifp);
if (ifp->if_flags & IFF_RUNNING) {
usbnet_if_stop(ifp, 1);
}
IFNET_UNLOCK(ifp);
}
/*
* The callout and tick task can't be scheduled anew at this
* point, and usbnet_if_stop has waited for them to complete.
*/
KASSERT(!callout_pending(&unp->unp_stat_ch));
KASSERT(!usb_task_pending(un->un_udev, &unp->unp_ticktask));
if (mii) {
mii_detach(mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_fini(&mii->mii_media);
}
if (unp->unp_ifp_attached) {
if (!usbnet_empty_eaddr(un))
ether_ifdetach(ifp);
else
bpf_detach(ifp);
if_detach(ifp);
}
usbnet_ec(un)->ec_mii = NULL;
usbnet_rx_list_free(un);
usbnet_tx_list_free(un);
rnd_detach_source(&unp->unp_rndsrc);
mutex_destroy(&unp->unp_mcastlock);
mutex_destroy(&unp->unp_miilock);
mutex_destroy(&unp->unp_rxlock);
mutex_destroy(&unp->unp_txlock);
callout_destroy(&unp->unp_stat_ch);
pmf_device_deregister(un->un_dev);
/*
* Notify userland that we're going away, if we arrived in the
* first place.
*/
if (unp->unp_ifp_attached) {
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, un->un_udev,
un->un_dev);
}
kmem_free(unp, sizeof(*unp));
un->un_pri = NULL;
return 0;
}
int
usbnet_activate(device_t self, devact_t act)
{
USBNETHIST_FUNC(); USBNETHIST_CALLED();
struct usbnet * const un = device_private(self);
struct usbnet_private * const unp = un->un_pri;
struct ifnet * const ifp = usbnet_ifp(un);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(ifp);
atomic_store_relaxed(&unp->unp_dying, true);
mutex_enter(&unp->unp_miilock);
unp->unp_stopped = true;
mutex_exit(&unp->unp_miilock);
mutex_enter(&unp->unp_rxlock);
unp->unp_rxstopped = true;
mutex_exit(&unp->unp_rxlock);
mutex_enter(&unp->unp_txlock);
unp->unp_txstopped = true;
mutex_exit(&unp->unp_txlock);
return 0;
default:
return EOPNOTSUPP;
}
}
MODULE(MODULE_CLASS_MISC, usbnet, NULL);
static int
usbnet_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
return 0;
case MODULE_CMD_FINI:
return 0;
case MODULE_CMD_STAT:
case MODULE_CMD_AUTOUNLOAD:
default:
return ENOTTY;
}
}