Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
/*
 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
 * Copyright (c) 2015, CloudFlare, Inc.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
 * (2) University of Haifa, Israel
 * (3) CloudFlare, Inc.
 *
 * Reference:
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
 *                          256 Bit Primes"
 */

/*
 * ECDSA low level APIs are deprecated for public use, but still ok for
 * internal use.
 */
#include "internal/deprecated.h"

#include <string.h>

#include "internal/cryptlib.h"
#include "crypto/bn.h"
#include "ec_local.h"
#include "internal/refcount.h"

#if BN_BITS2 != 64
# define TOBN(hi,lo)    lo,hi
#else
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
#endif

#if defined(__GNUC__)
# define ALIGN32        __attribute((aligned(32)))
#elif defined(_MSC_VER)
# define ALIGN32        __declspec(align(32))
#else
# define ALIGN32
#endif

#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
#define P256_LIMBS      (256/BN_BITS2)

typedef unsigned short u16;

typedef struct {
    BN_ULONG X[P256_LIMBS];
    BN_ULONG Y[P256_LIMBS];
    BN_ULONG Z[P256_LIMBS];
} P256_POINT;

typedef struct {
    BN_ULONG X[P256_LIMBS];
    BN_ULONG Y[P256_LIMBS];
} P256_POINT_AFFINE;

typedef P256_POINT_AFFINE PRECOMP256_ROW[64];

/* structure for precomputed multiples of the generator */
struct nistz256_pre_comp_st {
    const EC_GROUP *group;      /* Parent EC_GROUP object */
    size_t w;                   /* Window size */
    /*
     * Constant time access to the X and Y coordinates of the pre-computed,
     * generator multiplies, in the Montgomery domain. Pre-calculated
     * multiplies are stored in affine form.
     */
    PRECOMP256_ROW *precomp;
    void *precomp_storage;
    CRYPTO_REF_COUNT references;
    CRYPTO_RWLOCK *lock;
};

/* Functions implemented in assembly */
/*
 * Most of below mentioned functions *preserve* the property of inputs
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
 * inputs are fully reduced, then output is too. Note that reverse is
 * not true, in sense that given partially reduced inputs output can be
 * either, not unlikely reduced. And "most" in first sentence refers to
 * the fact that given the calculations flow one can tolerate that
 * addition, 1st function below, produces partially reduced result *if*
 * multiplications by 2 and 3, which customarily use addition, fully
 * reduce it. This effectively gives two options: a) addition produces
 * fully reduced result [as long as inputs are, just like remaining
 * functions]; b) addition is allowed to produce partially reduced
 * result, but multiplications by 2 and 3 perform additional reduction
 * step. Choice between the two can be platform-specific, but it was a)
 * in all cases so far...
 */
/* Modular add: res = a+b mod P   */
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
                      const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular mul by 2: res = 2*a mod P */
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular mul by 3: res = 3*a mod P */
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);

/* Modular div by 2: res = a/2 mod P */
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular sub: res = a-b mod P   */
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
                      const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular neg: res = -a mod P    */
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
/* Montgomery mul: res = a*b*2^-256 mod P */
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS],
                           const BN_ULONG b[P256_LIMBS]);
/* Montgomery sqr: res = a*a*2^-256 mod P */
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Convert a number from Montgomery domain, by multiplying with 1 */
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
                            const BN_ULONG in[P256_LIMBS]);
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
                          const BN_ULONG in[P256_LIMBS]);
/* Functions that perform constant time access to the precomputed tables */
void ecp_nistz256_scatter_w5(P256_POINT *val,
                             const P256_POINT *in_t, int idx);
void ecp_nistz256_gather_w5(P256_POINT *val,
                            const P256_POINT *in_t, int idx);
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
                             const P256_POINT_AFFINE *in_t, int idx);
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
                            const P256_POINT_AFFINE *in_t, int idx);

/* One converted into the Montgomery domain */
static const BN_ULONG ONE[P256_LIMBS] = {
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
};

static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);

/* Precomputed tables for the default generator */
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];

/* Recode window to a signed digit, see ecp_nistputil.c for details */
static unsigned int _booth_recode_w5(unsigned int in)
{
    unsigned int s, d;

    s = ~((in >> 5) - 1);
    d = (1 << 6) - in - 1;
    d = (d & s) | (in & ~s);
    d = (d >> 1) + (d & 1);

    return (d << 1) + (s & 1);
}

static unsigned int _booth_recode_w7(unsigned int in)
{
    unsigned int s, d;

    s = ~((in >> 7) - 1);
    d = (1 << 8) - in - 1;
    d = (d & s) | (in & ~s);
    d = (d >> 1) + (d & 1);

    return (d << 1) + (s & 1);
}

static void copy_conditional(BN_ULONG dst[P256_LIMBS],
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
{
    BN_ULONG mask1 = 0-move;
    BN_ULONG mask2 = ~mask1;

    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
    if (P256_LIMBS == 8) {
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
    }
}

static BN_ULONG is_zero(BN_ULONG in)
{
    in |= (0 - in);
    in = ~in;
    in >>= BN_BITS2 - 1;
    return in;
}

static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
                         const BN_ULONG b[P256_LIMBS])
{
    BN_ULONG res;

    res = a[0] ^ b[0];
    res |= a[1] ^ b[1];
    res |= a[2] ^ b[2];
    res |= a[3] ^ b[3];
    if (P256_LIMBS == 8) {
        res |= a[4] ^ b[4];
        res |= a[5] ^ b[5];
        res |= a[6] ^ b[6];
        res |= a[7] ^ b[7];
    }

    return is_zero(res);
}

static BN_ULONG is_one(const BIGNUM *z)
{
    BN_ULONG res = 0;
    BN_ULONG *a = bn_get_words(z);

    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
        res = a[0] ^ ONE[0];
        res |= a[1] ^ ONE[1];
        res |= a[2] ^ ONE[2];
        res |= a[3] ^ ONE[3];
        if (P256_LIMBS == 8) {
            res |= a[4] ^ ONE[4];
            res |= a[5] ^ ONE[5];
            res |= a[6] ^ ONE[6];
            /*
             * no check for a[7] (being zero) on 32-bit platforms,
             * because value of "one" takes only 7 limbs.
             */
        }
        res = is_zero(res);
    }

    return res;
}

/*
 * For reference, this macro is used only when new ecp_nistz256 assembly
 * module is being developed.  For example, configure with
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
 * performing simplest arithmetic operations on 256-bit vectors. Then
 * work on implementation of higher-level functions performing point
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
 * and never define it again. (The correct macro denoting presence of
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
 */
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
void ecp_nistz256_point_add(P256_POINT *r,
                            const P256_POINT *a, const P256_POINT *b);
void ecp_nistz256_point_add_affine(P256_POINT *r,
                                   const P256_POINT *a,
                                   const P256_POINT_AFFINE *b);
#else
/* Point double: r = 2*a */
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
{
    BN_ULONG S[P256_LIMBS];
    BN_ULONG M[P256_LIMBS];
    BN_ULONG Zsqr[P256_LIMBS];
    BN_ULONG tmp0[P256_LIMBS];

    const BN_ULONG *in_x = a->X;
    const BN_ULONG *in_y = a->Y;
    const BN_ULONG *in_z = a->Z;

    BN_ULONG *res_x = r->X;
    BN_ULONG *res_y = r->Y;
    BN_ULONG *res_z = r->Z;

    ecp_nistz256_mul_by_2(S, in_y);

    ecp_nistz256_sqr_mont(Zsqr, in_z);

    ecp_nistz256_sqr_mont(S, S);

    ecp_nistz256_mul_mont(res_z, in_z, in_y);
    ecp_nistz256_mul_by_2(res_z, res_z);

    ecp_nistz256_add(M, in_x, Zsqr);
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);

    ecp_nistz256_sqr_mont(res_y, S);
    ecp_nistz256_div_by_2(res_y, res_y);

    ecp_nistz256_mul_mont(M, M, Zsqr);
    ecp_nistz256_mul_by_3(M, M);

    ecp_nistz256_mul_mont(S, S, in_x);
    ecp_nistz256_mul_by_2(tmp0, S);

    ecp_nistz256_sqr_mont(res_x, M);

    ecp_nistz256_sub(res_x, res_x, tmp0);
    ecp_nistz256_sub(S, S, res_x);

    ecp_nistz256_mul_mont(S, S, M);
    ecp_nistz256_sub(res_y, S, res_y);
}

/* Point addition: r = a+b */
static void ecp_nistz256_point_add(P256_POINT *r,
                                   const P256_POINT *a, const P256_POINT *b)
{
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
    BN_ULONG Z1sqr[P256_LIMBS];
    BN_ULONG Z2sqr[P256_LIMBS];
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
    BN_ULONG Hsqr[P256_LIMBS];
    BN_ULONG Rsqr[P256_LIMBS];
    BN_ULONG Hcub[P256_LIMBS];

    BN_ULONG res_x[P256_LIMBS];
    BN_ULONG res_y[P256_LIMBS];
    BN_ULONG res_z[P256_LIMBS];

    BN_ULONG in1infty, in2infty;

    const BN_ULONG *in1_x = a->X;
    const BN_ULONG *in1_y = a->Y;
    const BN_ULONG *in1_z = a->Z;

    const BN_ULONG *in2_x = b->X;
    const BN_ULONG *in2_y = b->Y;
    const BN_ULONG *in2_z = b->Z;

    /*
     * Infinity in encoded as (,,0)
     */
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
    if (P256_LIMBS == 8)
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);

    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
    if (P256_LIMBS == 8)
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);

    in1infty = is_zero(in1infty);
    in2infty = is_zero(in2infty);

    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */

    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */

    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */

    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */

    /*
     * The formulae are incorrect if the points are equal so we check for
     * this and do doubling if this happens.
     *
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
     * that are bound to the affine coordinates (xi, yi) by the following
     * equations:
     *     - xi = Xi / (Zi)^2
     *     - y1 = Yi / (Zi)^3
     *
     * For the sake of optimization, the algorithm operates over
     * intermediate variables U1, U2 and S1, S2 that are derived from
     * the projective coordinates:
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
     *
     * It is easy to prove that is_equal(U1, U2) implies that the affine
     * x-coordinates are equal, or either point is at infinity.
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
     * equal, or either point is at infinity.
     *
     * The special case of either point being the point at infinity (Z1 or Z2
     * is zero), is handled separately later on in this function, so we avoid
     * jumping to point_double here in those special cases.
     *
     * When both points are inverse of each other, we know that the affine
     * x-coordinates are equal, and the y-coordinates have different sign.
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
     * will equal 0, thus the result is infinity, if we simply let this
     * function continue normally.
     *
     * We use bitwise operations to avoid potential side-channels introduced by
     * the short-circuiting behaviour of boolean operators.
     */
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
        /*
         * This is obviously not constant-time but it should never happen during
         * single point multiplication, so there is no timing leak for ECDH or
         * ECDSA signing.
         */
        ecp_nistz256_point_double(r, a);
        return;
    }

    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */

    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */

    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
    ecp_nistz256_sub(res_x, res_x, Hcub);

    ecp_nistz256_sub(res_y, U2, res_x);

    ecp_nistz256_mul_mont(S2, S1, Hcub);
    ecp_nistz256_mul_mont(res_y, R, res_y);
    ecp_nistz256_sub(res_y, res_y, S2);

    copy_conditional(res_x, in2_x, in1infty);
    copy_conditional(res_y, in2_y, in1infty);
    copy_conditional(res_z, in2_z, in1infty);

    copy_conditional(res_x, in1_x, in2infty);
    copy_conditional(res_y, in1_y, in2infty);
    copy_conditional(res_z, in1_z, in2infty);

    memcpy(r->X, res_x, sizeof(res_x));
    memcpy(r->Y, res_y, sizeof(res_y));
    memcpy(r->Z, res_z, sizeof(res_z));
}

/* Point addition when b is known to be affine: r = a+b */
static void ecp_nistz256_point_add_affine(P256_POINT *r,
                                          const P256_POINT *a,
                                          const P256_POINT_AFFINE *b)
{
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
    BN_ULONG Z1sqr[P256_LIMBS];
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
    BN_ULONG Hsqr[P256_LIMBS];
    BN_ULONG Rsqr[P256_LIMBS];
    BN_ULONG Hcub[P256_LIMBS];

    BN_ULONG res_x[P256_LIMBS];
    BN_ULONG res_y[P256_LIMBS];
    BN_ULONG res_z[P256_LIMBS];

    BN_ULONG in1infty, in2infty;

    const BN_ULONG *in1_x = a->X;
    const BN_ULONG *in1_y = a->Y;
    const BN_ULONG *in1_z = a->Z;

    const BN_ULONG *in2_x = b->X;
    const BN_ULONG *in2_y = b->Y;

    /*
     * Infinity in encoded as (,,0)
     */
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
    if (P256_LIMBS == 8)
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);

    /*
     * In affine representation we encode infinity as (0,0), which is
     * not on the curve, so it is OK
     */
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
    if (P256_LIMBS == 8)
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);

    in1infty = is_zero(in1infty);
    in2infty = is_zero(in2infty);

    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */

    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */

    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */

    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */

    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */

    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */

    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */

    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
    ecp_nistz256_sub(res_x, res_x, Hcub);
    ecp_nistz256_sub(H, U2, res_x);

    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
    ecp_nistz256_mul_mont(H, H, R);
    ecp_nistz256_sub(res_y, H, S2);

    copy_conditional(res_x, in2_x, in1infty);
    copy_conditional(res_x, in1_x, in2infty);

    copy_conditional(res_y, in2_y, in1infty);
    copy_conditional(res_y, in1_y, in2infty);

    copy_conditional(res_z, ONE, in1infty);
    copy_conditional(res_z, in1_z, in2infty);

    memcpy(r->X, res_x, sizeof(res_x));
    memcpy(r->Y, res_y, sizeof(res_y));
    memcpy(r->Z, res_z, sizeof(res_z));
}
#endif

/* r = in^-1 mod p */
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
                                     const BN_ULONG in[P256_LIMBS])
{
    /*
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
     */
    BN_ULONG p2[P256_LIMBS];
    BN_ULONG p4[P256_LIMBS];
    BN_ULONG p8[P256_LIMBS];
    BN_ULONG p16[P256_LIMBS];
    BN_ULONG p32[P256_LIMBS];
    BN_ULONG res[P256_LIMBS];
    int i;

    ecp_nistz256_sqr_mont(res, in);
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */

    ecp_nistz256_sqr_mont(res, p2);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */

    ecp_nistz256_sqr_mont(res, p4);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */

    ecp_nistz256_sqr_mont(res, p8);
    for (i = 0; i < 7; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */

    ecp_nistz256_sqr_mont(res, p16);
    for (i = 0; i < 15; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */

    ecp_nistz256_sqr_mont(res, p32);
    for (i = 0; i < 31; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, in);

    for (i = 0; i < 32 * 4; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p32);

    for (i = 0; i < 32; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p32);

    for (i = 0; i < 16; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p16);

    for (i = 0; i < 8; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p8);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p4);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p2);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, in);

    memcpy(r, res, sizeof(res));
}

/*
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
 * returns one if it fits. Otherwise it returns zero.
 */
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
                                                    const BIGNUM *in)
{
    return bn_copy_words(out, in, P256_LIMBS);
}

/* r = sum(scalar[i]*point[i]) */
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
                                            P256_POINT *r,
                                            const BIGNUM **scalar,
                                            const EC_POINT **point,
                                            size_t num, BN_CTX *ctx)
{
    size_t i;
    int j, ret = 0;
    unsigned int idx;
    unsigned char (*p_str)[33] = NULL;
    const unsigned int window_size = 5;
    const unsigned int mask = (1 << (window_size + 1)) - 1;
    unsigned int wvalue;
    P256_POINT *temp;           /* place for 5 temporary points */
    const BIGNUM **scalars = NULL;
    P256_POINT (*table)[16] = NULL;
    void *table_storage = NULL;

    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
        || (table_storage =
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
        || (p_str =
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    table = (void *)ALIGNPTR(table_storage, 64);
    temp = (P256_POINT *)(table + num);

    for (i = 0; i < num; i++) {
        P256_POINT *row = table[i];

        /* This is an unusual input, we don't guarantee constant-timeness. */
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
            BIGNUM *mod;

            if ((mod = BN_CTX_get(ctx)) == NULL)
                goto err;
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
                goto err;
            }
            scalars[i] = mod;
        } else
            scalars[i] = scalar[i];

        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];

            p_str[i][j + 0] = (unsigned char)d;
            p_str[i][j + 1] = (unsigned char)(d >> 8);
            p_str[i][j + 2] = (unsigned char)(d >> 16);
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
            if (BN_BYTES == 8) {
                d >>= 8;
                p_str[i][j + 4] = (unsigned char)d;
                p_str[i][j + 5] = (unsigned char)(d >> 8);
                p_str[i][j + 6] = (unsigned char)(d >> 16);
                p_str[i][j + 7] = (unsigned char)(d >> 24);
            }
        }
        for (; j < 33; j++)
            p_str[i][j] = 0;

        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
            goto err;
        }

        /*
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
         * is not stored. All other values are actually stored with an offset
         * of -1 in table.
         */

        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
    }

    idx = 255;

    wvalue = p_str[0][(idx - 1) / 8];
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;

    /*
     * We gather to temp[0], because we know it's position relative
     * to table
     */
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
    memcpy(r, &temp[0], sizeof(temp[0]));

    while (idx >= 5) {
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
            unsigned int off = (idx - 1) / 8;

            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;

            wvalue = _booth_recode_w5(wvalue);

            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);

            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));

            ecp_nistz256_point_add(r, r, &temp[0]);
        }

        idx -= window_size;

        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
    }

    /* Final window */
    for (i = 0; i < num; i++) {
        wvalue = p_str[i][0];
        wvalue = (wvalue << 1) & mask;

        wvalue = _booth_recode_w5(wvalue);

        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);

        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);

        ecp_nistz256_point_add(r, r, &temp[0]);
    }

    ret = 1;
 err:
    OPENSSL_free(table_storage);
    OPENSSL_free(p_str);
    OPENSSL_free(scalars);
    return ret;
}

/* Coordinates of G, for which we have precomputed tables */
static const BN_ULONG def_xG[P256_LIMBS] = {
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
};

static const BN_ULONG def_yG[P256_LIMBS] = {
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
};

/*
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
 * generator.
 */
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
{
    return (bn_get_top(generator->X) == P256_LIMBS) &&
        (bn_get_top(generator->Y) == P256_LIMBS) &&
        is_equal(bn_get_words(generator->X), def_xG) &&
        is_equal(bn_get_words(generator->Y), def_yG) &&
        is_one(generator->Z);
}

__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
{
    /*
     * We precompute a table for a Booth encoded exponent (wNAF) based
     * computation. Each table holds 64 values for safe access, with an
     * implicit value of infinity at index zero. We use window of size 7, and
     * therefore require ceil(256/7) = 37 tables.
     */
    const BIGNUM *order;
    EC_POINT *P = NULL, *T = NULL;
    const EC_POINT *generator;
    NISTZ256_PRE_COMP *pre_comp;
    BN_CTX *new_ctx = NULL;
    int i, j, k, ret = 0;
    size_t w;

    PRECOMP256_ROW *preComputedTable = NULL;
    unsigned char *precomp_storage = NULL;

    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
    EC_pre_comp_free(group);
    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
        return 0;
    }

    if (ecp_nistz256_is_affine_G(generator)) {
        /*
         * No need to calculate tables for the standard generator because we
         * have them statically.
         */
        return 1;
    }

    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
        return 0;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
        if (ctx == NULL)
            goto err;
    }

    BN_CTX_start(ctx);

    order = EC_GROUP_get0_order(group);
    if (order == NULL)
        goto err;

    if (BN_is_zero(order)) {
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
        goto err;
    }

    w = 7;

    if ((precomp_storage =
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);

    P = EC_POINT_new(group);
    T = EC_POINT_new(group);
    if (P == NULL || T == NULL)
        goto err;

    /*
     * The zero entry is implicitly infinity, and we skip it, storing other
     * values with -1 offset.
     */
    if (!EC_POINT_copy(T, generator))
        goto err;

    for (k = 0; k < 64; k++) {
        if (!EC_POINT_copy(P, T))
            goto err;
        for (j = 0; j < 37; j++) {
            P256_POINT_AFFINE temp;
            /*
             * It would be faster to use EC_POINTs_make_affine and
             * make multiple points affine at the same time.
             */
            if (group->meth->make_affine == NULL
                || !group->meth->make_affine(group, P, ctx))
                goto err;
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
                goto err;
            }
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
            for (i = 0; i < 7; i++) {
                if (!EC_POINT_dbl(group, P, P, ctx))
                    goto err;
            }
        }
        if (!EC_POINT_add(group, T, T, generator, ctx))
            goto err;
    }

    pre_comp->group = group;
    pre_comp->w = w;
    pre_comp->precomp = preComputedTable;
    pre_comp->precomp_storage = precomp_storage;
    precomp_storage = NULL;
    SETPRECOMP(group, nistz256, pre_comp);
    pre_comp = NULL;
    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);

    EC_nistz256_pre_comp_free(pre_comp);
    OPENSSL_free(precomp_storage);
    EC_POINT_free(P);
    EC_POINT_free(T);
    return ret;
}

__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
                                               const P256_POINT_AFFINE *in,
                                               BN_CTX *ctx)
{
    int ret = 0;

    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
        out->Z_is_one = 1;

    return ret;
}

/* r = scalar*G + sum(scalars[i]*points[i]) */
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
                                          EC_POINT *r,
                                          const BIGNUM *scalar,
                                          size_t num,
                                          const EC_POINT *points[],
                                          const BIGNUM *scalars[], BN_CTX *ctx)
{
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
    unsigned char p_str[33] = { 0 };
    const PRECOMP256_ROW *preComputedTable = NULL;
    const NISTZ256_PRE_COMP *pre_comp = NULL;
    const EC_POINT *generator = NULL;
    const BIGNUM **new_scalars = NULL;
    const EC_POINT **new_points = NULL;
    unsigned int idx = 0;
    const unsigned int window_size = 7;
    const unsigned int mask = (1 << (window_size + 1)) - 1;
    unsigned int wvalue;
    ALIGN32 union {
        P256_POINT p;
        P256_POINT_AFFINE a;
    } t, p;
    BIGNUM *tmp_scalar;

    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
        return 0;
    }

    memset(&p, 0, sizeof(p));
    BN_CTX_start(ctx);

    if (scalar) {
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL) {
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
            goto err;
        }

        /* look if we can use precomputed multiples of generator */
        pre_comp = group->pre_comp.nistz256;

        if (pre_comp) {
            /*
             * If there is a precomputed table for the generator, check that
             * it was generated with the same generator.
             */
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
            if (pre_comp_generator == NULL)
                goto err;

            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
                                              group, &p.a, ctx)) {
                EC_POINT_free(pre_comp_generator);
                goto err;
            }

            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;

            EC_POINT_free(pre_comp_generator);
        }

        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
            /*
             * If there is no precomputed data, but the generator is the
             * default, a hardcoded table of precomputed data is used. This
             * is because applications, such as Apache, do not use
             * EC_KEY_precompute_mult.
             */
            preComputedTable = ecp_nistz256_precomputed;
        }

        if (preComputedTable) {
            BN_ULONG infty;

            if ((BN_num_bits(scalar) > 256)
                || BN_is_negative(scalar)) {
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
                    goto err;

                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
                    goto err;
                }
                scalar = tmp_scalar;
            }

            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];

                p_str[i + 0] = (unsigned char)d;
                p_str[i + 1] = (unsigned char)(d >> 8);
                p_str[i + 2] = (unsigned char)(d >> 16);
                p_str[i + 3] = (unsigned char)(d >>= 24);
                if (BN_BYTES == 8) {
                    d >>= 8;
                    p_str[i + 4] = (unsigned char)d;
                    p_str[i + 5] = (unsigned char)(d >> 8);
                    p_str[i + 6] = (unsigned char)(d >> 16);
                    p_str[i + 7] = (unsigned char)(d >> 24);
                }
            }

            for (; i < 33; i++)
                p_str[i] = 0;

            /* First window */
            wvalue = (p_str[0] << 1) & mask;
            idx += window_size;

            wvalue = _booth_recode_w7(wvalue);

            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
                                   wvalue >> 1);

            ecp_nistz256_neg(p.p.Z, p.p.Y);
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);

            /*
             * Since affine infinity is encoded as (0,0) and
             * Jacobian is (,,0), we need to harmonize them
             * by assigning "one" or zero to Z.
             */
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
            if (P256_LIMBS == 8)
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);

            infty = 0 - is_zero(infty);
            infty = ~infty;

            p.p.Z[0] = ONE[0] & infty;
            p.p.Z[1] = ONE[1] & infty;
            p.p.Z[2] = ONE[2] & infty;
            p.p.Z[3] = ONE[3] & infty;
            if (P256_LIMBS == 8) {
                p.p.Z[4] = ONE[4] & infty;
                p.p.Z[5] = ONE[5] & infty;
                p.p.Z[6] = ONE[6] & infty;
                p.p.Z[7] = ONE[7] & infty;
            }

            for (i = 1; i < 37; i++) {
                unsigned int off = (idx - 1) / 8;
                wvalue = p_str[off] | p_str[off + 1] << 8;
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
                idx += window_size;

                wvalue = _booth_recode_w7(wvalue);

                ecp_nistz256_gather_w7(&t.a,
                                       preComputedTable[i], wvalue >> 1);

                ecp_nistz256_neg(t.p.Z, t.a.Y);
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);

                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
            }
        } else {
            p_is_infinity = 1;
            no_precomp_for_generator = 1;
        }
    } else
        p_is_infinity = 1;

    if (no_precomp_for_generator) {
        /*
         * Without a precomputed table for the generator, it has to be
         * handled like a normal point.
         */
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
        if (new_scalars == NULL) {
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
            goto err;
        }

        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
        if (new_points == NULL) {
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
            goto err;
        }

        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
        new_scalars[num] = scalar;
        memcpy(new_points, points, num * sizeof(EC_POINT *));
        new_points[num] = generator;

        scalars = new_scalars;
        points = new_points;
        num++;
    }

    if (num) {
        P256_POINT *out = &t.p;
        if (p_is_infinity)
            out = &p.p;

        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
            goto err;

        if (!p_is_infinity)
            ecp_nistz256_point_add(&p.p, &p.p, out);
    }

    /* Not constant-time, but we're only operating on the public output. */
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
        goto err;
    }
    r->Z_is_one = is_one(r->Z) & 1;

    ret = 1;

err:
    BN_CTX_end(ctx);
    OPENSSL_free(new_points);
    OPENSSL_free(new_scalars);
    return ret;
}

__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
                                          const EC_POINT *point,
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
    BN_ULONG z_inv2[P256_LIMBS];
    BN_ULONG z_inv3[P256_LIMBS];
    BN_ULONG x_aff[P256_LIMBS];
    BN_ULONG y_aff[P256_LIMBS];
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];

    if (EC_POINT_is_at_infinity(group, point)) {
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
        return 0;
    }

    ecp_nistz256_mod_inverse(z_inv3, point_z);
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);

    if (x != NULL) {
        ecp_nistz256_from_mont(x_ret, x_aff);
        if (!bn_set_words(x, x_ret, P256_LIMBS))
            return 0;
    }

    if (y != NULL) {
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
        ecp_nistz256_from_mont(y_ret, y_aff);
        if (!bn_set_words(y, y_ret, P256_LIMBS))
            return 0;
    }

    return 1;
}

static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
{
    NISTZ256_PRE_COMP *ret = NULL;

    if (!group)
        return NULL;

    ret = OPENSSL_zalloc(sizeof(*ret));

    if (ret == NULL) {
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
        return ret;
    }

    ret->group = group;
    ret->w = 6;                 /* default */
    ret->references = 1;

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
    return ret;
}

NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
{
    int i;
    if (p != NULL)
        CRYPTO_UP_REF(&p->references, &i, p->lock);
    return p;
}

void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
{
    int i;

    if (pre == NULL)
        return;

    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
    REF_PRINT_COUNT("EC_nistz256", pre);
    if (i > 0)
        return;
    REF_ASSERT_ISNT(i < 0);

    OPENSSL_free(pre->precomp_storage);
    CRYPTO_THREAD_lock_free(pre->lock);
    OPENSSL_free(pre);
}


static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
{
    /* There is a hard-coded table for the default generator. */
    const EC_POINT *generator = EC_GROUP_get0_generator(group);

    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
        /* There is a hard-coded table for the default generator. */
        return 1;
    }

    return HAVEPRECOMP(group, nistz256);
}

#if defined(__x86_64) || defined(__x86_64__) || \
    defined(_M_AMD64) || defined(_M_X64) || \
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
    defined(__aarch64__)
/*
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
 */
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
                               const BN_ULONG a[P256_LIMBS],
                               const BN_ULONG b[P256_LIMBS]);
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
                               const BN_ULONG a[P256_LIMBS],
                               BN_ULONG rep);

static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
                                    const BIGNUM *x, BN_CTX *ctx)
{
    /* RR = 2^512 mod ord(p256) */
    static const BN_ULONG RR[P256_LIMBS]  = {
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
    };
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
    static const BN_ULONG one[P256_LIMBS] = {
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
    };
    /*
     * We don't use entry 0 in the table, so we omit it and address
     * with -1 offset.
     */
    BN_ULONG table[15][P256_LIMBS];
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
    int i, ret = 0;
    enum {
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
    };

    /*
     * Catch allocation failure early.
     */
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
        goto err;
    }

    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
        BIGNUM *tmp;

        if ((tmp = BN_CTX_get(ctx)) == NULL
            || !BN_nnmod(tmp, x, group->order, ctx)) {
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
            goto err;
        }
        x = tmp;
    }

    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
        goto err;
    }

    ecp_nistz256_ord_mul_mont(table[0], t, RR);
#if 0
    /*
     * Original sparse-then-fixed-window algorithm, retained for reference.
     */
    for (i = 2; i < 16; i += 2) {
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
    }

    /*
     * The top 128bit of the exponent are highly redudndant, so we
     * perform an optimized flow
     */
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */

    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */

    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */

    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */

    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */

    /*
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
     */
    for(i = 0; i < 32; i++) {
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
         * split into nibbles */
        static const unsigned char expLo[32]  = {
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
        };

        ecp_nistz256_ord_sqr_mont(out, out, 4);
        /* The exponent is public, no need in constant-time access */
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
    }
#else
    /*
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
     *
     * Even though this code path spares 12 squarings, 4.5%, and 13
     * multiplications, 25%, on grand scale sign operation is not that
     * much faster, not more that 2%...
     */

    /* pre-calculate powers */
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);

    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);

    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);

    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);

    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);

    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);

    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);

    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);

    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);

    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);

    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);

    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);

    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);

    /* calculations */
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);

    for (i = 0; i < 27; i++) {
        static const struct { unsigned char p, i; } chain[27] = {
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
        };

        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
    }
#endif
    ecp_nistz256_ord_mul_mont(out, out, one);

    /*
     * Can't fail, but check return code to be consistent anyway.
     */
    if (!bn_set_words(r, out, P256_LIMBS))
        goto err;

    ret = 1;
err:
    return ret;
}
#else
# define ecp_nistz256_inv_mod_ord NULL
#endif

const EC_METHOD *EC_GFp_nistz256_method(void)
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_prime_field,
        ossl_ec_GFp_mont_group_init,
        ossl_ec_GFp_mont_group_finish,
        ossl_ec_GFp_mont_group_clear_finish,
        ossl_ec_GFp_mont_group_copy,
        ossl_ec_GFp_mont_group_set_curve,
        ossl_ec_GFp_simple_group_get_curve,
        ossl_ec_GFp_simple_group_get_degree,
        ossl_ec_group_simple_order_bits,
        ossl_ec_GFp_simple_group_check_discriminant,
        ossl_ec_GFp_simple_point_init,
        ossl_ec_GFp_simple_point_finish,
        ossl_ec_GFp_simple_point_clear_finish,
        ossl_ec_GFp_simple_point_copy,
        ossl_ec_GFp_simple_point_set_to_infinity,
        ossl_ec_GFp_simple_point_set_affine_coordinates,
        ecp_nistz256_get_affine,
        0, 0, 0,
        ossl_ec_GFp_simple_add,
        ossl_ec_GFp_simple_dbl,
        ossl_ec_GFp_simple_invert,
        ossl_ec_GFp_simple_is_at_infinity,
        ossl_ec_GFp_simple_is_on_curve,
        ossl_ec_GFp_simple_cmp,
        ossl_ec_GFp_simple_make_affine,
        ossl_ec_GFp_simple_points_make_affine,
        ecp_nistz256_points_mul,                    /* mul */
        ecp_nistz256_mult_precompute,               /* precompute_mult */
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
        ossl_ec_GFp_mont_field_mul,
        ossl_ec_GFp_mont_field_sqr,
        0,                                          /* field_div */
        ossl_ec_GFp_mont_field_inv,
        ossl_ec_GFp_mont_field_encode,
        ossl_ec_GFp_mont_field_decode,
        ossl_ec_GFp_mont_field_set_to_one,
        ossl_ec_key_simple_priv2oct,
        ossl_ec_key_simple_oct2priv,
        0, /* set private */
        ossl_ec_key_simple_generate_key,
        ossl_ec_key_simple_check_key,
        ossl_ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ossl_ecdh_simple_compute_key,
        ossl_ecdsa_simple_sign_setup,
        ossl_ecdsa_simple_sign_sig,
        ossl_ecdsa_simple_verify_sig,
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
        0,                                          /* blind_coordinates */
        0,                                          /* ladder_pre */
        0,                                          /* ladder_step */
        0                                           /* ladder_post */
    };

    return &ret;
}