Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif

#include "packeted_bio.h"
#include <openssl/e_os2.h>

#if !defined(OPENSSL_SYS_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))

OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif

#include <assert.h>
#include <inttypes.h>
#include <string.h>

#include <openssl/bio.h>
#include <openssl/buffer.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

#include <memory>
#include <string>
#include <vector>

#include "async_bio.h"
#include "test_config.h"

namespace bssl {

#if !defined(OPENSSL_SYS_WINDOWS)
static int closesocket(int sock) {
  return close(sock);
}

static void PrintSocketError(const char *func) {
  perror(func);
}
#else
static void PrintSocketError(const char *func) {
  fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif

static int Usage(const char *program) {
  fprintf(stderr, "Usage: %s [flags...]\n", program);
  return 1;
}

struct TestState {
  // async_bio is async BIO which pauses reads and writes.
  BIO *async_bio = nullptr;
  // packeted_bio is the packeted BIO which simulates read timeouts.
  BIO *packeted_bio = nullptr;
  bool cert_ready = false;
  bool handshake_done = false;
  // private_key is the underlying private key used when testing custom keys.
  bssl::UniquePtr<EVP_PKEY> private_key;
  bool got_new_session = false;
  bssl::UniquePtr<SSL_SESSION> new_session;
  bool ticket_decrypt_done = false;
  bool alpn_select_done = false;
};

static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
                            int index, long argl, void *argp) {
  delete ((TestState *)ptr);
}

static int g_config_index = 0;
static int g_state_index = 0;

static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
  return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}

static const TestConfig *GetTestConfig(const SSL *ssl) {
  return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}

static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
  // |SSL_set_ex_data| takes ownership of |state| only on success.
  if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
    state.release();
    return true;
  }
  return false;
}

static TestState *GetTestState(const SSL *ssl) {
  return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}

static bssl::UniquePtr<X509> LoadCertificate(const std::string &file) {
  bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
  if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
    return nullptr;
  }
  return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
}

static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
  bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
  if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
    return nullptr;
  }
  return bssl::UniquePtr<EVP_PKEY>(
      PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}

template<typename T>
struct Free {
  void operator()(T *buf) {
    free(buf);
  }
};

static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
                           bssl::UniquePtr<EVP_PKEY> *out_pkey) {
  const TestConfig *config = GetTestConfig(ssl);

  if (!config->key_file.empty()) {
    *out_pkey = LoadPrivateKey(config->key_file.c_str());
    if (!*out_pkey) {
      return false;
    }
  }
  if (!config->cert_file.empty()) {
    *out_x509 = LoadCertificate(config->cert_file.c_str());
    if (!*out_x509) {
      return false;
    }
  }
  return true;
}

static bool InstallCertificate(SSL *ssl) {
  bssl::UniquePtr<X509> x509;
  bssl::UniquePtr<EVP_PKEY> pkey;
  if (!GetCertificate(ssl, &x509, &pkey)) {
    return false;
  }

  if (pkey && !SSL_use_PrivateKey(ssl, pkey.get())) {
    return false;
  }

  if (x509 && !SSL_use_certificate(ssl, x509.get())) {
    return false;
  }

  return true;
}

static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
  if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
    return -1;
  }

  bssl::UniquePtr<X509> x509;
  bssl::UniquePtr<EVP_PKEY> pkey;
  if (!GetCertificate(ssl, &x509, &pkey)) {
    return -1;
  }

  // Return zero for no certificate.
  if (!x509) {
    return 0;
  }

  // Asynchronous private keys are not supported with client_cert_cb.
  *out_x509 = x509.release();
  *out_pkey = pkey.release();
  return 1;
}

static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
  return 1;
}

static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
  X509_STORE_CTX_set_error(store_ctx, X509_V_ERR_APPLICATION_VERIFICATION);
  return 0;
}

static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
                                        unsigned int *out_len, void *arg) {
  const TestConfig *config = GetTestConfig(ssl);
  if (config->advertise_npn.empty()) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  *out = (const uint8_t*)config->advertise_npn.data();
  *out_len = config->advertise_npn.size();
  return SSL_TLSEXT_ERR_OK;
}

static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
                                   const uint8_t* in, unsigned inlen, void* arg) {
  const TestConfig *config = GetTestConfig(ssl);
  if (config->select_next_proto.empty()) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  *out = (uint8_t*)config->select_next_proto.data();
  *outlen = config->select_next_proto.size();
  return SSL_TLSEXT_ERR_OK;
}

static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
                              const uint8_t* in, unsigned inlen, void* arg) {
  if (GetTestState(ssl)->alpn_select_done) {
    fprintf(stderr, "AlpnSelectCallback called after completion.\n");
    exit(1);
  }

  GetTestState(ssl)->alpn_select_done = true;

  const TestConfig *config = GetTestConfig(ssl);
  if (config->decline_alpn) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  if (!config->expected_advertised_alpn.empty() &&
      (config->expected_advertised_alpn.size() != inlen ||
       memcmp(config->expected_advertised_alpn.data(),
              in, inlen) != 0)) {
    fprintf(stderr, "bad ALPN select callback inputs\n");
    exit(1);
  }

  *out = (const uint8_t*)config->select_alpn.data();
  *outlen = config->select_alpn.size();
  return SSL_TLSEXT_ERR_OK;
}

static unsigned PskClientCallback(SSL *ssl, const char *hint,
                                  char *out_identity,
                                  unsigned max_identity_len,
                                  uint8_t *out_psk, unsigned max_psk_len) {
  const TestConfig *config = GetTestConfig(ssl);

  if (config->psk_identity.empty()) {
    if (hint != nullptr) {
      fprintf(stderr, "Server PSK hint was non-null.\n");
      return 0;
    }
  } else if (hint == nullptr ||
             strcmp(hint, config->psk_identity.c_str()) != 0) {
    fprintf(stderr, "Server PSK hint did not match.\n");
    return 0;
  }

  // Account for the trailing '\0' for the identity.
  if (config->psk_identity.size() >= max_identity_len ||
      config->psk.size() > max_psk_len) {
    fprintf(stderr, "PSK buffers too small\n");
    return 0;
  }

  BUF_strlcpy(out_identity, config->psk_identity.c_str(),
              max_identity_len);
  memcpy(out_psk, config->psk.data(), config->psk.size());
  return config->psk.size();
}

static unsigned PskServerCallback(SSL *ssl, const char *identity,
                                  uint8_t *out_psk, unsigned max_psk_len) {
  const TestConfig *config = GetTestConfig(ssl);

  if (strcmp(identity, config->psk_identity.c_str()) != 0) {
    fprintf(stderr, "Client PSK identity did not match.\n");
    return 0;
  }

  if (config->psk.size() > max_psk_len) {
    fprintf(stderr, "PSK buffers too small\n");
    return 0;
  }

  memcpy(out_psk, config->psk.data(), config->psk.size());
  return config->psk.size();
}

static int CertCallback(SSL *ssl, void *arg) {
  const TestConfig *config = GetTestConfig(ssl);

  // Check the CertificateRequest metadata is as expected.
  //
  // TODO(davidben): Test |SSL_get_client_CA_list|.
  if (!SSL_is_server(ssl) &&
      !config->expected_certificate_types.empty()) {
    const uint8_t *certificate_types;
    size_t certificate_types_len =
        SSL_get0_certificate_types(ssl, &certificate_types);
    if (certificate_types_len != config->expected_certificate_types.size() ||
        memcmp(certificate_types,
               config->expected_certificate_types.data(),
               certificate_types_len) != 0) {
      fprintf(stderr, "certificate types mismatch\n");
      return 0;
    }
  }

  // The certificate will be installed via other means.
  if (!config->async ||
      config->use_old_client_cert_callback) {
    return 1;
  }

  if (!GetTestState(ssl)->cert_ready) {
    return -1;
  }
  if (!InstallCertificate(ssl)) {
    return 0;
  }
  return 1;
}

static void InfoCallback(const SSL *ssl, int type, int val) {
  if (type == SSL_CB_HANDSHAKE_DONE) {
    if (GetTestConfig(ssl)->handshake_never_done) {
      fprintf(stderr, "Handshake unexpectedly completed.\n");
      // Abort before any expected error code is printed, to ensure the overall
      // test fails.
      abort();
    }
    GetTestState(ssl)->handshake_done = true;

    // Callbacks may be called again on a new handshake.
    GetTestState(ssl)->ticket_decrypt_done = false;
    GetTestState(ssl)->alpn_select_done = false;
  }
}

static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
  GetTestState(ssl)->got_new_session = true;
  GetTestState(ssl)->new_session.reset(session);
  return 1;
}

static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
                             EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
                             int encrypt) {
  if (!encrypt) {
    if (GetTestState(ssl)->ticket_decrypt_done) {
      fprintf(stderr, "TicketKeyCallback called after completion.\n");
      return -1;
    }

    GetTestState(ssl)->ticket_decrypt_done = true;
  }

  // This is just test code, so use the all-zeros key.
  static const uint8_t kZeros[16] = {0};

  if (encrypt) {
    memcpy(key_name, kZeros, sizeof(kZeros));
    RAND_bytes(iv, 16);
  } else if (memcmp(key_name, kZeros, 16) != 0) {
    return 0;
  }

  if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
      !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
    return -1;
  }

  if (!encrypt) {
    return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
  }
  return 1;
}

// kCustomExtensionValue is the extension value that the custom extension
// callbacks will add.
static const uint16_t kCustomExtensionValue = 1234;
static void *const kCustomExtensionAddArg =
    reinterpret_cast<void *>(kCustomExtensionValue);
static void *const kCustomExtensionParseArg =
    reinterpret_cast<void *>(kCustomExtensionValue + 1);
static const char kCustomExtensionContents[] = "custom extension";

static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
                                      const uint8_t **out, size_t *out_len,
                                      int *out_alert_value, void *add_arg) {
  if (extension_value != kCustomExtensionValue ||
      add_arg != kCustomExtensionAddArg) {
    abort();
  }

  if (GetTestConfig(ssl)->custom_extension_skip) {
    return 0;
  }
  if (GetTestConfig(ssl)->custom_extension_fail_add) {
    return -1;
  }

  *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
  *out_len = sizeof(kCustomExtensionContents) - 1;

  return 1;
}

static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
                                        const uint8_t *out, void *add_arg) {
  if (extension_value != kCustomExtensionValue ||
      add_arg != kCustomExtensionAddArg ||
      out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
    abort();
  }
}

static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
                                        const uint8_t *contents,
                                        size_t contents_len,
                                        int *out_alert_value, void *parse_arg) {
  if (extension_value != kCustomExtensionValue ||
      parse_arg != kCustomExtensionParseArg) {
    abort();
  }

  if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
      memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
    *out_alert_value = SSL_AD_DECODE_ERROR;
    return 0;
  }

  return 1;
}

static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
  // SNI must be accessible from the SNI callback.
  const TestConfig *config = GetTestConfig(ssl);
  const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
  if (server_name == nullptr ||
      std::string(server_name) != config->expected_server_name) {
    fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name,
            config->expected_server_name.c_str());
    return SSL_TLSEXT_ERR_ALERT_FATAL;
  }

  return SSL_TLSEXT_ERR_OK;
}

// Connect returns a new socket connected to localhost on |port| or -1 on
// error.
static int Connect(uint16_t port) {
  int sock = socket(AF_INET, SOCK_STREAM, 0);
  if (sock == -1) {
    PrintSocketError("socket");
    return -1;
  }
  int nodelay = 1;
  if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
          reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
    PrintSocketError("setsockopt");
    closesocket(sock);
    return -1;
  }
  sockaddr_in sin;
  memset(&sin, 0, sizeof(sin));
  sin.sin_family = AF_INET;
  sin.sin_port = htons(port);
  if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
    PrintSocketError("inet_pton");
    closesocket(sock);
    return -1;
  }
  if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
              sizeof(sin)) != 0) {
    PrintSocketError("connect");
    closesocket(sock);
    return -1;
  }
  return sock;
}

class SocketCloser {
 public:
  explicit SocketCloser(int sock) : sock_(sock) {}
  ~SocketCloser() {
    // Half-close and drain the socket before releasing it. This seems to be
    // necessary for graceful shutdown on Windows. It will also avoid write
    // failures in the test runner.
#if defined(OPENSSL_SYS_WINDOWS)
    shutdown(sock_, SD_SEND);
#else
    shutdown(sock_, SHUT_WR);
#endif
    while (true) {
      char buf[1024];
      if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
        break;
      }
    }
    closesocket(sock_);
  }

 private:
  const int sock_;
};

static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
  const char sess_id_ctx[] = "ossl_shim";
  bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
      config->is_dtls ? DTLS_method() : TLS_method()));
  if (!ssl_ctx) {
    return nullptr;
  }

  SSL_CTX_set_security_level(ssl_ctx.get(), 0);
#if 0
  /* Disabled for now until we have some TLS1.3 support */
  // Enable TLS 1.3 for tests.
  if (!config->is_dtls &&
      !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
    return nullptr;
  }
#else
  /* Ensure we don't negotiate TLSv1.3 until we can handle it */
  if (!config->is_dtls &&
      !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_2_VERSION)) {
    return nullptr;
  }
#endif

  std::string cipher_list = "ALL";
  if (!config->cipher.empty()) {
    cipher_list = config->cipher;
    SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
  }
  if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
    return nullptr;
  }

  DH *tmpdh;

  if (config->use_sparse_dh_prime) {
    BIGNUM *p, *g;
    p = BN_new();
    g = BN_new();
    tmpdh = DH_new();
    if (p == NULL || g == NULL || tmpdh == NULL) {
        BN_free(p);
        BN_free(g);
        DH_free(tmpdh);
        return nullptr;
    }
    // This prime number is 2^1024 + 643 – a value just above a power of two.
    // Because of its form, values modulo it are essentially certain to be one
    // byte shorter. This is used to test padding of these values.
    if (BN_hex2bn(
            &p,
            "1000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000028"
            "3") == 0 ||
        !BN_set_word(g, 2)) {
      BN_free(p);
      BN_free(g);
      DH_free(tmpdh);
      return nullptr;
    }
    DH_set0_pqg(tmpdh, p, NULL, g);
  } else {
      tmpdh = DH_get_2048_256();
  }

  bssl::UniquePtr<DH> dh(tmpdh);

  if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
    return nullptr;
  }

  SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);

  if (config->use_old_client_cert_callback) {
    SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
  }

  SSL_CTX_set_npn_advertised_cb(
      ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
  if (!config->select_next_proto.empty()) {
    SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
                                     NULL);
  }

  if (!config->select_alpn.empty() || config->decline_alpn) {
    SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
  }

  SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
  SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);

  if (config->use_ticket_callback) {
    SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
  }

  if (config->enable_client_custom_extension &&
      !SSL_CTX_add_client_custom_ext(
          ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
          CustomExtensionFreeCallback, kCustomExtensionAddArg,
          CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    return nullptr;
  }

  if (config->enable_server_custom_extension &&
      !SSL_CTX_add_server_custom_ext(
          ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
          CustomExtensionFreeCallback, kCustomExtensionAddArg,
          CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    return nullptr;
  }

  if (config->verify_fail) {
    SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
  } else {
    SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
  }

  if (config->use_null_client_ca_list) {
    SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
  }

  if (!SSL_CTX_set_session_id_context(ssl_ctx.get(),
                                      (const unsigned char *)sess_id_ctx,
                                      sizeof(sess_id_ctx) - 1))
    return nullptr;

  if (!config->expected_server_name.empty()) {
    SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
  }

  return ssl_ctx;
}

// RetryAsync is called after a failed operation on |ssl| with return code
// |ret|. If the operation should be retried, it simulates one asynchronous
// event and returns true. Otherwise it returns false.
static bool RetryAsync(SSL *ssl, int ret) {
  // No error; don't retry.
  if (ret >= 0) {
    return false;
  }

  TestState *test_state = GetTestState(ssl);
  assert(GetTestConfig(ssl)->async);

  if (test_state->packeted_bio != nullptr &&
      PacketedBioAdvanceClock(test_state->packeted_bio)) {
    // The DTLS retransmit logic silently ignores write failures. So the test
    // may progress, allow writes through synchronously.
    AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    int timeout_ret = DTLSv1_handle_timeout(ssl);
    AsyncBioEnforceWriteQuota(test_state->async_bio, true);

    if (timeout_ret < 0) {
      fprintf(stderr, "Error retransmitting.\n");
      return false;
    }
    return true;
  }

  // See if we needed to read or write more. If so, allow one byte through on
  // the appropriate end to maximally stress the state machine.
  switch (SSL_get_error(ssl, ret)) {
    case SSL_ERROR_WANT_READ:
      AsyncBioAllowRead(test_state->async_bio, 1);
      return true;
    case SSL_ERROR_WANT_WRITE:
      AsyncBioAllowWrite(test_state->async_bio, 1);
      return true;
    case SSL_ERROR_WANT_X509_LOOKUP:
      test_state->cert_ready = true;
      return true;
    default:
      return false;
  }
}

// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
  const TestConfig *config = GetTestConfig(ssl);
  TestState *test_state = GetTestState(ssl);
  int ret;
  do {
    if (config->async) {
      // The DTLS retransmit logic silently ignores write failures. So the test
      // may progress, allow writes through synchronously. |SSL_read| may
      // trigger a retransmit, so disconnect the write quota.
      AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    }
    ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
                                 : SSL_read(ssl, out, max_out);
    if (config->async) {
      AsyncBioEnforceWriteQuota(test_state->async_bio, true);
    }
  } while (config->async && RetryAsync(ssl, ret));

  if (config->peek_then_read && ret > 0) {
    std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);

    // SSL_peek should synchronously return the same data.
    int ret2 = SSL_peek(ssl, buf.get(), ret);
    if (ret2 != ret ||
        memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "First and second SSL_peek did not match.\n");
      return -1;
    }

    // SSL_read should synchronously return the same data and consume it.
    ret2 = SSL_read(ssl, buf.get(), ret);
    if (ret2 != ret ||
        memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
      return -1;
    }
  }

  return ret;
}

// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
  const TestConfig *config = GetTestConfig(ssl);
  int ret;
  do {
    ret = SSL_write(ssl, in, in_len);
    if (ret > 0) {
      in += ret;
      in_len -= ret;
    }
  } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
  return ret;
}

// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
  const TestConfig *config = GetTestConfig(ssl);
  int ret;
  do {
    ret = SSL_shutdown(ssl);
  } while (config->async && RetryAsync(ssl, ret));
  return ret;
}

static uint16_t GetProtocolVersion(const SSL *ssl) {
  uint16_t version = SSL_version(ssl);
  if (!SSL_is_dtls(ssl)) {
    return version;
  }
  return 0x0201 + ~version;
}

// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
  const TestConfig *config = GetTestConfig(ssl);

  if (SSL_get_current_cipher(ssl) == nullptr) {
    fprintf(stderr, "null cipher after handshake\n");
    return false;
  }

  if (is_resume &&
      (!!SSL_session_reused(ssl) == config->expect_session_miss)) {
    fprintf(stderr, "session was%s reused\n",
            SSL_session_reused(ssl) ? "" : " not");
    return false;
  }

  if (!GetTestState(ssl)->handshake_done) {
    fprintf(stderr, "handshake was not completed\n");
    return false;
  }

  if (!config->is_server) {
    bool expect_new_session =
        !config->expect_no_session &&
        (!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
        // Session tickets are sent post-handshake in TLS 1.3.
        GetProtocolVersion(ssl) < TLS1_3_VERSION;
    if (expect_new_session != GetTestState(ssl)->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl)->got_new_session ? "" : " not");
      return false;
    }
  }

  if (!config->expected_server_name.empty()) {
    const char *server_name =
        SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
    if (server_name == nullptr ||
            std::string(server_name) != config->expected_server_name) {
      fprintf(stderr, "servername mismatch (got %s; want %s)\n",
              server_name, config->expected_server_name.c_str());
      return false;
    }
  }

  if (!config->expected_next_proto.empty()) {
    const uint8_t *next_proto;
    unsigned next_proto_len;
    SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
    if (next_proto_len != config->expected_next_proto.size() ||
        memcmp(next_proto, config->expected_next_proto.data(),
               next_proto_len) != 0) {
      fprintf(stderr, "negotiated next proto mismatch\n");
      return false;
    }
  }

  if (!config->expected_alpn.empty()) {
    const uint8_t *alpn_proto;
    unsigned alpn_proto_len;
    SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
    if (alpn_proto_len != config->expected_alpn.size() ||
        memcmp(alpn_proto, config->expected_alpn.data(),
               alpn_proto_len) != 0) {
      fprintf(stderr, "negotiated alpn proto mismatch\n");
      return false;
    }
  }

  if (config->expect_extended_master_secret) {
    if (!SSL_get_extms_support(ssl)) {
      fprintf(stderr, "No EMS for connection when expected");
      return false;
    }
  }

  if (config->expect_verify_result) {
    int expected_verify_result = config->verify_fail ?
      X509_V_ERR_APPLICATION_VERIFICATION :
      X509_V_OK;

    if (SSL_get_verify_result(ssl) != expected_verify_result) {
      fprintf(stderr, "Wrong certificate verification result\n");
      return false;
    }
  }

  if (!config->psk.empty()) {
    if (SSL_get_peer_cert_chain(ssl) != nullptr) {
      fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
      return false;
    }
  } else if (!config->is_server || config->require_any_client_certificate) {
    if (SSL_get_peer_certificate(ssl) == nullptr) {
      fprintf(stderr, "Received no peer certificate but expected one.\n");
      return false;
    }
  }

  return true;
}

// DoExchange runs a test SSL exchange against the peer. On success, it returns
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
                       SSL_CTX *ssl_ctx, const TestConfig *config,
                       bool is_resume, SSL_SESSION *session) {
  bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
  if (!ssl) {
    return false;
  }

  if (!SetTestConfig(ssl.get(), config) ||
      !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
    return false;
  }

  if (config->fallback_scsv &&
      !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
    return false;
  }
  // Install the certificate synchronously if nothing else will handle it.
  if (!config->use_old_client_cert_callback &&
      !config->async &&
      !InstallCertificate(ssl.get())) {
    return false;
  }
  SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
  if (config->require_any_client_certificate) {
    SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
                   NULL);
  }
  if (config->verify_peer) {
    SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
  }
  if (config->partial_write) {
    SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  }
  if (config->no_tls13) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
  }
  if (config->no_tls12) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
  }
  if (config->no_tls11) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
  }
  if (config->no_tls1) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
  }
  if (config->no_ssl3) {
    SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
  }
  if (!config->host_name.empty() &&
      !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
    return false;
  }
  if (!config->advertise_alpn.empty() &&
      SSL_set_alpn_protos(ssl.get(),
                          (const uint8_t *)config->advertise_alpn.data(),
                          config->advertise_alpn.size()) != 0) {
    return false;
  }
  if (!config->psk.empty()) {
    SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
    SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
  }
  if (!config->psk_identity.empty() &&
      !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
    return false;
  }
  if (!config->srtp_profiles.empty() &&
      SSL_set_tlsext_use_srtp(ssl.get(), config->srtp_profiles.c_str())) {
    return false;
  }
  if (config->min_version != 0 &&
      !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
    return false;
  }
  if (config->max_version != 0 &&
      !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
    return false;
  }
  if (config->mtu != 0) {
    SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
    SSL_set_mtu(ssl.get(), config->mtu);
  }
  if (config->renegotiate_freely) {
    // This is always on for OpenSSL.
  }
  if (!config->check_close_notify) {
    SSL_set_quiet_shutdown(ssl.get(), 1);
  }
  if (config->p384_only) {
    int nid = NID_secp384r1;
    if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
      return false;
    }
  }
  if (config->enable_all_curves) {
    static const int kAllCurves[] = {
      NID_X25519, NID_X9_62_prime256v1, NID_X448, NID_secp521r1, NID_secp384r1
    };
    if (!SSL_set1_curves(ssl.get(), kAllCurves,
                         OPENSSL_ARRAY_SIZE(kAllCurves))) {
      return false;
    }
  }
  if (config->max_cert_list > 0) {
    SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
  }

  if (!config->async) {
    SSL_set_mode(ssl.get(), SSL_MODE_AUTO_RETRY);
  }

  int sock = Connect(config->port);
  if (sock == -1) {
    return false;
  }
  SocketCloser closer(sock);

  bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
  if (!bio) {
    return false;
  }
  if (config->is_dtls) {
    bssl::UniquePtr<BIO> packeted = PacketedBioCreate(!config->async);
    if (!packeted) {
      return false;
    }
    GetTestState(ssl.get())->packeted_bio = packeted.get();
    BIO_push(packeted.get(), bio.release());
    bio = std::move(packeted);
  }
  if (config->async) {
    bssl::UniquePtr<BIO> async_scoped =
        config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
    if (!async_scoped) {
      return false;
    }
    BIO_push(async_scoped.get(), bio.release());
    GetTestState(ssl.get())->async_bio = async_scoped.get();
    bio = std::move(async_scoped);
  }
  SSL_set_bio(ssl.get(), bio.get(), bio.get());
  bio.release();  // SSL_set_bio takes ownership.

  if (session != NULL) {
    if (!config->is_server) {
      if (SSL_set_session(ssl.get(), session) != 1) {
        return false;
      }
    }
  }

#if 0
  // KNOWN BUG: OpenSSL's SSL_get_current_cipher behaves incorrectly when
  // offering resumption.
  if (SSL_get_current_cipher(ssl.get()) != nullptr) {
    fprintf(stderr, "non-null cipher before handshake\n");
    return false;
  }
#endif

  int ret;
  if (config->implicit_handshake) {
    if (config->is_server) {
      SSL_set_accept_state(ssl.get());
    } else {
      SSL_set_connect_state(ssl.get());
    }
  } else {
    do {
      if (config->is_server) {
        ret = SSL_accept(ssl.get());
      } else {
        ret = SSL_connect(ssl.get());
      }
    } while (config->async && RetryAsync(ssl.get(), ret));
    if (ret != 1 ||
        !CheckHandshakeProperties(ssl.get(), is_resume)) {
      return false;
    }

    // Reset the state to assert later that the callback isn't called in
    // renegotiations.
    GetTestState(ssl.get())->got_new_session = false;
  }

  if (config->export_keying_material > 0) {
    std::vector<uint8_t> result(
        static_cast<size_t>(config->export_keying_material));
    if (SSL_export_keying_material(
            ssl.get(), result.data(), result.size(),
            config->export_label.data(), config->export_label.size(),
            reinterpret_cast<const uint8_t*>(config->export_context.data()),
            config->export_context.size(), config->use_export_context) != 1) {
      fprintf(stderr, "failed to export keying material\n");
      return false;
    }
    if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
      return false;
    }
  }

  if (config->write_different_record_sizes) {
    if (config->is_dtls) {
      fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
      return false;
    }
    // This mode writes a number of different record sizes in an attempt to
    // trip up the CBC record splitting code.
    static const size_t kBufLen = 32769;
    std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
    memset(buf.get(), 0x42, kBufLen);
    static const size_t kRecordSizes[] = {
        0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
    for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
      const size_t len = kRecordSizes[i];
      if (len > kBufLen) {
        fprintf(stderr, "Bad kRecordSizes value.\n");
        return false;
      }
      if (WriteAll(ssl.get(), buf.get(), len) < 0) {
        return false;
      }
    }
  } else {
    if (config->shim_writes_first) {
      if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
                   5) < 0) {
        return false;
      }
    }
    if (!config->shim_shuts_down) {
      for (;;) {
        static const size_t kBufLen = 16384;
        std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);

        // Read only 512 bytes at a time in TLS to ensure records may be
        // returned in multiple reads.
        int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512);
        int err = SSL_get_error(ssl.get(), n);
        if (err == SSL_ERROR_ZERO_RETURN ||
            (n == 0 && err == SSL_ERROR_SYSCALL)) {
          if (n != 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          // Stop on either clean or unclean shutdown.
          break;
        } else if (err != SSL_ERROR_NONE) {
          if (n > 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          return false;
        }
        // Successfully read data.
        if (n <= 0) {
          fprintf(stderr, "Invalid SSL_get_error output\n");
          return false;
        }

        // After a successful read, with or without False Start, the handshake
        // must be complete.
        if (!GetTestState(ssl.get())->handshake_done) {
          fprintf(stderr, "handshake was not completed after SSL_read\n");
          return false;
        }

        for (int i = 0; i < n; i++) {
          buf[i] ^= 0xff;
        }
        if (WriteAll(ssl.get(), buf.get(), n) < 0) {
          return false;
        }
      }
    }
  }

  if (!config->is_server &&
      !config->implicit_handshake &&
      // Session tickets are sent post-handshake in TLS 1.3.
      GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
      GetTestState(ssl.get())->got_new_session) {
    fprintf(stderr, "new session was established after the handshake\n");
    return false;
  }

  if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
    bool expect_new_session =
        !config->expect_no_session && !config->shim_shuts_down;
    if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl.get())->got_new_session ? "" : " not");
      return false;
    }
  }

  if (out_session) {
    *out_session = std::move(GetTestState(ssl.get())->new_session);
  }

  ret = DoShutdown(ssl.get());

  if (config->shim_shuts_down && config->check_close_notify) {
    // We initiate shutdown, so |SSL_shutdown| will return in two stages. First
    // it returns zero when our close_notify is sent, then one when the peer's
    // is received.
    if (ret != 0) {
      fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
      return false;
    }
    ret = DoShutdown(ssl.get());
  }

  if (ret != 1) {
    fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
    return false;
  }

  if (SSL_total_renegotiations(ssl.get()) !=
      config->expect_total_renegotiations) {
    fprintf(stderr, "Expected %d renegotiations, got %ld\n",
            config->expect_total_renegotiations,
            SSL_total_renegotiations(ssl.get()));
    return false;
  }

  return true;
}

class StderrDelimiter {
 public:
  ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};

static int Main(int argc, char **argv) {
  // To distinguish ASan's output from ours, add a trailing message to stderr.
  // Anything following this line will be considered an error.
  StderrDelimiter delimiter;

#if defined(OPENSSL_SYS_WINDOWS)
  /* Initialize Winsock. */
  WORD wsa_version = MAKEWORD(2, 2);
  WSADATA wsa_data;
  int wsa_err = WSAStartup(wsa_version, &wsa_data);
  if (wsa_err != 0) {
    fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
    return 1;
  }
  if (wsa_data.wVersion != wsa_version) {
    fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
    return 1;
  }
#else
  signal(SIGPIPE, SIG_IGN);
#endif

  OPENSSL_init_crypto(0, NULL);
  OPENSSL_init_ssl(0, NULL);
  g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
  g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
  if (g_config_index < 0 || g_state_index < 0) {
    return 1;
  }

  TestConfig config;
  if (!ParseConfig(argc - 1, argv + 1, &config)) {
    return Usage(argv[0]);
  }

  bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
  if (!ssl_ctx) {
    ERR_print_errors_fp(stderr);
    return 1;
  }

  bssl::UniquePtr<SSL_SESSION> session;
  for (int i = 0; i < config.resume_count + 1; i++) {
    bool is_resume = i > 0;
    if (is_resume && !config.is_server && !session) {
      fprintf(stderr, "No session to offer.\n");
      return 1;
    }

    bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
    if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
                    offer_session.get())) {
      fprintf(stderr, "Connection %d failed.\n", i + 1);
      ERR_print_errors_fp(stderr);
      return 1;
    }
  }

  return 0;
}

}  // namespace bssl

int main(int argc, char **argv) {
  return bssl::Main(argc, argv);
}