Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*
 * Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * SHA256 low level APIs are deprecated for public use, but still ok for
 * internal use.
 */
#include "internal/deprecated.h"

#include <openssl/opensslconf.h>

#include <stdlib.h>
#include <string.h>

#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>
#include "internal/endian.h"

int SHA224_Init(SHA256_CTX *c)
{
    memset(c, 0, sizeof(*c));
    c->h[0] = 0xc1059ed8UL;
    c->h[1] = 0x367cd507UL;
    c->h[2] = 0x3070dd17UL;
    c->h[3] = 0xf70e5939UL;
    c->h[4] = 0xffc00b31UL;
    c->h[5] = 0x68581511UL;
    c->h[6] = 0x64f98fa7UL;
    c->h[7] = 0xbefa4fa4UL;
    c->md_len = SHA224_DIGEST_LENGTH;
    return 1;
}

int SHA256_Init(SHA256_CTX *c)
{
    memset(c, 0, sizeof(*c));
    c->h[0] = 0x6a09e667UL;
    c->h[1] = 0xbb67ae85UL;
    c->h[2] = 0x3c6ef372UL;
    c->h[3] = 0xa54ff53aUL;
    c->h[4] = 0x510e527fUL;
    c->h[5] = 0x9b05688cUL;
    c->h[6] = 0x1f83d9abUL;
    c->h[7] = 0x5be0cd19UL;
    c->md_len = SHA256_DIGEST_LENGTH;
    return 1;
}

int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
{
    return SHA256_Update(c, data, len);
}

int SHA224_Final(unsigned char *md, SHA256_CTX *c)
{
    return SHA256_Final(md, c);
}

#define DATA_ORDER_IS_BIG_ENDIAN

#define HASH_LONG               SHA_LONG
#define HASH_CTX                SHA256_CTX
#define HASH_CBLOCK             SHA_CBLOCK

/*
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
 * default: case below covers for it. It's not clear however if it's
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
 * but if it is, then default: case shall be extended. For reference.
 * Idea behind separate cases for pre-defined lengths is to let the
 * compiler decide if it's appropriate to unroll small loops.
 */
#define HASH_MAKE_STRING(c,s)   do {    \
        unsigned long ll;               \
        unsigned int  nn;               \
        switch ((c)->md_len)            \
        {   case SHA224_DIGEST_LENGTH:  \
                for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)       \
                {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
                break;                  \
            case SHA256_DIGEST_LENGTH:  \
                for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)       \
                {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
                break;                  \
            default:                    \
                if ((c)->md_len > SHA256_DIGEST_LENGTH) \
                    return 0;                           \
                for (nn=0;nn<(c)->md_len/4;nn++)                \
                {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
                break;                  \
        }                               \
        } while (0)

#define HASH_UPDATE             SHA256_Update
#define HASH_TRANSFORM          SHA256_Transform
#define HASH_FINAL              SHA256_Final
#define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
#ifndef SHA256_ASM
static
#endif
void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);

#include "crypto/md32_common.h"

#ifndef SHA256_ASM
static const SHA_LONG K256[64] = {
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

/*
 * FIPS specification refers to right rotations, while our ROTATE macro
 * is left one. This is why you might notice that rotation coefficients
 * differ from those observed in FIPS document by 32-N...
 */
# define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
# define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
# define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
# define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))

# define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
# define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

# ifdef OPENSSL_SMALL_FOOTPRINT

static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
                                    size_t num)
{
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
    SHA_LONG X[16], l;
    int i;
    const unsigned char *data = in;

    while (num--) {

        a = ctx->h[0];
        b = ctx->h[1];
        c = ctx->h[2];
        d = ctx->h[3];
        e = ctx->h[4];
        f = ctx->h[5];
        g = ctx->h[6];
        h = ctx->h[7];

        for (i = 0; i < 16; i++) {
            (void)HOST_c2l(data, l);
            T1 = X[i] = l;
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
            T2 = Sigma0(a) + Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = d + T1;
            d = c;
            c = b;
            b = a;
            a = T1 + T2;
        }

        for (; i < 64; i++) {
            s0 = X[(i + 1) & 0x0f];
            s0 = sigma0(s0);
            s1 = X[(i + 14) & 0x0f];
            s1 = sigma1(s1);

            T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
            T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
            T2 = Sigma0(a) + Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = d + T1;
            d = c;
            c = b;
            b = a;
            a = T1 + T2;
        }

        ctx->h[0] += a;
        ctx->h[1] += b;
        ctx->h[2] += c;
        ctx->h[3] += d;
        ctx->h[4] += e;
        ctx->h[5] += f;
        ctx->h[6] += g;
        ctx->h[7] += h;

    }
}

# else

#  define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
        T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
        h = Sigma0(a) + Maj(a,b,c);                     \
        d += T1;        h += T1;                } while (0)

#  define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
        s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
        s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
        T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
        ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)

static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
                                    size_t num)
{
    unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
    SHA_LONG X[16];
    int i;
    const unsigned char *data = in;
    DECLARE_IS_ENDIAN;

    while (num--) {

        a = ctx->h[0];
        b = ctx->h[1];
        c = ctx->h[2];
        d = ctx->h[3];
        e = ctx->h[4];
        f = ctx->h[5];
        g = ctx->h[6];
        h = ctx->h[7];

        if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
            && ((size_t)in % 4) == 0) {
            const SHA_LONG *W = (const SHA_LONG *)data;

            T1 = X[0] = W[0];
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
            T1 = X[1] = W[1];
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
            T1 = X[2] = W[2];
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
            T1 = X[3] = W[3];
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
            T1 = X[4] = W[4];
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
            T1 = X[5] = W[5];
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
            T1 = X[6] = W[6];
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
            T1 = X[7] = W[7];
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
            T1 = X[8] = W[8];
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
            T1 = X[9] = W[9];
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
            T1 = X[10] = W[10];
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
            T1 = X[11] = W[11];
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
            T1 = X[12] = W[12];
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
            T1 = X[13] = W[13];
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
            T1 = X[14] = W[14];
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
            T1 = X[15] = W[15];
            ROUND_00_15(15, b, c, d, e, f, g, h, a);

            data += SHA256_CBLOCK;
        } else {
            SHA_LONG l;

            (void)HOST_c2l(data, l);
            T1 = X[0] = l;
            ROUND_00_15(0, a, b, c, d, e, f, g, h);
            (void)HOST_c2l(data, l);
            T1 = X[1] = l;
            ROUND_00_15(1, h, a, b, c, d, e, f, g);
            (void)HOST_c2l(data, l);
            T1 = X[2] = l;
            ROUND_00_15(2, g, h, a, b, c, d, e, f);
            (void)HOST_c2l(data, l);
            T1 = X[3] = l;
            ROUND_00_15(3, f, g, h, a, b, c, d, e);
            (void)HOST_c2l(data, l);
            T1 = X[4] = l;
            ROUND_00_15(4, e, f, g, h, a, b, c, d);
            (void)HOST_c2l(data, l);
            T1 = X[5] = l;
            ROUND_00_15(5, d, e, f, g, h, a, b, c);
            (void)HOST_c2l(data, l);
            T1 = X[6] = l;
            ROUND_00_15(6, c, d, e, f, g, h, a, b);
            (void)HOST_c2l(data, l);
            T1 = X[7] = l;
            ROUND_00_15(7, b, c, d, e, f, g, h, a);
            (void)HOST_c2l(data, l);
            T1 = X[8] = l;
            ROUND_00_15(8, a, b, c, d, e, f, g, h);
            (void)HOST_c2l(data, l);
            T1 = X[9] = l;
            ROUND_00_15(9, h, a, b, c, d, e, f, g);
            (void)HOST_c2l(data, l);
            T1 = X[10] = l;
            ROUND_00_15(10, g, h, a, b, c, d, e, f);
            (void)HOST_c2l(data, l);
            T1 = X[11] = l;
            ROUND_00_15(11, f, g, h, a, b, c, d, e);
            (void)HOST_c2l(data, l);
            T1 = X[12] = l;
            ROUND_00_15(12, e, f, g, h, a, b, c, d);
            (void)HOST_c2l(data, l);
            T1 = X[13] = l;
            ROUND_00_15(13, d, e, f, g, h, a, b, c);
            (void)HOST_c2l(data, l);
            T1 = X[14] = l;
            ROUND_00_15(14, c, d, e, f, g, h, a, b);
            (void)HOST_c2l(data, l);
            T1 = X[15] = l;
            ROUND_00_15(15, b, c, d, e, f, g, h, a);
        }

        for (i = 16; i < 64; i += 8) {
            ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
            ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
            ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
            ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
            ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
            ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
            ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
            ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
        }

        ctx->h[0] += a;
        ctx->h[1] += b;
        ctx->h[2] += c;
        ctx->h[3] += d;
        ctx->h[4] += e;
        ctx->h[5] += f;
        ctx->h[6] += g;
        ctx->h[7] += h;

    }
}

# endif
#endif                         /* SHA256_ASM */