/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $Id: ar5111.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v3.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#define AH_5212_5111
#include "ar5212/ar5212.ini"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar5111State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[PWR_TABLE_SIZE];
uint32_t Bank0Data[N(ar5212Bank0_5111)];
uint32_t Bank1Data[N(ar5212Bank1_5111)];
uint32_t Bank2Data[N(ar5212Bank2_5111)];
uint32_t Bank3Data[N(ar5212Bank3_5111)];
uint32_t Bank6Data[N(ar5212Bank6_5111)];
uint32_t Bank7Data[N(ar5212Bank7_5111)];
};
#define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct);
static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
const PCDACS_EEPROM *pSrcStruct,
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
extern void ar5212GetLowerUpperValues(uint16_t value,
const uint16_t *pList, uint16_t listSize,
uint16_t *pLowerValue, uint16_t *pUpperValue);
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar5111SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
#define CI_2GHZ_INDEX_CORRECTION 19
uint32_t refClk, reg32, data2111;
int16_t chan5111, chanIEEE;
/*
* Structure to hold 11b tuning information for 5111/2111
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
*/
typedef struct {
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
uint16_t channel5111; /* 11a channel for 5111 */
} CHAN_INFO_2GHZ;
static const CHAN_INFO_2GHZ chan2GHzData[] = {
{ 1, 0x46, 96 }, /* 2312 -19 */
{ 1, 0x46, 97 }, /* 2317 -18 */
{ 1, 0x46, 98 }, /* 2322 -17 */
{ 1, 0x46, 99 }, /* 2327 -16 */
{ 1, 0x46, 100 }, /* 2332 -15 */
{ 1, 0x46, 101 }, /* 2337 -14 */
{ 1, 0x46, 102 }, /* 2342 -13 */
{ 1, 0x46, 103 }, /* 2347 -12 */
{ 1, 0x46, 104 }, /* 2352 -11 */
{ 1, 0x46, 105 }, /* 2357 -10 */
{ 1, 0x46, 106 }, /* 2362 -9 */
{ 1, 0x46, 107 }, /* 2367 -8 */
{ 1, 0x46, 108 }, /* 2372 -7 */
/* index -6 to 0 are pad to make this a nolookup table */
{ 1, 0x46, 116 }, /* -6 */
{ 1, 0x46, 116 }, /* -5 */
{ 1, 0x46, 116 }, /* -4 */
{ 1, 0x46, 116 }, /* -3 */
{ 1, 0x46, 116 }, /* -2 */
{ 1, 0x46, 116 }, /* -1 */
{ 1, 0x46, 116 }, /* 0 */
{ 1, 0x46, 116 }, /* 2412 1 */
{ 1, 0x46, 117 }, /* 2417 2 */
{ 1, 0x46, 118 }, /* 2422 3 */
{ 1, 0x46, 119 }, /* 2427 4 */
{ 1, 0x46, 120 }, /* 2432 5 */
{ 1, 0x46, 121 }, /* 2437 6 */
{ 1, 0x46, 122 }, /* 2442 7 */
{ 1, 0x46, 123 }, /* 2447 8 */
{ 1, 0x46, 124 }, /* 2452 9 */
{ 1, 0x46, 125 }, /* 2457 10 */
{ 1, 0x46, 126 }, /* 2462 11 */
{ 1, 0x46, 127 }, /* 2467 12 */
{ 1, 0x46, 128 }, /* 2472 13 */
{ 1, 0x44, 124 }, /* 2484 14 */
{ 1, 0x46, 136 }, /* 2512 15 */
{ 1, 0x46, 140 }, /* 2532 16 */
{ 1, 0x46, 144 }, /* 2552 17 */
{ 1, 0x46, 148 }, /* 2572 18 */
{ 1, 0x46, 152 }, /* 2592 19 */
{ 1, 0x46, 156 }, /* 2612 20 */
{ 1, 0x46, 160 }, /* 2632 21 */
{ 1, 0x46, 164 }, /* 2652 22 */
{ 1, 0x46, 168 }, /* 2672 23 */
{ 1, 0x46, 172 }, /* 2692 24 */
{ 1, 0x46, 176 }, /* 2712 25 */
{ 1, 0x46, 180 } /* 2732 26 */
};
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
if (IS_CHAN_2GHZ(chan)) {
const CHAN_INFO_2GHZ* ci =
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
uint32_t txctl;
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
<< 5)
| (ci->refClkSel << 4);
chan5111 = ci->channel5111;
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (chan->channel == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else {
chan5111 = chanIEEE; /* no conversion needed */
data2111 = 0;
}
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
if (chan5111 >= 145 || (chan5111 & 0x1)) {
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
refClk = 1;
} else {
reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
refClk = 0;
}
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
reg32 >>= 8;
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
#undef CI_2GHZ_INDEX_CORRECTION
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar5111GetRfBank(struct ath_hal *ah, int bank)
{
struct ar5111State *priv = AR5111(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 0: return priv->Bank0Data;
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
uint16_t tempOB, tempDB;
uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
int i, regWrites = 0;
/* Setup rf parameters */
switch (chan->channelFlags & CHANNEL_ALL) {
case CHANNEL_A:
case CHANNEL_T:
if (4000 < chan->channel && chan->channel < 5260) {
tempOB = ee->ee_ob1;
tempDB = ee->ee_db1;
} else if (5260 <= chan->channel && chan->channel < 5500) {
tempOB = ee->ee_ob2;
tempDB = ee->ee_db2;
} else if (5500 <= chan->channel && chan->channel < 5725) {
tempOB = ee->ee_ob3;
tempDB = ee->ee_db3;
} else if (chan->channel >= 5725) {
tempOB = ee->ee_ob4;
tempDB = ee->ee_db4;
} else {
/* XXX when does this happen??? */
tempOB = tempDB = 0;
}
ob2GHz = db2GHz = 0;
rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
rfPloSel = ee->ee_xpd[headerInfo11A];
rfPwdXpd = !ee->ee_xpd[headerInfo11A];
gainI = ee->ee_gainI[headerInfo11A];
break;
case CHANNEL_B:
tempOB = ee->ee_obFor24;
tempDB = ee->ee_dbFor24;
ob2GHz = ee->ee_ob2GHz[0];
db2GHz = ee->ee_db2GHz[0];
rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
rfPloSel = ee->ee_xpd[headerInfo11B];
rfPwdXpd = !ee->ee_xpd[headerInfo11B];
gainI = ee->ee_gainI[headerInfo11B];
break;
case CHANNEL_G:
tempOB = ee->ee_obFor24g;
tempDB = ee->ee_dbFor24g;
ob2GHz = ee->ee_ob2GHz[1];
db2GHz = ee->ee_db2GHz[1];
rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
rfPloSel = ee->ee_xpd[headerInfo11G];
rfPwdXpd = !ee->ee_xpd[headerInfo11G];
gainI = ee->ee_gainI[headerInfo11G];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->channelFlags);
return AH_FALSE;
}
HALASSERT(1 <= tempOB && tempOB <= 5);
HALASSERT(1 <= tempDB && tempDB <= 5);
/* Bank 0 Write */
for (i = 0; i < N(ar5212Bank0_5111); i++)
rfReg[i] = ar5212Bank0_5111[i][modesIndex];
if (IS_CHAN_2GHZ(chan)) {
ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
}
HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
/* Bank 1 Write */
HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
/* Bank 2 Write */
HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
/* Bank 3 Write */
HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
/* Bank 6 Write */
for (i = 0; i < N(ar5212Bank6_5111); i++)
rfReg[i] = ar5212Bank6_5111[i][modesIndex];
if (IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
}
ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
/* Set 5212 OB & DB */
ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
/* Bank 7 Write */
for (i = 0; i < N(ar5212Bank7_5111); i++)
rfReg[i] = ar5212Bank7_5111[i][modesIndex];
ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
uint32_t rfWaitI, rfWaitS, rfMaxTime;
rfWaitS = 0x1f;
rfWaitI = (IS_CHAN_HALF_RATE(chan)) ? 0x10 : 0x1f;
rfMaxTime = 3;
ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
}
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
/* Now that we have reprogrammed rfgain value, clear the flag. */
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
return AH_TRUE;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
static uint16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
uint16_t targetLeft, uint16_t targetRight)
{
uint16_t rv;
int16_t lRatio;
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
if ((targetLeft * targetRight) == 0)
return 0;
if (srcRight != srcLeft) {
/*
* Note the ratio always need to be scaled,
* since it will be a fraction.
*/
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
if (lRatio < 0) {
/* Return as Left target if value would be negative */
rv = targetLeft;
} else if (lRatio > EEP_SCALE) {
/* Return as Right target if Ratio is greater than 100% (SCALE) */
rv = targetRight;
} else {
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
targetLeft) / EEP_SCALE;
}
} else {
rv = targetLeft;
}
return rv;
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar5111SetPowerTable(struct ath_hal *ah,
int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
uint16_t *rfXpdGain)
{
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
FULL_PCDAC_STRUCT pcdacStruct;
int i, j;
uint16_t *pPcdacValues;
int16_t *pScaledUpDbm;
int16_t minScaledPwr;
int16_t maxScaledPwr;
int16_t pwr;
uint16_t pcdacMin = 0;
uint16_t pcdacMax = PCDAC_STOP;
uint16_t pcdacTableIndex;
uint16_t scaledPcdac;
PCDACS_EEPROM *pSrcStruct;
PCDACS_EEPROM eepromPcdacs;
/* setup the pcdac struct to point to the correct info, based on mode */
switch (chan->channelFlags & CHANNEL_ALL) {
case CHANNEL_A:
case CHANNEL_T:
eepromPcdacs.numChannels = ee->ee_numChannels11a;
eepromPcdacs.pChannelList = ee->ee_channels11a;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
break;
case CHANNEL_B:
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
eepromPcdacs.pChannelList = ee->ee_channels11b;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
break;
case CHANNEL_G:
case CHANNEL_108G:
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
eepromPcdacs.pChannelList = ee->ee_channels11g;
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->channelFlags);
return AH_FALSE;
}
pSrcStruct = &eepromPcdacs;
OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
pPcdacValues = pcdacStruct.PcdacValues;
pScaledUpDbm = pcdacStruct.PwrValues;
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
pPcdacValues[j] = i;
pcdacStruct.numPcdacValues = j;
pcdacStruct.pcdacMin = PCDAC_START;
pcdacStruct.pcdacMax = PCDAC_STOP;
/* Fill out the power values for this channel */
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
pPcdacValues[j], pSrcStruct);
/* Now scale the pcdac values to fit in the 64 entry power table */
minScaledPwr = pScaledUpDbm[0];
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
/* find minimum and make monotonic */
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
if (minScaledPwr >= pScaledUpDbm[j]) {
minScaledPwr = pScaledUpDbm[j];
pcdacMin = j;
}
/*
* Make the full_hsh monotonically increasing otherwise
* interpolation algorithm will get fooled gotta start
* working from the top, hence i = 63 - j.
*/
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
if (i == 0)
break;
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
/*
* It could be a glitch, so make the power for
* this pcdac the same as the power from the
* next highest pcdac.
*/
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
}
}
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
if (maxScaledPwr < pScaledUpDbm[j]) {
maxScaledPwr = pScaledUpDbm[j];
pcdacMax = j;
}
/* Find the first power level with a pcdac */
pwr = (uint16_t)(PWR_STEP *
((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
/* Write all the first pcdac entries based off the pcdacMin */
pcdacTableIndex = 0;
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
}
i = 0;
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
pcdacTableIndex < PWR_TABLE_SIZE) {
pwr += PWR_STEP;
/* stop if dbM > max_power_possible */
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
i++;
/* scale by 2 and add 1 to enable round up or down as needed */
scaledPcdac = (uint16_t)(interpolate(pwr,
pScaledUpDbm[i], pScaledUpDbm[i + 1],
(uint16_t)(pPcdacValues[i] * 2),
(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
pcdacTableIndex++;
}
/* Write all the last pcdac entries based off the last valid pcdac */
while (pcdacTableIndex < PWR_TABLE_SIZE) {
ahp->ah_pcdacTable[pcdacTableIndex] =
ahp->ah_pcdacTable[pcdacTableIndex - 1];
pcdacTableIndex++;
}
/* No power table adjustment for 5111 */
ahp->ah_txPowerIndexOffset = 0;
return AH_TRUE;
}
/*
* Get or interpolate the pcdac value from the calibrated data.
*/
static uint16_t
ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct)
{
uint16_t powerValue;
uint16_t lFreq, rFreq; /* left and right frequency values */
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
uint16_t lPwr = 0, uPwr = 0; /* lower and upper temp pwr values */
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
/* value was copied from srcStruct */
return powerValue;
}
ar5212GetLowerUpperValues(channel,
pSrcStruct->pChannelList, pSrcStruct->numChannels,
&lFreq, &rFreq);
ar5212GetLowerUpperPcdacs(pcdacValue,
lFreq, pSrcStruct, &llPcdac, &ulPcdac);
ar5212GetLowerUpperPcdacs(pcdacValue,
rFreq, pSrcStruct, &lrPcdac, &urPcdac);
/* get the power index for the pcdac value */
ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
}
/*
* Find the value from the calibrated source data struct
*/
static HAL_BOOL
ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
{
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
int i;
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
if (pChannelData->channelValue == channel) {
const uint16_t* pPcdac = pChannelData->PcdacValues;
int j;
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
if (*pPcdac == pcdacValue) {
*powerValue = pChannelData->PwrValues[j];
return AH_TRUE;
}
pPcdac++;
}
}
pChannelData++;
}
return AH_FALSE;
}
/*
* Get the upper and lower pcdac given the channel and the pcdac
* used in the search
*/
static void
ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
const PCDACS_EEPROM *pSrcStruct,
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
{
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
int i;
/* Find the channel information */
for (i = 0; i < pSrcStruct->numChannels; i++) {
if (pChannelData->channelValue == channel)
break;
pChannelData++;
}
ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
pChannelData->numPcdacValues,
pLowerPcdac, pUpperPcdac);
}
static HAL_BOOL
ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
int16_t *maxPow, int16_t *minPow)
{
/* XXX - Get 5111 power limits! */
/* NB: caller will cope */
return AH_FALSE;
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
*/
static int16_t
ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
static const struct {
uint16_t freqLow;
int16_t adjust;
} adjust5111[] = {
{ 5790, 6 }, /* NB: ordered high -> low */
{ 5730, 4 },
{ 5690, 3 },
{ 5660, 2 },
{ 5610, 1 },
{ 5530, 0 },
{ 5450, 0 },
{ 5379, 1 },
{ 5209, 3 },
{ 3000, 5 },
{ 0, 0 },
};
int i;
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
;
return adjust5111[i].adjust;
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar5111RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
static HAL_BOOL
ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar5111State *priv;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar5111State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar5111RfDetach;
priv->base.writeRegs = ar5111WriteRegs;
priv->base.getRfBank = ar5111GetRfBank;
priv->base.setChannel = ar5111SetChannel;
priv->base.setRfRegs = ar5111SetRfRegs;
priv->base.setPowerTable = ar5111SetPowerTable;
priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
priv->base.getNfAdjust = ar5111GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
return AH_TRUE;
}
static HAL_BOOL
ar5111Probe(struct ath_hal *ah)
{
return IS_RAD5111(ah);
}
AH_RF(RF5111, ar5111Probe, ar5111RfAttach);