Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
.\"	$NetBSD: EVP_RAND.3,v 1.2 2023/05/31 19:42:42 christos Exp $
.\"
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "EVP_RAND 3"
.TH EVP_RAND 3 "2023-05-31" "3.0.9" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
EVP_RAND, EVP_RAND_fetch, EVP_RAND_free, EVP_RAND_up_ref, EVP_RAND_CTX,
EVP_RAND_CTX_new, EVP_RAND_CTX_free, EVP_RAND_instantiate,
EVP_RAND_uninstantiate, EVP_RAND_generate, EVP_RAND_reseed, EVP_RAND_nonce,
EVP_RAND_enable_locking, EVP_RAND_verify_zeroization, EVP_RAND_get_strength,
EVP_RAND_get_state,
EVP_RAND_get0_provider, EVP_RAND_CTX_get0_rand, EVP_RAND_is_a,
EVP_RAND_get0_name, EVP_RAND_names_do_all,
EVP_RAND_get0_description,
EVP_RAND_CTX_get_params,
EVP_RAND_CTX_set_params, EVP_RAND_do_all_provided, EVP_RAND_get_params,
EVP_RAND_gettable_ctx_params, EVP_RAND_settable_ctx_params,
EVP_RAND_CTX_gettable_params, EVP_RAND_CTX_settable_params,
EVP_RAND_gettable_params, EVP_RAND_STATE_UNINITIALISED, EVP_RAND_STATE_READY,
EVP_RAND_STATE_ERROR \- EVP RAND routines
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/evp.h>
\&
\& typedef struct evp_rand_st EVP_RAND;
\& typedef struct evp_rand_ctx_st EVP_RAND_CTX;
\&
\& EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
\&                        const char *properties);
\& int EVP_RAND_up_ref(EVP_RAND *rand);
\& void EVP_RAND_free(EVP_RAND *rand);
\& EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent);
\& void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx);
\& EVP_RAND *EVP_RAND_CTX_get0_rand(EVP_RAND_CTX *ctx);
\& int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]);
\& int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]);
\& int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]);
\& const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand);
\& const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand);
\& const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand);
\& const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx);
\& const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx);
\& const char *EVP_RAND_get0_name(const EVP_RAND *rand);
\& const char *EVP_RAND_get0_description(const EVP_RAND *rand);
\& int EVP_RAND_is_a(const EVP_RAND *rand, const char *name);
\& const OSSL_PROVIDER *EVP_RAND_get0_provider(const EVP_RAND *rand);
\& void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
\&                               void (*fn)(EVP_RAND *rand, void *arg),
\&                               void *arg);
\& int EVP_RAND_names_do_all(const EVP_RAND *rand,
\&                           void (*fn)(const char *name, void *data),
\&                           void *data);
\&
\& int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
\&                          int prediction_resistance,
\&                          const unsigned char *pstr, size_t pstr_len,
\&                          const OSSL_PARAM params[]);
\& int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx);
\& int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
\&                       unsigned int strength, int prediction_resistance,
\&                       const unsigned char *addin, size_t addin_len);
\& int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
\&                     const unsigned char *ent, size_t ent_len,
\&                     const unsigned char *addin, size_t addin_len);
\& int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen);
\& int EVP_RAND_enable_locking(EVP_RAND_CTX *ctx);
\& int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx);
\& unsigned int EVP_RAND_get_strength(EVP_RAND_CTX *ctx);
\& int EVP_RAND_get_state(EVP_RAND_CTX *ctx);
\&
\& #define EVP_RAND_STATE_UNINITIALISED    0
\& #define EVP_RAND_STATE_READY            1
\& #define EVP_RAND_STATE_ERROR            2
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The \s-1EVP RAND\s0 routines are a high-level interface to random number generators
both deterministic and not.
If you just want to generate random bytes then you don't need to use
these functions: just call \fBRAND_bytes()\fR or \fBRAND_priv_bytes()\fR.
If you want to do more, these calls should be used instead of the older
\&\s-1RAND\s0 and \s-1RAND_DRBG\s0 functions.
.PP
After creating a \fB\s-1EVP_RAND_CTX\s0\fR for the required algorithm using
\&\fBEVP_RAND_CTX_new()\fR, inputs to the algorithm are supplied either by
passing them as part of the \fBEVP_RAND_instantiate()\fR call or using calls to
\&\fBEVP_RAND_CTX_set_params()\fR before calling \fBEVP_RAND_instantiate()\fR.  Finally,
call \fBEVP_RAND_generate()\fR to produce cryptographically secure random bytes.
.SS "Types"
.IX Subsection "Types"
\&\fB\s-1EVP_RAND\s0\fR is a type that holds the implementation of a \s-1RAND.\s0
.PP
\&\fB\s-1EVP_RAND_CTX\s0\fR is a context type that holds the algorithm inputs.
\&\fB\s-1EVP_RAND_CTX\s0\fR structures are reference counted.
.SS "Algorithm implementation fetching"
.IX Subsection "Algorithm implementation fetching"
\&\fBEVP_RAND_fetch()\fR fetches an implementation of a \s-1RAND\s0 \fIalgorithm\fR, given
a library context \fIlibctx\fR and a set of \fIproperties\fR.
See \*(L"\s-1ALGORITHM FETCHING\*(R"\s0 in \fBcrypto\fR\|(7) for further information.
.PP
The returned value must eventually be freed with
\&\fBEVP_RAND_free\fR\|(3).
.PP
\&\fBEVP_RAND_up_ref()\fR increments the reference count of an already fetched
\&\s-1RAND.\s0
.PP
\&\fBEVP_RAND_free()\fR frees a fetched algorithm.
\&\s-1NULL\s0 is a valid parameter, for which this function is a no-op.
.SS "Context manipulation functions"
.IX Subsection "Context manipulation functions"
\&\fBEVP_RAND_CTX_new()\fR creates a new context for the \s-1RAND\s0 implementation \fIrand\fR.
If not \s-1NULL,\s0 \fIparent\fR specifies the seed source for this implementation.
Not all random number generators need to have a seed source specified.
If a parent is required, a \s-1NULL\s0 \fIparent\fR will utilise the operating
system entropy sources.
It is recommended to minimise the number of random number generators that
rely on the operating system for their randomness because this is often scarce.
.PP
\&\fBEVP_RAND_CTX_free()\fR frees up the context \fIctx\fR.  If \fIctx\fR is \s-1NULL,\s0 nothing
is done.
.PP
\&\fBEVP_RAND_CTX_get0_rand()\fR returns the \fB\s-1EVP_RAND\s0\fR associated with the context
\&\fIctx\fR.
.SS "Random Number Generator Functions"
.IX Subsection "Random Number Generator Functions"
\&\fBEVP_RAND_instantiate()\fR processes any parameters in \fIparams\fR and
then instantiates the \s-1RAND\s0 \fIctx\fR with a minimum security strength
of <strength> and personalisation string \fIpstr\fR of length <pstr_len>.
If \fIprediction_resistance\fR is specified, fresh entropy from a live source
will be sought.  This call operates as per \s-1NIST SP 800\-90A\s0 and \s-1SP 800\-90C.\s0
.PP
\&\fBEVP_RAND_uninstantiate()\fR uninstantiates the \s-1RAND\s0 \fIctx\fR as per
\&\s-1NIST SP 800\-90A\s0 and \s-1SP 800\-90C.\s0  Subsequent to this call, the \s-1RAND\s0 cannot
be used to generate bytes.  It can only be freed or instantiated again.
.PP
\&\fBEVP_RAND_generate()\fR produces random bytes from the \s-1RAND\s0 \fIctx\fR with the
additional input \fIaddin\fR of length \fIaddin_len\fR.  The bytes
produced will meet the security \fIstrength\fR.
If \fIprediction_resistance\fR is specified, fresh entropy from a live source
will be sought.  This call operates as per \s-1NIST SP 800\-90A\s0 and \s-1SP 800\-90C.\s0
.PP
\&\fBEVP_RAND_reseed()\fR reseeds the \s-1RAND\s0 with new entropy.
Entropy \fIent\fR of length \fIent_len\fR bytes can be supplied as can additional
input \fIaddin\fR of length \fIaddin_len\fR bytes.  In the \s-1FIPS\s0 provider, both are
treated as additional input as per \s-1NIST\s0 SP\-800\-90Ar1, Sections 9.1 and 9.2.
Additional seed material is also drawn from the \s-1RAND\s0's parent or the
operating system.  If \fIprediction_resistance\fR is specified, fresh entropy
from a live source will be sought.  This call operates as per \s-1NIST SP 800\-90A\s0
and \s-1SP 800\-90C.\s0
.PP
\&\fBEVP_RAND_nonce()\fR creates a nonce in \fIout\fR of maximum length \fIoutlen\fR
bytes from the \s-1RAND\s0 \fIctx\fR. The function returns the length of the generated
nonce. If \fIout\fR is \s-1NULL,\s0 the length is still returned but no generation
takes place. This allows a caller to dynamically allocate a buffer of the
appropriate size.
.PP
\&\fBEVP_RAND_enable_locking()\fR enables locking for the \s-1RAND\s0 \fIctx\fR and all of
its parents.  After this \fIctx\fR will operate in a thread safe manner, albeit
more slowly. This function is not itself thread safe if called with the same
\&\fIctx\fR from multiple threads. Typically locking should be enabled before a
\&\fIctx\fR is shared across multiple threads.
.PP
\&\fBEVP_RAND_get_params()\fR retrieves details about the implementation
\&\fIrand\fR.
The set of parameters given with \fIparams\fR determine exactly what
parameters should be retrieved.
Note that a parameter that is unknown in the underlying context is
simply ignored.
.PP
\&\fBEVP_RAND_CTX_get_params()\fR retrieves chosen parameters, given the
context \fIctx\fR and its underlying context.
The set of parameters given with \fIparams\fR determine exactly what
parameters should be retrieved.
Note that a parameter that is unknown in the underlying context is
simply ignored.
.PP
\&\fBEVP_RAND_CTX_set_params()\fR passes chosen parameters to the underlying
context, given a context \fIctx\fR.
The set of parameters given with \fIparams\fR determine exactly what
parameters are passed down.
Note that a parameter that is unknown in the underlying context is
simply ignored.
Also, what happens when a needed parameter isn't passed down is
defined by the implementation.
.PP
\&\fBEVP_RAND_gettable_params()\fR returns an \s-1\fBOSSL_PARAM\s0\fR\|(3) array that describes
the retrievable and settable parameters.  \fBEVP_RAND_gettable_params()\fR returns
parameters that can be used with \fBEVP_RAND_get_params()\fR.
.PP
\&\fBEVP_RAND_gettable_ctx_params()\fR and \fBEVP_RAND_CTX_gettable_params()\fR return
constant \s-1\fBOSSL_PARAM\s0\fR\|(3) arrays that describe the retrievable parameters that
can be used with \fBEVP_RAND_CTX_get_params()\fR.  \fBEVP_RAND_gettable_ctx_params()\fR
returns the parameters that can be retrieved from the algorithm, whereas
\&\fBEVP_RAND_CTX_gettable_params()\fR returns the parameters that can be retrieved
in the context's current state.
.PP
\&\fBEVP_RAND_settable_ctx_params()\fR and \fBEVP_RAND_CTX_settable_params()\fR return
constant \s-1\fBOSSL_PARAM\s0\fR\|(3) arrays that describe the settable parameters that
can be used with \fBEVP_RAND_CTX_set_params()\fR.  \fBEVP_RAND_settable_ctx_params()\fR
returns the parameters that can be retrieved from the algorithm, whereas
\&\fBEVP_RAND_CTX_settable_params()\fR returns the parameters that can be retrieved
in the context's current state.
.SS "Information functions"
.IX Subsection "Information functions"
\&\fBEVP_RAND_get_strength()\fR returns the security strength of the \s-1RAND\s0 \fIctx\fR.
.PP
\&\fBEVP_RAND_get_state()\fR returns the current state of the \s-1RAND\s0 \fIctx\fR.
States defined by the OpenSSL RNGs are:
.IP "\(bu" 4
\&\s-1EVP_RAND_STATE_UNINITIALISED:\s0 this \s-1RNG\s0 is currently uninitialised.
The instantiate call will change this to the ready state.
.IP "\(bu" 4
\&\s-1EVP_RAND_STATE_READY:\s0 this \s-1RNG\s0 is currently ready to generate output.
.IP "\(bu" 4
\&\s-1EVP_RAND_STATE_ERROR:\s0 this \s-1RNG\s0 is in an error state.
.PP
\&\fBEVP_RAND_is_a()\fR returns 1 if \fIrand\fR is an implementation of an
algorithm that's identifiable with \fIname\fR, otherwise 0.
.PP
\&\fBEVP_RAND_get0_provider()\fR returns the provider that holds the implementation
of the given \fIrand\fR.
.PP
\&\fBEVP_RAND_do_all_provided()\fR traverses all \s-1RAND\s0 implemented by all activated
providers in the given library context \fIlibctx\fR, and for each of the
implementations, calls the given function \fIfn\fR with the implementation method
and the given \fIarg\fR as argument.
.PP
\&\fBEVP_RAND_get0_name()\fR returns the canonical name of \fIrand\fR.
.PP
\&\fBEVP_RAND_names_do_all()\fR traverses all names for \fIrand\fR, and calls
\&\fIfn\fR with each name and \fIdata\fR.
.PP
\&\fBEVP_RAND_get0_description()\fR returns a description of the rand, meant for
display and human consumption.  The description is at the discretion of
the rand implementation.
.PP
\&\fBEVP_RAND_verify_zeroization()\fR confirms if the internal \s-1DRBG\s0 state is
currently zeroed.  This is used by the \s-1FIPS\s0 provider to support the mandatory
self tests.
.SH "PARAMETERS"
.IX Header "PARAMETERS"
The standard parameter names are:
.ie n .IP """state"" (\fB\s-1OSSL_RAND_PARAM_STATE\s0\fR) <integer>" 4
.el .IP "``state'' (\fB\s-1OSSL_RAND_PARAM_STATE\s0\fR) <integer>" 4
.IX Item "state (OSSL_RAND_PARAM_STATE) <integer>"
Returns the state of the random number generator.
.ie n .IP """strength"" (\fB\s-1OSSL_RAND_PARAM_STRENGTH\s0\fR) <unsigned integer>" 4
.el .IP "``strength'' (\fB\s-1OSSL_RAND_PARAM_STRENGTH\s0\fR) <unsigned integer>" 4
.IX Item "strength (OSSL_RAND_PARAM_STRENGTH) <unsigned integer>"
Returns the bit strength of the random number generator.
.PP
For rands that are also deterministic random bit generators (DRBGs), these
additional parameters are recognised. Not all
parameters are relevant to, or are understood by all \s-1DRBG\s0 rands:
.ie n .IP """reseed_requests"" (\fB\s-1OSSL_DRBG_PARAM_RESEED_REQUESTS\s0\fR) <unsigned integer>" 4
.el .IP "``reseed_requests'' (\fB\s-1OSSL_DRBG_PARAM_RESEED_REQUESTS\s0\fR) <unsigned integer>" 4
.IX Item "reseed_requests (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>"
Reads or set the number of generate requests before reseeding the
associated \s-1RAND\s0 ctx.
.ie n .IP """reseed_time_interval"" (\fB\s-1OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL\s0\fR) <integer>" 4
.el .IP "``reseed_time_interval'' (\fB\s-1OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL\s0\fR) <integer>" 4
.IX Item "reseed_time_interval (OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL) <integer>"
Reads or set the number of elapsed seconds before reseeding the
associated \s-1RAND\s0 ctx.
.ie n .IP """max_request"" (\fB\s-1OSSL_DRBG_PARAM_RESEED_REQUESTS\s0\fR) <unsigned integer>" 4
.el .IP "``max_request'' (\fB\s-1OSSL_DRBG_PARAM_RESEED_REQUESTS\s0\fR) <unsigned integer>" 4
.IX Item "max_request (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>"
Specifies the maximum number of bytes that can be generated in a single
call to OSSL_FUNC_rand_generate.
.ie n .IP """min_entropylen"" (\fB\s-1OSSL_DRBG_PARAM_MIN_ENTROPYLEN\s0\fR) <unsigned integer>" 4
.el .IP "``min_entropylen'' (\fB\s-1OSSL_DRBG_PARAM_MIN_ENTROPYLEN\s0\fR) <unsigned integer>" 4
.IX Item "min_entropylen (OSSL_DRBG_PARAM_MIN_ENTROPYLEN) <unsigned integer>"
.PD 0
.ie n .IP """max_entropylen"" (\fB\s-1OSSL_DRBG_PARAM_MAX_ENTROPYLEN\s0\fR) <unsigned integer>" 4
.el .IP "``max_entropylen'' (\fB\s-1OSSL_DRBG_PARAM_MAX_ENTROPYLEN\s0\fR) <unsigned integer>" 4
.IX Item "max_entropylen (OSSL_DRBG_PARAM_MAX_ENTROPYLEN) <unsigned integer>"
.PD
Specify the minimum and maximum number of bytes of random material that
can be used to seed the \s-1DRBG.\s0
.ie n .IP """min_noncelen"" (\fB\s-1OSSL_DRBG_PARAM_MIN_NONCELEN\s0\fR) <unsigned integer>" 4
.el .IP "``min_noncelen'' (\fB\s-1OSSL_DRBG_PARAM_MIN_NONCELEN\s0\fR) <unsigned integer>" 4
.IX Item "min_noncelen (OSSL_DRBG_PARAM_MIN_NONCELEN) <unsigned integer>"
.PD 0
.ie n .IP """max_noncelen"" (\fB\s-1OSSL_DRBG_PARAM_MAX_NONCELEN\s0\fR) <unsigned integer>" 4
.el .IP "``max_noncelen'' (\fB\s-1OSSL_DRBG_PARAM_MAX_NONCELEN\s0\fR) <unsigned integer>" 4
.IX Item "max_noncelen (OSSL_DRBG_PARAM_MAX_NONCELEN) <unsigned integer>"
.PD
Specify the minimum and maximum number of bytes of nonce that can be used to
seed the \s-1DRBG.\s0
.ie n .IP """max_perslen"" (\fB\s-1OSSL_DRBG_PARAM_MAX_PERSLEN\s0\fR) <unsigned integer>" 4
.el .IP "``max_perslen'' (\fB\s-1OSSL_DRBG_PARAM_MAX_PERSLEN\s0\fR) <unsigned integer>" 4
.IX Item "max_perslen (OSSL_DRBG_PARAM_MAX_PERSLEN) <unsigned integer>"
.PD 0
.ie n .IP """max_adinlen"" (\fB\s-1OSSL_DRBG_PARAM_MAX_ADINLEN\s0\fR) <unsigned integer>" 4
.el .IP "``max_adinlen'' (\fB\s-1OSSL_DRBG_PARAM_MAX_ADINLEN\s0\fR) <unsigned integer>" 4
.IX Item "max_adinlen (OSSL_DRBG_PARAM_MAX_ADINLEN) <unsigned integer>"
.PD
Specify the minimum and maximum number of bytes of personalisation string
that can be used with the \s-1DRBG.\s0
.ie n .IP """reseed_counter"" (\fB\s-1OSSL_DRBG_PARAM_RESEED_COUNTER\s0\fR) <unsigned integer>" 4
.el .IP "``reseed_counter'' (\fB\s-1OSSL_DRBG_PARAM_RESEED_COUNTER\s0\fR) <unsigned integer>" 4
.IX Item "reseed_counter (OSSL_DRBG_PARAM_RESEED_COUNTER) <unsigned integer>"
Specifies the number of times the \s-1DRBG\s0 has been seeded or reseeded.
.ie n .IP """properties"" (\fB\s-1OSSL_RAND_PARAM_PROPERTIES\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``properties'' (\fB\s-1OSSL_RAND_PARAM_PROPERTIES\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "properties (OSSL_RAND_PARAM_PROPERTIES) <UTF8 string>"
.PD 0
.ie n .IP """mac"" (\fB\s-1OSSL_RAND_PARAM_MAC\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``mac'' (\fB\s-1OSSL_RAND_PARAM_MAC\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "mac (OSSL_RAND_PARAM_MAC) <UTF8 string>"
.ie n .IP """digest"" (\fB\s-1OSSL_RAND_PARAM_DIGEST\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``digest'' (\fB\s-1OSSL_RAND_PARAM_DIGEST\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "digest (OSSL_RAND_PARAM_DIGEST) <UTF8 string>"
.ie n .IP """cipher"" (\fB\s-1OSSL_RAND_PARAM_CIPHER\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``cipher'' (\fB\s-1OSSL_RAND_PARAM_CIPHER\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "cipher (OSSL_RAND_PARAM_CIPHER) <UTF8 string>"
.PD
For \s-1RAND\s0 implementations that use an underlying computation \s-1MAC,\s0 digest or
cipher, these parameters set what the algorithm should be.
.Sp
The value is always the name of the intended algorithm,
or the properties in the case of \fB\s-1OSSL_RAND_PARAM_PROPERTIES\s0\fR.
.SH "NOTES"
.IX Header "NOTES"
The use of a nonzero value for the \fIprediction_resistance\fR argument to
\&\fBEVP_RAND_instantiate()\fR, \fBEVP_RAND_generate()\fR or \fBEVP_RAND_reseed()\fR should
be used sparingly.  In the default setup, this will cause all public and
private DRBGs to be reseeded on next use.  Since, by default, public and
private DRBGs are allocated on a per thread basis, this can result in
significant overhead for highly multi-threaded applications.  For normal
use-cases, the default \*(L"reseed_requests\*(R" and \*(L"reseed_time_interval\*(R"
thresholds ensure sufficient prediction resistance over time and you
can reduce those values if you think they are too high.  Explicitly
requesting prediction resistance is intended for more special use-cases
like generating long-term secrets.
.PP
An \fB\s-1EVP_RAND_CTX\s0\fR needs to have locking enabled if it acts as the parent of
more than one child and the children can be accessed concurrently.  This must
be done by explicitly calling \fBEVP_RAND_enable_locking()\fR.
.PP
The \s-1RAND\s0 life-cycle is described in \fBlife_cycle\-rand\fR\|(7).  In the future,
the transitions described there will be enforced.  When this is done, it will
not be considered a breaking change to the \s-1API.\s0
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fBEVP_RAND_fetch()\fR returns a pointer to a newly fetched \fB\s-1EVP_RAND\s0\fR, or
\&\s-1NULL\s0 if allocation failed.
.PP
\&\fBEVP_RAND_get0_provider()\fR returns a pointer to the provider for the \s-1RAND,\s0 or
\&\s-1NULL\s0 on error.
.PP
\&\fBEVP_RAND_CTX_get0_rand()\fR returns a pointer to the \fB\s-1EVP_RAND\s0\fR associated
with the context.
.PP
\&\fBEVP_RAND_get0_name()\fR returns the name of the random number generation
algorithm.
.PP
\&\fBEVP_RAND_up_ref()\fR returns 1 on success, 0 on error.
.PP
\&\fBEVP_RAND_names_do_all()\fR returns 1 if the callback was called for all names. A
return value of 0 means that the callback was not called for any names.
.PP
\&\fBEVP_RAND_CTX_new()\fR returns either the newly allocated
\&\fB\s-1EVP_RAND_CTX\s0\fR structure or \s-1NULL\s0 if an error occurred.
.PP
\&\fBEVP_RAND_CTX_free()\fR does not return a value.
.PP
\&\fBEVP_RAND_nonce()\fR returns the length of the nonce.
.PP
\&\fBEVP_RAND_get_strength()\fR returns the strength of the random number generator
in bits.
.PP
\&\fBEVP_RAND_gettable_params()\fR, \fBEVP_RAND_gettable_ctx_params()\fR and
\&\fBEVP_RAND_settable_ctx_params()\fR return an array of OSSL_PARAMs.
.PP
\&\fBEVP_RAND_verify_zeroization()\fR returns 1 if the internal \s-1DRBG\s0 state is
currently zeroed, and 0 if not.
.PP
The remaining functions return 1 for success and 0 or a negative value for
failure.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fBRAND_bytes\fR\|(3),
\&\s-1\fBEVP_RAND\-CTR\-DRBG\s0\fR\|(7),
\&\s-1\fBEVP_RAND\-HASH\-DRBG\s0\fR\|(7),
\&\s-1\fBEVP_RAND\-HMAC\-DRBG\s0\fR\|(7),
\&\s-1\fBEVP_RAND\-TEST\-RAND\s0\fR\|(7),
\&\fBprovider\-rand\fR\|(7),
\&\fBlife_cycle\-rand\fR\|(7)
.SH "HISTORY"
.IX Header "HISTORY"
This functionality was added to OpenSSL 3.0.
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2020\-2023 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the Apache License 2.0 (the \*(L"License\*(R").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.