/* $NetBSD: sys_eventfd.c,v 1.9 2022/02/17 16:28:29 thorpej Exp $ */
/*-
* Copyright (c) 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.9 2022/02/17 16:28:29 thorpej Exp $");
/*
* eventfd
*
* Eventfd objects present a simple counting object associated with a
* file descriptor. Writes and reads to this file descriptor increment
* and decrement the count, respectively. When the count is non-zero,
* the descriptor is considered "readable", and when less than the max
* value (EVENTFD_MAXVAL), is considered "writable".
*
* This implementation is API compatible with the Linux eventfd(2)
* interface.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/condvar.h>
#include <sys/eventfd.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kauth.h>
#include <sys/mutex.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/syscallargs.h>
#include <sys/uio.h>
struct eventfd {
kmutex_t efd_lock;
kcondvar_t efd_read_wait;
kcondvar_t efd_write_wait;
struct selinfo efd_read_sel;
struct selinfo efd_write_sel;
eventfd_t efd_val;
int64_t efd_nwaiters;
bool efd_restarting;
bool efd_has_read_waiters;
bool efd_has_write_waiters;
bool efd_is_semaphore;
/*
* Information kept for stat(2).
*/
struct timespec efd_btime; /* time created */
struct timespec efd_mtime; /* last write */
struct timespec efd_atime; /* last read */
};
#define EVENTFD_MAXVAL (UINT64_MAX - 1)
/*
* eventfd_create:
*
* Create an eventfd object.
*/
static struct eventfd *
eventfd_create(unsigned int const val, int const flags)
{
struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&efd->efd_read_wait, "efdread");
cv_init(&efd->efd_write_wait, "efdwrite");
selinit(&efd->efd_read_sel);
selinit(&efd->efd_write_sel);
efd->efd_val = val;
efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
getnanotime(&efd->efd_btime);
/* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
return efd;
}
/*
* eventfd_destroy:
*
* Destroy an eventfd object.
*/
static void
eventfd_destroy(struct eventfd * const efd)
{
KASSERT(efd->efd_nwaiters == 0);
KASSERT(efd->efd_has_read_waiters == false);
KASSERT(efd->efd_has_write_waiters == false);
cv_destroy(&efd->efd_read_wait);
cv_destroy(&efd->efd_write_wait);
seldestroy(&efd->efd_read_sel);
seldestroy(&efd->efd_write_sel);
mutex_destroy(&efd->efd_lock);
kmem_free(efd, sizeof(*efd));
}
/*
* eventfd_wait:
*
* Block on an eventfd. Handles non-blocking, as well as
* the restart cases.
*/
static int
eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
{
kcondvar_t *waitcv;
int error;
if (fflag & FNONBLOCK) {
return EAGAIN;
}
/*
* We're going to block. Check if we need to return ERESTART.
*/
if (efd->efd_restarting) {
return ERESTART;
}
if (is_write) {
efd->efd_has_write_waiters = true;
waitcv = &efd->efd_write_wait;
} else {
efd->efd_has_read_waiters = true;
waitcv = &efd->efd_read_wait;
}
efd->efd_nwaiters++;
KASSERT(efd->efd_nwaiters > 0);
error = cv_wait_sig(waitcv, &efd->efd_lock);
efd->efd_nwaiters--;
KASSERT(efd->efd_nwaiters >= 0);
/*
* If a restart was triggered while we were asleep, we need
* to return ERESTART if no other error was returned.
*/
if (efd->efd_restarting) {
if (error == 0) {
error = ERESTART;
}
}
return error;
}
/*
* eventfd_wake:
*
* Wake LWPs block on an eventfd.
*/
static void
eventfd_wake(struct eventfd * const efd, bool const is_write)
{
kcondvar_t *waitcv = NULL;
struct selinfo *sel;
int pollev;
if (is_write) {
if (efd->efd_has_read_waiters) {
waitcv = &efd->efd_read_wait;
efd->efd_has_read_waiters = false;
}
sel = &efd->efd_read_sel;
pollev = POLLIN | POLLRDNORM;
} else {
if (efd->efd_has_write_waiters) {
waitcv = &efd->efd_write_wait;
efd->efd_has_write_waiters = false;
}
sel = &efd->efd_write_sel;
pollev = POLLOUT | POLLWRNORM;
}
if (waitcv != NULL) {
cv_broadcast(waitcv);
}
selnotify(sel, pollev, NOTE_SUBMIT);
}
/*
* eventfd file operations
*/
static int
eventfd_fop_read(file_t * const fp, off_t * const offset,
struct uio * const uio, kauth_cred_t const cred, int const flags)
{
struct eventfd * const efd = fp->f_eventfd;
int const fflag = fp->f_flag;
eventfd_t return_value;
int error;
if (uio->uio_resid < sizeof(eventfd_t)) {
return EINVAL;
}
mutex_enter(&efd->efd_lock);
while (efd->efd_val == 0) {
if ((error = eventfd_wait(efd, fflag, false)) != 0) {
mutex_exit(&efd->efd_lock);
return error;
}
}
if (efd->efd_is_semaphore) {
return_value = 1;
efd->efd_val--;
} else {
return_value = efd->efd_val;
efd->efd_val = 0;
}
getnanotime(&efd->efd_atime);
eventfd_wake(efd, false);
mutex_exit(&efd->efd_lock);
error = uiomove(&return_value, sizeof(return_value), uio);
return error;
}
static int
eventfd_fop_write(file_t * const fp, off_t * const offset,
struct uio * const uio, kauth_cred_t const cred, int const flags)
{
struct eventfd * const efd = fp->f_eventfd;
int const fflag = fp->f_flag;
eventfd_t write_value;
int error;
if (uio->uio_resid < sizeof(eventfd_t)) {
return EINVAL;
}
if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
return error;
}
if (write_value > EVENTFD_MAXVAL) {
error = EINVAL;
goto out;
}
mutex_enter(&efd->efd_lock);
KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
if ((error = eventfd_wait(efd, fflag, true)) != 0) {
mutex_exit(&efd->efd_lock);
goto out;
}
}
efd->efd_val += write_value;
KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
getnanotime(&efd->efd_mtime);
eventfd_wake(efd, true);
mutex_exit(&efd->efd_lock);
out:
if (error) {
/*
* Undo the effect of uiomove() so that the error
* gets reported correctly; see dofilewrite().
*/
uio->uio_resid += sizeof(write_value);
}
return error;
}
static int
eventfd_ioctl(file_t * const fp, u_long const cmd, void * const data)
{
struct eventfd * const efd = fp->f_eventfd;
switch (cmd) {
case FIONBIO:
return 0;
case FIONREAD:
mutex_enter(&efd->efd_lock);
*(int *)data = efd->efd_val != 0 ? sizeof(eventfd_t) : 0;
mutex_exit(&efd->efd_lock);
return 0;
case FIONWRITE:
*(int *)data = 0;
return 0;
case FIONSPACE:
/*
* FIONSPACE doesn't really work for eventfd, because the
* writability depends on the contents (value) being written.
*/
break;
default:
break;
}
return EPASSTHROUGH;
}
static int
eventfd_fop_poll(file_t * const fp, int const events)
{
struct eventfd * const efd = fp->f_eventfd;
int revents = 0;
/*
* Note that Linux will return POLLERR if the eventfd count
* overflows, but that is not possible in the normal read/write
* API, only with Linux kernel-internal interfaces. So, this
* implementation never returns POLLERR.
*
* Also note that the Linux eventfd(2) man page does not
* specifically discuss returning POLLRDNORM, but we check
* for that event in addition to POLLIN.
*/
mutex_enter(&efd->efd_lock);
if (events & (POLLIN | POLLRDNORM)) {
if (efd->efd_val != 0) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(curlwp, &efd->efd_read_sel);
}
}
if (events & (POLLOUT | POLLWRNORM)) {
if (efd->efd_val < EVENTFD_MAXVAL) {
revents |= events & (POLLOUT | POLLWRNORM);
} else {
selrecord(curlwp, &efd->efd_write_sel);
}
}
mutex_exit(&efd->efd_lock);
return revents;
}
static int
eventfd_fop_stat(file_t * const fp, struct stat * const st)
{
struct eventfd * const efd = fp->f_eventfd;
memset(st, 0, sizeof(*st));
mutex_enter(&efd->efd_lock);
st->st_size = (off_t)efd->efd_val;
st->st_blksize = sizeof(eventfd_t);
st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
st->st_blocks = 1;
st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
st->st_atimespec = efd->efd_atime;
st->st_mtimespec = efd->efd_mtime;
st->st_uid = kauth_cred_geteuid(fp->f_cred);
st->st_gid = kauth_cred_getegid(fp->f_cred);
mutex_exit(&efd->efd_lock);
return 0;
}
static int
eventfd_fop_close(file_t * const fp)
{
struct eventfd * const efd = fp->f_eventfd;
fp->f_eventfd = NULL;
eventfd_destroy(efd);
return 0;
}
static void
eventfd_filt_read_detach(struct knote * const kn)
{
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
mutex_enter(&efd->efd_lock);
KASSERT(kn->kn_hook == efd);
selremove_knote(&efd->efd_read_sel, kn);
mutex_exit(&efd->efd_lock);
}
static int
eventfd_filt_read(struct knote * const kn, long const hint)
{
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
int rv;
if (hint & NOTE_SUBMIT) {
KASSERT(mutex_owned(&efd->efd_lock));
} else {
mutex_enter(&efd->efd_lock);
}
kn->kn_data = (int64_t)efd->efd_val;
rv = (eventfd_t)kn->kn_data > 0;
if ((hint & NOTE_SUBMIT) == 0) {
mutex_exit(&efd->efd_lock);
}
return rv;
}
static const struct filterops eventfd_read_filterops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_detach = eventfd_filt_read_detach,
.f_event = eventfd_filt_read,
};
static void
eventfd_filt_write_detach(struct knote * const kn)
{
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
mutex_enter(&efd->efd_lock);
KASSERT(kn->kn_hook == efd);
selremove_knote(&efd->efd_write_sel, kn);
mutex_exit(&efd->efd_lock);
}
static int
eventfd_filt_write(struct knote * const kn, long const hint)
{
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
int rv;
if (hint & NOTE_SUBMIT) {
KASSERT(mutex_owned(&efd->efd_lock));
} else {
mutex_enter(&efd->efd_lock);
}
kn->kn_data = (int64_t)efd->efd_val;
rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
if ((hint & NOTE_SUBMIT) == 0) {
mutex_exit(&efd->efd_lock);
}
return rv;
}
static const struct filterops eventfd_write_filterops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_detach = eventfd_filt_write_detach,
.f_event = eventfd_filt_write,
};
static int
eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
{
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
struct selinfo *sel;
switch (kn->kn_filter) {
case EVFILT_READ:
sel = &efd->efd_read_sel;
kn->kn_fop = &eventfd_read_filterops;
break;
case EVFILT_WRITE:
sel = &efd->efd_write_sel;
kn->kn_fop = &eventfd_write_filterops;
break;
default:
return EINVAL;
}
kn->kn_hook = efd;
mutex_enter(&efd->efd_lock);
selrecord_knote(sel, kn);
mutex_exit(&efd->efd_lock);
return 0;
}
static void
eventfd_fop_restart(file_t * const fp)
{
struct eventfd * const efd = fp->f_eventfd;
/*
* Unblock blocked reads/writes in order to allow close() to complete.
* System calls return ERESTART so that the fd is revalidated.
*/
mutex_enter(&efd->efd_lock);
if (efd->efd_nwaiters != 0) {
efd->efd_restarting = true;
if (efd->efd_has_read_waiters) {
cv_broadcast(&efd->efd_read_wait);
efd->efd_has_read_waiters = false;
}
if (efd->efd_has_write_waiters) {
cv_broadcast(&efd->efd_write_wait);
efd->efd_has_write_waiters = false;
}
}
mutex_exit(&efd->efd_lock);
}
static const struct fileops eventfd_fileops = {
.fo_name = "eventfd",
.fo_read = eventfd_fop_read,
.fo_write = eventfd_fop_write,
.fo_ioctl = eventfd_ioctl,
.fo_fcntl = fnullop_fcntl,
.fo_poll = eventfd_fop_poll,
.fo_stat = eventfd_fop_stat,
.fo_close = eventfd_fop_close,
.fo_kqfilter = eventfd_fop_kqfilter,
.fo_restart = eventfd_fop_restart,
};
/*
* eventfd(2) system call
*/
int
do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
register_t *retval)
{
file_t *fp;
int fd, error;
if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
return EINVAL;
}
if ((error = fd_allocfile(&fp, &fd)) != 0) {
return error;
}
fp->f_flag = FREAD | FWRITE;
if (flags & EFD_NONBLOCK) {
fp->f_flag |= FNONBLOCK;
}
fp->f_type = DTYPE_EVENTFD;
fp->f_ops = &eventfd_fileops;
fp->f_eventfd = eventfd_create(val, flags);
fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
fd_affix(curproc, fp, fd);
*retval = fd;
return 0;
}
int
sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
register_t *retval)
{
/* {
syscallarg(unsigned int) val;
syscallarg(int) flags;
} */
return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
}