Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// It contains the tablegen backend that emits the decoder functions for
// targets with fixed length instruction set.
//
//===----------------------------------------------------------------------===//

#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "InfoByHwMode.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "decoder-emitter"

namespace {

STATISTIC(NumEncodings, "Number of encodings considered");
STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
STATISTIC(NumInstructions, "Number of instructions considered");
STATISTIC(NumEncodingsSupported, "Number of encodings supported");
STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");

struct EncodingField {
  unsigned Base, Width, Offset;
  EncodingField(unsigned B, unsigned W, unsigned O)
    : Base(B), Width(W), Offset(O) { }
};

struct OperandInfo {
  std::vector<EncodingField> Fields;
  std::string Decoder;
  bool HasCompleteDecoder;
  uint64_t InitValue;

  OperandInfo(std::string D, bool HCD)
      : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}

  void addField(unsigned Base, unsigned Width, unsigned Offset) {
    Fields.push_back(EncodingField(Base, Width, Offset));
  }

  unsigned numFields() const { return Fields.size(); }

  typedef std::vector<EncodingField>::const_iterator const_iterator;

  const_iterator begin() const { return Fields.begin(); }
  const_iterator end() const   { return Fields.end();   }
};

typedef std::vector<uint8_t> DecoderTable;
typedef uint32_t DecoderFixup;
typedef std::vector<DecoderFixup> FixupList;
typedef std::vector<FixupList> FixupScopeList;
typedef SmallSetVector<CachedHashString, 16> PredicateSet;
typedef SmallSetVector<CachedHashString, 16> DecoderSet;
struct DecoderTableInfo {
  DecoderTable Table;
  FixupScopeList FixupStack;
  PredicateSet Predicates;
  DecoderSet Decoders;
};

struct EncodingAndInst {
  const Record *EncodingDef;
  const CodeGenInstruction *Inst;
  StringRef HwModeName;

  EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
                  StringRef HwModeName = "")
      : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
};

struct EncodingIDAndOpcode {
  unsigned EncodingID;
  unsigned Opcode;

  EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
  EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
      : EncodingID(EncodingID), Opcode(Opcode) {}
};

raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
  if (Value.EncodingDef != Value.Inst->TheDef)
    OS << Value.EncodingDef->getName() << ":";
  OS << Value.Inst->TheDef->getName();
  return OS;
}

class FixedLenDecoderEmitter {
  RecordKeeper &RK;
  std::vector<EncodingAndInst> NumberedEncodings;

public:
  // Defaults preserved here for documentation, even though they aren't
  // strictly necessary given the way that this is currently being called.
  FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
                         std::string GPrefix = "if (",
                         std::string GPostfix = " == MCDisassembler::Fail)",
                         std::string ROK = "MCDisassembler::Success",
                         std::string RFail = "MCDisassembler::Fail",
                         std::string L = "")
      : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
        GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
        ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
        Locals(std::move(L)) {}

  // Emit the decoder state machine table.
  void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
                 unsigned Indentation, unsigned BitWidth,
                 StringRef Namespace) const;
  void emitPredicateFunction(formatted_raw_ostream &OS,
                             PredicateSet &Predicates,
                             unsigned Indentation) const;
  void emitDecoderFunction(formatted_raw_ostream &OS,
                           DecoderSet &Decoders,
                           unsigned Indentation) const;

  // run - Output the code emitter
  void run(raw_ostream &o);

private:
  CodeGenTarget Target;

public:
  std::string PredicateNamespace;
  std::string GuardPrefix, GuardPostfix;
  std::string ReturnOK, ReturnFail;
  std::string Locals;
};

} // end anonymous namespace

// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
// for a bit value.
//
// BIT_UNFILTERED is used as the init value for a filter position.  It is used
// only for filter processings.
typedef enum {
  BIT_TRUE,      // '1'
  BIT_FALSE,     // '0'
  BIT_UNSET,     // '?'
  BIT_UNFILTERED // unfiltered
} bit_value_t;

static bool ValueSet(bit_value_t V) {
  return (V == BIT_TRUE || V == BIT_FALSE);
}

static bool ValueNotSet(bit_value_t V) {
  return (V == BIT_UNSET);
}

static int Value(bit_value_t V) {
  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
}

static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
  if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
    return bit->getValue() ? BIT_TRUE : BIT_FALSE;

  // The bit is uninitialized.
  return BIT_UNSET;
}

// Prints the bit value for each position.
static void dumpBits(raw_ostream &o, const BitsInit &bits) {
  for (unsigned index = bits.getNumBits(); index > 0; --index) {
    switch (bitFromBits(bits, index - 1)) {
    case BIT_TRUE:
      o << "1";
      break;
    case BIT_FALSE:
      o << "0";
      break;
    case BIT_UNSET:
      o << "_";
      break;
    default:
      llvm_unreachable("unexpected return value from bitFromBits");
    }
  }
}

static BitsInit &getBitsField(const Record &def, StringRef str) {
  BitsInit *bits = def.getValueAsBitsInit(str);
  return *bits;
}

// Representation of the instruction to work on.
typedef std::vector<bit_value_t> insn_t;

namespace {

static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;

class FilterChooser;

/// Filter - Filter works with FilterChooser to produce the decoding tree for
/// the ISA.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree in a certain level.  Each case stmt delegates to an inferior
/// FilterChooser to decide what further decoding logic to employ, or in another
/// words, what other remaining bits to look at.  The FilterChooser eventually
/// chooses a best Filter to do its job.
///
/// This recursive scheme ends when the number of Opcodes assigned to the
/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
/// the Filter/FilterChooser combo does not know how to distinguish among the
/// Opcodes assigned.
///
/// An example of a conflict is
///
/// Conflict:
///                     111101000.00........00010000....
///                     111101000.00........0001........
///                     1111010...00........0001........
///                     1111010...00....................
///                     1111010.........................
///                     1111............................
///                     ................................
///     VST4q8a         111101000_00________00010000____
///     VST4q8b         111101000_00________00010000____
///
/// The Debug output shows the path that the decoding tree follows to reach the
/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
/// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
///
/// The encoding info in the .td files does not specify this meta information,
/// which could have been used by the decoder to resolve the conflict.  The
/// decoder could try to decode the even/odd register numbering and assign to
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
/// version and return the Opcode since the two have the same Asm format string.
class Filter {
protected:
  const FilterChooser *Owner;// points to the FilterChooser who owns this filter
  unsigned StartBit; // the starting bit position
  unsigned NumBits; // number of bits to filter
  bool Mixed; // a mixed region contains both set and unset bits

  // Map of well-known segment value to the set of uid's with that value.
  std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
      FilteredInstructions;

  // Set of uid's with non-constant segment values.
  std::vector<EncodingIDAndOpcode> VariableInstructions;

  // Map of well-known segment value to its delegate.
  std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;

  // Number of instructions which fall under FilteredInstructions category.
  unsigned NumFiltered;

  // Keeps track of the last opcode in the filtered bucket.
  EncodingIDAndOpcode LastOpcFiltered;

public:
  Filter(Filter &&f);
  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);

  ~Filter() = default;

  unsigned getNumFiltered() const { return NumFiltered; }

  EncodingIDAndOpcode getSingletonOpc() const {
    assert(NumFiltered == 1);
    return LastOpcFiltered;
  }

  // Return the filter chooser for the group of instructions without constant
  // segment values.
  const FilterChooser &getVariableFC() const {
    assert(NumFiltered == 1);
    assert(FilterChooserMap.size() == 1);
    return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
  }

  // Divides the decoding task into sub tasks and delegates them to the
  // inferior FilterChooser's.
  //
  // A special case arises when there's only one entry in the filtered
  // instructions.  In order to unambiguously decode the singleton, we need to
  // match the remaining undecoded encoding bits against the singleton.
  void recurse();

  // Emit table entries to decode instructions given a segment or segments of
  // bits.
  void emitTableEntry(DecoderTableInfo &TableInfo) const;

  // Returns the number of fanout produced by the filter.  More fanout implies
  // the filter distinguishes more categories of instructions.
  unsigned usefulness() const;
}; // end class Filter

} // end anonymous namespace

// These are states of our finite state machines used in FilterChooser's
// filterProcessor() which produces the filter candidates to use.
typedef enum {
  ATTR_NONE,
  ATTR_FILTERED,
  ATTR_ALL_SET,
  ATTR_ALL_UNSET,
  ATTR_MIXED
} bitAttr_t;

/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
/// in order to perform the decoding of instructions at the current level.
///
/// Decoding proceeds from the top down.  Based on the well-known encoding bits
/// of instructions available, FilterChooser builds up the possible Filters that
/// can further the task of decoding by distinguishing among the remaining
/// candidate instructions.
///
/// Once a filter has been chosen, it is called upon to divide the decoding task
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
/// processings.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree.  And each case is delegated to an inferior FilterChooser to
/// decide what further remaining bits to look at.
namespace {

class FilterChooser {
protected:
  friend class Filter;

  // Vector of codegen instructions to choose our filter.
  ArrayRef<EncodingAndInst> AllInstructions;

  // Vector of uid's for this filter chooser to work on.
  // The first member of the pair is the opcode id being decoded, the second is
  // the opcode id that should be emitted.
  const std::vector<EncodingIDAndOpcode> &Opcodes;

  // Lookup table for the operand decoding of instructions.
  const std::map<unsigned, std::vector<OperandInfo>> &Operands;

  // Vector of candidate filters.
  std::vector<Filter> Filters;

  // Array of bit values passed down from our parent.
  // Set to all BIT_UNFILTERED's for Parent == NULL.
  std::vector<bit_value_t> FilterBitValues;

  // Links to the FilterChooser above us in the decoding tree.
  const FilterChooser *Parent;

  // Index of the best filter from Filters.
  int BestIndex;

  // Width of instructions
  unsigned BitWidth;

  // Parent emitter
  const FixedLenDecoderEmitter *Emitter;

public:
  FilterChooser(ArrayRef<EncodingAndInst> Insts,
                const std::vector<EncodingIDAndOpcode> &IDs,
                const std::map<unsigned, std::vector<OperandInfo>> &Ops,
                unsigned BW, const FixedLenDecoderEmitter *E)
      : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
        FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
        BitWidth(BW), Emitter(E) {
    doFilter();
  }

  FilterChooser(ArrayRef<EncodingAndInst> Insts,
                const std::vector<EncodingIDAndOpcode> &IDs,
                const std::map<unsigned, std::vector<OperandInfo>> &Ops,
                const std::vector<bit_value_t> &ParentFilterBitValues,
                const FilterChooser &parent)
      : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
        FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
        BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
    doFilter();
  }

  FilterChooser(const FilterChooser &) = delete;
  void operator=(const FilterChooser &) = delete;

  unsigned getBitWidth() const { return BitWidth; }

protected:
  // Populates the insn given the uid.
  void insnWithID(insn_t &Insn, unsigned Opcode) const {
    BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");

    // We may have a SoftFail bitmask, which specifies a mask where an encoding
    // may differ from the value in "Inst" and yet still be valid, but the
    // disassembler should return SoftFail instead of Success.
    //
    // This is used for marking UNPREDICTABLE instructions in the ARM world.
    BitsInit *SFBits =
        AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail");

    for (unsigned i = 0; i < BitWidth; ++i) {
      if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
        Insn.push_back(BIT_UNSET);
      else
        Insn.push_back(bitFromBits(Bits, i));
    }
  }

  // Emit the name of the encoding/instruction pair.
  void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
    const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
    const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
    if (EncodingDef != InstDef)
      OS << EncodingDef->getName() << ":";
    OS << InstDef->getName();
  }

  // Populates the field of the insn given the start position and the number of
  // consecutive bits to scan for.
  //
  // Returns false if there exists any uninitialized bit value in the range.
  // Returns true, otherwise.
  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
                     unsigned NumBits) const;

  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
  /// filter array as a series of chars.
  void dumpFilterArray(raw_ostream &o,
                       const std::vector<bit_value_t> & filter) const;

  /// dumpStack - dumpStack traverses the filter chooser chain and calls
  /// dumpFilterArray on each filter chooser up to the top level one.
  void dumpStack(raw_ostream &o, const char *prefix) const;

  Filter &bestFilter() {
    assert(BestIndex != -1 && "BestIndex not set");
    return Filters[BestIndex];
  }

  bool PositionFiltered(unsigned i) const {
    return ValueSet(FilterBitValues[i]);
  }

  // Calculates the island(s) needed to decode the instruction.
  // This returns a lit of undecoded bits of an instructions, for example,
  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
  // decoded bits in order to verify that the instruction matches the Opcode.
  unsigned getIslands(std::vector<unsigned> &StartBits,
                      std::vector<unsigned> &EndBits,
                      std::vector<uint64_t> &FieldVals,
                      const insn_t &Insn) const;

  // Emits code to check the Predicates member of an instruction are true.
  // Returns true if predicate matches were emitted, false otherwise.
  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
                          unsigned Opc) const;

  bool doesOpcodeNeedPredicate(unsigned Opc) const;
  unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
  void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
                               unsigned Opc) const;

  void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
                              unsigned Opc) const;

  // Emits table entries to decode the singleton.
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                               EncodingIDAndOpcode Opc) const;

  // Emits code to decode the singleton, and then to decode the rest.
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                               const Filter &Best) const;

  void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
                        const OperandInfo &OpInfo,
                        bool &OpHasCompleteDecoder) const;

  void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
                   bool &HasCompleteDecoder) const;
  unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
                           bool &HasCompleteDecoder) const;

  // Assign a single filter and run with it.
  void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);

  // reportRegion is a helper function for filterProcessor to mark a region as
  // eligible for use as a filter region.
  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
                    bool AllowMixed);

  // FilterProcessor scans the well-known encoding bits of the instructions and
  // builds up a list of candidate filters.  It chooses the best filter and
  // recursively descends down the decoding tree.
  bool filterProcessor(bool AllowMixed, bool Greedy = true);

  // Decides on the best configuration of filter(s) to use in order to decode
  // the instructions.  A conflict of instructions may occur, in which case we
  // dump the conflict set to the standard error.
  void doFilter();

public:
  // emitTableEntries - Emit state machine entries to decode our share of
  // instructions.
  void emitTableEntries(DecoderTableInfo &TableInfo) const;
};

} // end anonymous namespace

///////////////////////////
//                       //
// Filter Implementation //
//                       //
///////////////////////////

Filter::Filter(Filter &&f)
  : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
    FilteredInstructions(std::move(f.FilteredInstructions)),
    VariableInstructions(std::move(f.VariableInstructions)),
    FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
    LastOpcFiltered(f.LastOpcFiltered) {
}

Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
               bool mixed)
  : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
  assert(StartBit + NumBits - 1 < Owner->BitWidth);

  NumFiltered = 0;
  LastOpcFiltered = {0, 0};

  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
    insn_t Insn;

    // Populates the insn given the uid.
    Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);

    uint64_t Field;
    // Scans the segment for possibly well-specified encoding bits.
    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);

    if (ok) {
      // The encoding bits are well-known.  Lets add the uid of the
      // instruction into the bucket keyed off the constant field value.
      LastOpcFiltered = Owner->Opcodes[i];
      FilteredInstructions[Field].push_back(LastOpcFiltered);
      ++NumFiltered;
    } else {
      // Some of the encoding bit(s) are unspecified.  This contributes to
      // one additional member of "Variable" instructions.
      VariableInstructions.push_back(Owner->Opcodes[i]);
    }
  }

  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
         && "Filter returns no instruction categories");
}

// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions.  In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void Filter::recurse() {
  // Starts by inheriting our parent filter chooser's filter bit values.
  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);

  if (!VariableInstructions.empty()) {
    // Conservatively marks each segment position as BIT_UNSET.
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
      BitValueArray[StartBit + bitIndex] = BIT_UNSET;

    // Delegates to an inferior filter chooser for further processing on this
    // group of instructions whose segment values are variable.
    FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
        std::make_unique<FilterChooser>(Owner->AllInstructions,
            VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
  }

  // No need to recurse for a singleton filtered instruction.
  // See also Filter::emit*().
  if (getNumFiltered() == 1) {
    assert(FilterChooserMap.size() == 1);
    return;
  }

  // Otherwise, create sub choosers.
  for (const auto &Inst : FilteredInstructions) {

    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
      if (Inst.first & (1ULL << bitIndex))
        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
      else
        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
    }

    // Delegates to an inferior filter chooser for further processing on this
    // category of instructions.
    FilterChooserMap.insert(std::make_pair(
        Inst.first, std::make_unique<FilterChooser>(
                                Owner->AllInstructions, Inst.second,
                                Owner->Operands, BitValueArray, *Owner)));
  }
}

static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
                               uint32_t DestIdx) {
  // Any NumToSkip fixups in the current scope can resolve to the
  // current location.
  for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
                                         E = Fixups.rend();
       I != E; ++I) {
    // Calculate the distance from the byte following the fixup entry byte
    // to the destination. The Target is calculated from after the 16-bit
    // NumToSkip entry itself, so subtract two  from the displacement here
    // to account for that.
    uint32_t FixupIdx = *I;
    uint32_t Delta = DestIdx - FixupIdx - 3;
    // Our NumToSkip entries are 24-bits. Make sure our table isn't too
    // big.
    assert(Delta < (1u << 24));
    Table[FixupIdx] = (uint8_t)Delta;
    Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
    Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
  }
}

// Emit table entries to decode instructions given a segment or segments
// of bits.
void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
  TableInfo.Table.push_back(MCD::OPC_ExtractField);
  TableInfo.Table.push_back(StartBit);
  TableInfo.Table.push_back(NumBits);

  // A new filter entry begins a new scope for fixup resolution.
  TableInfo.FixupStack.emplace_back();

  DecoderTable &Table = TableInfo.Table;

  size_t PrevFilter = 0;
  bool HasFallthrough = false;
  for (auto &Filter : FilterChooserMap) {
    // Field value -1 implies a non-empty set of variable instructions.
    // See also recurse().
    if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
      HasFallthrough = true;

      // Each scope should always have at least one filter value to check
      // for.
      assert(PrevFilter != 0 && "empty filter set!");
      FixupList &CurScope = TableInfo.FixupStack.back();
      // Resolve any NumToSkip fixups in the current scope.
      resolveTableFixups(Table, CurScope, Table.size());
      CurScope.clear();
      PrevFilter = 0;  // Don't re-process the filter's fallthrough.
    } else {
      Table.push_back(MCD::OPC_FilterValue);
      // Encode and emit the value to filter against.
      uint8_t Buffer[16];
      unsigned Len = encodeULEB128(Filter.first, Buffer);
      Table.insert(Table.end(), Buffer, Buffer + Len);
      // Reserve space for the NumToSkip entry. We'll backpatch the value
      // later.
      PrevFilter = Table.size();
      Table.push_back(0);
      Table.push_back(0);
      Table.push_back(0);
    }

    // We arrive at a category of instructions with the same segment value.
    // Now delegate to the sub filter chooser for further decodings.
    // The case may fallthrough, which happens if the remaining well-known
    // encoding bits do not match exactly.
    Filter.second->emitTableEntries(TableInfo);

    // Now that we've emitted the body of the handler, update the NumToSkip
    // of the filter itself to be able to skip forward when false. Subtract
    // two as to account for the width of the NumToSkip field itself.
    if (PrevFilter) {
      uint32_t NumToSkip = Table.size() - PrevFilter - 3;
      assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
      Table[PrevFilter] = (uint8_t)NumToSkip;
      Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
      Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
    }
  }

  // Any remaining unresolved fixups bubble up to the parent fixup scope.
  assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
  FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
  FixupScopeList::iterator Dest = Source - 1;
  llvm::append_range(*Dest, *Source);
  TableInfo.FixupStack.pop_back();

  // If there is no fallthrough, then the final filter should get fixed
  // up according to the enclosing scope rather than the current position.
  if (!HasFallthrough)
    TableInfo.FixupStack.back().push_back(PrevFilter);
}

// Returns the number of fanout produced by the filter.  More fanout implies
// the filter distinguishes more categories of instructions.
unsigned Filter::usefulness() const {
  if (!VariableInstructions.empty())
    return FilteredInstructions.size();
  else
    return FilteredInstructions.size() + 1;
}

//////////////////////////////////
//                              //
// Filterchooser Implementation //
//                              //
//////////////////////////////////

// Emit the decoder state machine table.
void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
                                       DecoderTable &Table,
                                       unsigned Indentation,
                                       unsigned BitWidth,
                                       StringRef Namespace) const {
  OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
    << BitWidth << "[] = {\n";

  Indentation += 2;

  // FIXME: We may be able to use the NumToSkip values to recover
  // appropriate indentation levels.
  DecoderTable::const_iterator I = Table.begin();
  DecoderTable::const_iterator E = Table.end();
  while (I != E) {
    assert (I < E && "incomplete decode table entry!");

    uint64_t Pos = I - Table.begin();
    OS << "/* " << Pos << " */";
    OS.PadToColumn(12);

    switch (*I) {
    default:
      PrintFatalError("invalid decode table opcode");
    case MCD::OPC_ExtractField: {
      ++I;
      unsigned Start = *I++;
      unsigned Len = *I++;
      OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
        << Len << ",  // Inst{";
      if (Len > 1)
        OS << (Start + Len - 1) << "-";
      OS << Start << "} ...\n";
      break;
    }
    case MCD::OPC_FilterValue: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
      // The filter value is ULEB128 encoded.
      while (*I >= 128)
        OS << (unsigned)*I++ << ", ";
      OS << (unsigned)*I++ << ", ";

      // 24-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << (unsigned)Byte << ", ";
      Byte = *I++;
      OS << (unsigned)Byte << ", ";
      NumToSkip |= Byte << 8;
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 16;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_CheckField: {
      ++I;
      unsigned Start = *I++;
      unsigned Len = *I++;
      OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
        << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
      // ULEB128 encoded field value.
      for (; *I >= 128; ++I)
        OS << (unsigned)*I << ", ";
      OS << (unsigned)*I++ << ", ";
      // 24-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << (unsigned)Byte << ", ";
      Byte = *I++;
      OS << (unsigned)Byte << ", ";
      NumToSkip |= Byte << 8;
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 16;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_CheckPredicate: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
      for (; *I >= 128; ++I)
        OS << (unsigned)*I << ", ";
      OS << (unsigned)*I++ << ", ";

      // 24-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << (unsigned)Byte << ", ";
      Byte = *I++;
      OS << (unsigned)Byte << ", ";
      NumToSkip |= Byte << 8;
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 16;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_Decode:
    case MCD::OPC_TryDecode: {
      bool IsTry = *I == MCD::OPC_TryDecode;
      ++I;
      // Extract the ULEB128 encoded Opcode to a buffer.
      uint8_t Buffer[16], *p = Buffer;
      while ((*p++ = *I++) >= 128)
        assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
               && "ULEB128 value too large!");
      // Decode the Opcode value.
      unsigned Opc = decodeULEB128(Buffer);
      OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
        << "Decode, ";
      for (p = Buffer; *p >= 128; ++p)
        OS << (unsigned)*p << ", ";
      OS << (unsigned)*p << ", ";

      // Decoder index.
      for (; *I >= 128; ++I)
        OS << (unsigned)*I << ", ";
      OS << (unsigned)*I++ << ", ";

      if (!IsTry) {
        OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
        break;
      }

      // Fallthrough for OPC_TryDecode.

      // 24-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << (unsigned)Byte << ", ";
      Byte = *I++;
      OS << (unsigned)Byte << ", ";
      NumToSkip |= Byte << 8;
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 16;

      OS << "// Opcode: " << NumberedEncodings[Opc]
         << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_SoftFail: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_SoftFail";
      // Positive mask
      uint64_t Value = 0;
      unsigned Shift = 0;
      do {
        OS << ", " << (unsigned)*I;
        Value += (*I & 0x7f) << Shift;
        Shift += 7;
      } while (*I++ >= 128);
      if (Value > 127) {
        OS << " /* 0x";
        OS.write_hex(Value);
        OS << " */";
      }
      // Negative mask
      Value = 0;
      Shift = 0;
      do {
        OS << ", " << (unsigned)*I;
        Value += (*I & 0x7f) << Shift;
        Shift += 7;
      } while (*I++ >= 128);
      if (Value > 127) {
        OS << " /* 0x";
        OS.write_hex(Value);
        OS << " */";
      }
      OS << ",\n";
      break;
    }
    case MCD::OPC_Fail: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_Fail,\n";
      break;
    }
    }
  }
  OS.indent(Indentation) << "0\n";

  Indentation -= 2;

  OS.indent(Indentation) << "};\n\n";
}

void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
                      unsigned Indentation) const {
  // The predicate function is just a big switch statement based on the
  // input predicate index.
  OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
    << "const FeatureBitset &Bits) {\n";
  Indentation += 2;
  if (!Predicates.empty()) {
    OS.indent(Indentation) << "switch (Idx) {\n";
    OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    unsigned Index = 0;
    for (const auto &Predicate : Predicates) {
      OS.indent(Indentation) << "case " << Index++ << ":\n";
      OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
    }
    OS.indent(Indentation) << "}\n";
  } else {
    // No case statement to emit
    OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
  }
  Indentation -= 2;
  OS.indent(Indentation) << "}\n\n";
}

void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
                    unsigned Indentation) const {
  // The decoder function is just a big switch statement based on the
  // input decoder index.
  OS.indent(Indentation) << "template <typename InsnType>\n";
  OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
    << " unsigned Idx, InsnType insn, MCInst &MI,\n";
  OS.indent(Indentation) << "                                   uint64_t "
    << "Address, const void *Decoder, bool &DecodeComplete) {\n";
  Indentation += 2;
  OS.indent(Indentation) << "DecodeComplete = true;\n";
  // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
  // It would be better for emitBinaryParser to use a 64-bit tmp whenever
  // possible but fall back to an InsnType-sized tmp for truly large fields.
  OS.indent(Indentation) << "using TmpType = "
                            "std::conditional_t<std::is_integral<InsnType>::"
                            "value, InsnType, uint64_t>;\n";
  OS.indent(Indentation) << "TmpType tmp;\n";
  OS.indent(Indentation) << "switch (Idx) {\n";
  OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
  unsigned Index = 0;
  for (const auto &Decoder : Decoders) {
    OS.indent(Indentation) << "case " << Index++ << ":\n";
    OS << Decoder;
    OS.indent(Indentation+2) << "return S;\n";
  }
  OS.indent(Indentation) << "}\n";
  Indentation -= 2;
  OS.indent(Indentation) << "}\n\n";
}

// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
                                  unsigned StartBit, unsigned NumBits) const {
  Field = 0;

  for (unsigned i = 0; i < NumBits; ++i) {
    if (Insn[StartBit + i] == BIT_UNSET)
      return false;

    if (Insn[StartBit + i] == BIT_TRUE)
      Field = Field | (1ULL << i);
  }

  return true;
}

/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void FilterChooser::dumpFilterArray(raw_ostream &o,
                                 const std::vector<bit_value_t> &filter) const {
  for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
    switch (filter[bitIndex - 1]) {
    case BIT_UNFILTERED:
      o << ".";
      break;
    case BIT_UNSET:
      o << "_";
      break;
    case BIT_TRUE:
      o << "1";
      break;
    case BIT_FALSE:
      o << "0";
      break;
    }
  }
}

/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
  const FilterChooser *current = this;

  while (current) {
    o << prefix;
    dumpFilterArray(o, current->FilterBitValues);
    o << '\n';
    current = current->Parent;
  }
}

// Calculates the island(s) needed to decode the instruction.
// This returns a list of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
                                   std::vector<unsigned> &EndBits,
                                   std::vector<uint64_t> &FieldVals,
                                   const insn_t &Insn) const {
  unsigned Num, BitNo;
  Num = BitNo = 0;

  uint64_t FieldVal = 0;

  // 0: Init
  // 1: Water (the bit value does not affect decoding)
  // 2: Island (well-known bit value needed for decoding)
  int State = 0;

  for (unsigned i = 0; i < BitWidth; ++i) {
    int64_t Val = Value(Insn[i]);
    bool Filtered = PositionFiltered(i);
    switch (State) {
    default: llvm_unreachable("Unreachable code!");
    case 0:
    case 1:
      if (Filtered || Val == -1)
        State = 1; // Still in Water
      else {
        State = 2; // Into the Island
        BitNo = 0;
        StartBits.push_back(i);
        FieldVal = Val;
      }
      break;
    case 2:
      if (Filtered || Val == -1) {
        State = 1; // Into the Water
        EndBits.push_back(i - 1);
        FieldVals.push_back(FieldVal);
        ++Num;
      } else {
        State = 2; // Still in Island
        ++BitNo;
        FieldVal = FieldVal | Val << BitNo;
      }
      break;
    }
  }
  // If we are still in Island after the loop, do some housekeeping.
  if (State == 2) {
    EndBits.push_back(BitWidth - 1);
    FieldVals.push_back(FieldVal);
    ++Num;
  }

  assert(StartBits.size() == Num && EndBits.size() == Num &&
         FieldVals.size() == Num);
  return Num;
}

void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
                                     const OperandInfo &OpInfo,
                                     bool &OpHasCompleteDecoder) const {
  const std::string &Decoder = OpInfo.Decoder;

  bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;

  if (UseInsertBits) {
    o.indent(Indentation) << "tmp = 0x";
    o.write_hex(OpInfo.InitValue);
    o << ";\n";
  }

  for (const EncodingField &EF : OpInfo) {
    o.indent(Indentation);
    if (UseInsertBits)
      o << "insertBits(tmp, ";
    else
      o << "tmp = ";
    o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
    if (UseInsertBits)
      o << ", " << EF.Offset << ", " << EF.Width << ')';
    else if (EF.Offset != 0)
      o << " << " << EF.Offset;
    o << ";\n";
  }

  if (Decoder != "") {
    OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
    o.indent(Indentation) << Emitter->GuardPrefix << Decoder
      << "(MI, tmp, Address, Decoder)"
      << Emitter->GuardPostfix
      << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
      << "return MCDisassembler::Fail; }\n";
  } else {
    OpHasCompleteDecoder = true;
    o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
  }
}

void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
                                unsigned Opc, bool &HasCompleteDecoder) const {
  HasCompleteDecoder = true;

  for (const auto &Op : Operands.find(Opc)->second) {
    // If a custom instruction decoder was specified, use that.
    if (Op.numFields() == 0 && !Op.Decoder.empty()) {
      HasCompleteDecoder = Op.HasCompleteDecoder;
      OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
        << "(MI, insn, Address, Decoder)"
        << Emitter->GuardPostfix
        << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
        << "return MCDisassembler::Fail; }\n";
      break;
    }

    bool OpHasCompleteDecoder;
    emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
    if (!OpHasCompleteDecoder)
      HasCompleteDecoder = false;
  }
}

unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
                                        unsigned Opc,
                                        bool &HasCompleteDecoder) const {
  // Build up the predicate string.
  SmallString<256> Decoder;
  // FIXME: emitDecoder() function can take a buffer directly rather than
  // a stream.
  raw_svector_ostream S(Decoder);
  unsigned I = 4;
  emitDecoder(S, I, Opc, HasCompleteDecoder);

  // Using the full decoder string as the key value here is a bit
  // heavyweight, but is effective. If the string comparisons become a
  // performance concern, we can implement a mangling of the predicate
  // data easily enough with a map back to the actual string. That's
  // overkill for now, though.

  // Make sure the predicate is in the table.
  Decoders.insert(CachedHashString(Decoder));
  // Now figure out the index for when we write out the table.
  DecoderSet::const_iterator P = find(Decoders, Decoder.str());
  return (unsigned)(P - Decoders.begin());
}

bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
                                       unsigned Opc) const {
  ListInit *Predicates =
      AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
  bool IsFirstEmission = true;
  for (unsigned i = 0; i < Predicates->size(); ++i) {
    Record *Pred = Predicates->getElementAsRecord(i);
    if (!Pred->getValue("AssemblerMatcherPredicate"))
      continue;

    if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
      continue;

    const DagInit *D = Pred->getValueAsDag("AssemblerCondDag");
    std::string CombineType = D->getOperator()->getAsString();
    if (CombineType != "any_of" && CombineType != "all_of")
      PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
    if (D->getNumArgs() == 0)
      PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
    bool IsOr = CombineType == "any_of";

    if (!IsFirstEmission)
      o << " && ";

    if (IsOr)
      o << "(";

    ListSeparator LS(IsOr ? " || " : " && ");
    for (auto *Arg : D->getArgs()) {
      o << LS;
      if (auto *NotArg = dyn_cast<DagInit>(Arg)) {
        if (NotArg->getOperator()->getAsString() != "not" ||
            NotArg->getNumArgs() != 1)
          PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
        Arg = NotArg->getArg(0);
        o << "!";
      }
      if (!isa<DefInit>(Arg) ||
          !cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature"))
        PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
      o << "Bits[" << Emitter->PredicateNamespace << "::" << Arg->getAsString()
        << "]";
    }

    if (IsOr)
      o << ")";

    IsFirstEmission = false;
  }
  return !Predicates->empty();
}

bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
  ListInit *Predicates =
      AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
  for (unsigned i = 0; i < Predicates->size(); ++i) {
    Record *Pred = Predicates->getElementAsRecord(i);
    if (!Pred->getValue("AssemblerMatcherPredicate"))
      continue;

    if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
      return true;
  }
  return false;
}

unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
                                          StringRef Predicate) const {
  // Using the full predicate string as the key value here is a bit
  // heavyweight, but is effective. If the string comparisons become a
  // performance concern, we can implement a mangling of the predicate
  // data easily enough with a map back to the actual string. That's
  // overkill for now, though.

  // Make sure the predicate is in the table.
  TableInfo.Predicates.insert(CachedHashString(Predicate));
  // Now figure out the index for when we write out the table.
  PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
  return (unsigned)(P - TableInfo.Predicates.begin());
}

void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
                                            unsigned Opc) const {
  if (!doesOpcodeNeedPredicate(Opc))
    return;

  // Build up the predicate string.
  SmallString<256> Predicate;
  // FIXME: emitPredicateMatch() functions can take a buffer directly rather
  // than a stream.
  raw_svector_ostream PS(Predicate);
  unsigned I = 0;
  emitPredicateMatch(PS, I, Opc);

  // Figure out the index into the predicate table for the predicate just
  // computed.
  unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
  SmallString<16> PBytes;
  raw_svector_ostream S(PBytes);
  encodeULEB128(PIdx, S);

  TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
  // Predicate index
  for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
    TableInfo.Table.push_back(PBytes[i]);
  // Push location for NumToSkip backpatching.
  TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
  TableInfo.Table.push_back(0);
  TableInfo.Table.push_back(0);
  TableInfo.Table.push_back(0);
}

void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
                                           unsigned Opc) const {
  BitsInit *SFBits =
      AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail");
  if (!SFBits) return;
  BitsInit *InstBits =
      AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");

  APInt PositiveMask(BitWidth, 0ULL);
  APInt NegativeMask(BitWidth, 0ULL);
  for (unsigned i = 0; i < BitWidth; ++i) {
    bit_value_t B = bitFromBits(*SFBits, i);
    bit_value_t IB = bitFromBits(*InstBits, i);

    if (B != BIT_TRUE) continue;

    switch (IB) {
    case BIT_FALSE:
      // The bit is meant to be false, so emit a check to see if it is true.
      PositiveMask.setBit(i);
      break;
    case BIT_TRUE:
      // The bit is meant to be true, so emit a check to see if it is false.
      NegativeMask.setBit(i);
      break;
    default:
      // The bit is not set; this must be an error!
      errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
             << AllInstructions[Opc] << " is set but Inst{" << i
             << "} is unset!\n"
             << "  - You can only mark a bit as SoftFail if it is fully defined"
             << " (1/0 - not '?') in Inst\n";
      return;
    }
  }

  bool NeedPositiveMask = PositiveMask.getBoolValue();
  bool NeedNegativeMask = NegativeMask.getBoolValue();

  if (!NeedPositiveMask && !NeedNegativeMask)
    return;

  TableInfo.Table.push_back(MCD::OPC_SoftFail);

  SmallString<16> MaskBytes;
  raw_svector_ostream S(MaskBytes);
  if (NeedPositiveMask) {
    encodeULEB128(PositiveMask.getZExtValue(), S);
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
      TableInfo.Table.push_back(MaskBytes[i]);
  } else
    TableInfo.Table.push_back(0);
  if (NeedNegativeMask) {
    MaskBytes.clear();
    encodeULEB128(NegativeMask.getZExtValue(), S);
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
      TableInfo.Table.push_back(MaskBytes[i]);
  } else
    TableInfo.Table.push_back(0);
}

// Emits table entries to decode the singleton.
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                                            EncodingIDAndOpcode Opc) const {
  std::vector<unsigned> StartBits;
  std::vector<unsigned> EndBits;
  std::vector<uint64_t> FieldVals;
  insn_t Insn;
  insnWithID(Insn, Opc.EncodingID);

  // Look for islands of undecoded bits of the singleton.
  getIslands(StartBits, EndBits, FieldVals, Insn);

  unsigned Size = StartBits.size();

  // Emit the predicate table entry if one is needed.
  emitPredicateTableEntry(TableInfo, Opc.EncodingID);

  // Check any additional encoding fields needed.
  for (unsigned I = Size; I != 0; --I) {
    unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
    TableInfo.Table.push_back(MCD::OPC_CheckField);
    TableInfo.Table.push_back(StartBits[I-1]);
    TableInfo.Table.push_back(NumBits);
    uint8_t Buffer[16], *p;
    encodeULEB128(FieldVals[I-1], Buffer);
    for (p = Buffer; *p >= 128 ; ++p)
      TableInfo.Table.push_back(*p);
    TableInfo.Table.push_back(*p);
    // Push location for NumToSkip backpatching.
    TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
    // The fixup is always 24-bits, so go ahead and allocate the space
    // in the table so all our relative position calculations work OK even
    // before we fully resolve the real value here.
    TableInfo.Table.push_back(0);
    TableInfo.Table.push_back(0);
    TableInfo.Table.push_back(0);
  }

  // Check for soft failure of the match.
  emitSoftFailTableEntry(TableInfo, Opc.EncodingID);

  bool HasCompleteDecoder;
  unsigned DIdx =
      getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);

  // Produce OPC_Decode or OPC_TryDecode opcode based on the information
  // whether the instruction decoder is complete or not. If it is complete
  // then it handles all possible values of remaining variable/unfiltered bits
  // and for any value can determine if the bitpattern is a valid instruction
  // or not. This means OPC_Decode will be the final step in the decoding
  // process. If it is not complete, then the Fail return code from the
  // decoder method indicates that additional processing should be done to see
  // if there is any other instruction that also matches the bitpattern and
  // can decode it.
  TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
      MCD::OPC_TryDecode);
  NumEncodingsSupported++;
  uint8_t Buffer[16], *p;
  encodeULEB128(Opc.Opcode, Buffer);
  for (p = Buffer; *p >= 128 ; ++p)
    TableInfo.Table.push_back(*p);
  TableInfo.Table.push_back(*p);

  SmallString<16> Bytes;
  raw_svector_ostream S(Bytes);
  encodeULEB128(DIdx, S);

  // Decoder index
  for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
    TableInfo.Table.push_back(Bytes[i]);

  if (!HasCompleteDecoder) {
    // Push location for NumToSkip backpatching.
    TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
    // Allocate the space for the fixup.
    TableInfo.Table.push_back(0);
    TableInfo.Table.push_back(0);
    TableInfo.Table.push_back(0);
  }
}

// Emits table entries to decode the singleton, and then to decode the rest.
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                                            const Filter &Best) const {
  EncodingIDAndOpcode Opc = Best.getSingletonOpc();

  // complex singletons need predicate checks from the first singleton
  // to refer forward to the variable filterchooser that follows.
  TableInfo.FixupStack.emplace_back();

  emitSingletonTableEntry(TableInfo, Opc);

  resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
                     TableInfo.Table.size());
  TableInfo.FixupStack.pop_back();

  Best.getVariableFC().emitTableEntries(TableInfo);
}

// Assign a single filter and run with it.  Top level API client can initialize
// with a single filter to start the filtering process.
void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
                                    bool mixed) {
  Filters.clear();
  Filters.emplace_back(*this, startBit, numBit, true);
  BestIndex = 0; // Sole Filter instance to choose from.
  bestFilter().recurse();
}

// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
                                 unsigned BitIndex, bool AllowMixed) {
  if (RA == ATTR_MIXED && AllowMixed)
    Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
  else if (RA == ATTR_ALL_SET && !AllowMixed)
    Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
}

// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters.  It chooses the best filter and
// recursively descends down the decoding tree.
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
  Filters.clear();
  BestIndex = -1;
  unsigned numInstructions = Opcodes.size();

  assert(numInstructions && "Filter created with no instructions");

  // No further filtering is necessary.
  if (numInstructions == 1)
    return true;

  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
  // instructions is 3.
  if (AllowMixed && !Greedy) {
    assert(numInstructions == 3);

    for (auto Opcode : Opcodes) {
      std::vector<unsigned> StartBits;
      std::vector<unsigned> EndBits;
      std::vector<uint64_t> FieldVals;
      insn_t Insn;

      insnWithID(Insn, Opcode.EncodingID);

      // Look for islands of undecoded bits of any instruction.
      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
        // Found an instruction with island(s).  Now just assign a filter.
        runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
        return true;
      }
    }
  }

  unsigned BitIndex;

  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
  // The automaton consumes the corresponding bit from each
  // instruction.
  //
  //   Input symbols: 0, 1, and _ (unset).
  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
  //   Initial state: NONE.
  //
  // (NONE) ------- [01] -> (ALL_SET)
  // (NONE) ------- _ ----> (ALL_UNSET)
  // (ALL_SET) ---- [01] -> (ALL_SET)
  // (ALL_SET) ---- _ ----> (MIXED)
  // (ALL_UNSET) -- [01] -> (MIXED)
  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
  // (MIXED) ------ . ----> (MIXED)
  // (FILTERED)---- . ----> (FILTERED)

  std::vector<bitAttr_t> bitAttrs;

  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
    if (FilterBitValues[BitIndex] == BIT_TRUE ||
        FilterBitValues[BitIndex] == BIT_FALSE)
      bitAttrs.push_back(ATTR_FILTERED);
    else
      bitAttrs.push_back(ATTR_NONE);

  for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
    insn_t insn;

    insnWithID(insn, Opcodes[InsnIndex].EncodingID);

    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
      switch (bitAttrs[BitIndex]) {
      case ATTR_NONE:
        if (insn[BitIndex] == BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
        else
          bitAttrs[BitIndex] = ATTR_ALL_SET;
        break;
      case ATTR_ALL_SET:
        if (insn[BitIndex] == BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_MIXED;
        break;
      case ATTR_ALL_UNSET:
        if (insn[BitIndex] != BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_MIXED;
        break;
      case ATTR_MIXED:
      case ATTR_FILTERED:
        break;
      }
    }
  }

  // The regionAttr automaton consumes the bitAttrs automatons' state,
  // lowest-to-highest.
  //
  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
  //   States:        NONE, ALL_SET, MIXED
  //   Initial state: NONE
  //
  // (NONE) ----- F --> (NONE)
  // (NONE) ----- S --> (ALL_SET)     ; and set region start
  // (NONE) ----- U --> (NONE)
  // (NONE) ----- M --> (MIXED)       ; and set region start
  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
  // (ALL_SET) -- S --> (ALL_SET)
  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
  // (MIXED) ---- M --> (MIXED)

  bitAttr_t RA = ATTR_NONE;
  unsigned StartBit = 0;

  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
    bitAttr_t bitAttr = bitAttrs[BitIndex];

    assert(bitAttr != ATTR_NONE && "Bit without attributes");

    switch (RA) {
    case ATTR_NONE:
      switch (bitAttr) {
      case ATTR_FILTERED:
        break;
      case ATTR_ALL_SET:
        StartBit = BitIndex;
        RA = ATTR_ALL_SET;
        break;
      case ATTR_ALL_UNSET:
        break;
      case ATTR_MIXED:
        StartBit = BitIndex;
        RA = ATTR_MIXED;
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_ALL_SET:
      switch (bitAttr) {
      case ATTR_FILTERED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_ALL_SET:
        break;
      case ATTR_ALL_UNSET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_MIXED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_MIXED;
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_MIXED:
      switch (bitAttr) {
      case ATTR_FILTERED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_NONE;
        break;
      case ATTR_ALL_SET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_ALL_SET;
        break;
      case ATTR_ALL_UNSET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_MIXED:
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_ALL_UNSET:
      llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
    case ATTR_FILTERED:
      llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
    }
  }

  // At the end, if we're still in ALL_SET or MIXED states, report a region
  switch (RA) {
  case ATTR_NONE:
    break;
  case ATTR_FILTERED:
    break;
  case ATTR_ALL_SET:
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
    break;
  case ATTR_ALL_UNSET:
    break;
  case ATTR_MIXED:
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
    break;
  }

  // We have finished with the filter processings.  Now it's time to choose
  // the best performing filter.
  BestIndex = 0;
  bool AllUseless = true;
  unsigned BestScore = 0;

  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
    unsigned Usefulness = Filters[i].usefulness();

    if (Usefulness)
      AllUseless = false;

    if (Usefulness > BestScore) {
      BestIndex = i;
      BestScore = Usefulness;
    }
  }

  if (!AllUseless)
    bestFilter().recurse();

  return !AllUseless;
} // end of FilterChooser::filterProcessor(bool)

// Decides on the best configuration of filter(s) to use in order to decode
// the instructions.  A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void FilterChooser::doFilter() {
  unsigned Num = Opcodes.size();
  assert(Num && "FilterChooser created with no instructions");

  // Try regions of consecutive known bit values first.
  if (filterProcessor(false))
    return;

  // Then regions of mixed bits (both known and unitialized bit values allowed).
  if (filterProcessor(true))
    return;

  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
  // well-known encoding pattern.  In such case, we backtrack and scan for the
  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
  if (Num == 3 && filterProcessor(true, false))
    return;

  // If we come to here, the instruction decoding has failed.
  // Set the BestIndex to -1 to indicate so.
  BestIndex = -1;
}

// emitTableEntries - Emit state machine entries to decode our share of
// instructions.
void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
  if (Opcodes.size() == 1) {
    // There is only one instruction in the set, which is great!
    // Call emitSingletonDecoder() to see whether there are any remaining
    // encodings bits.
    emitSingletonTableEntry(TableInfo, Opcodes[0]);
    return;
  }

  // Choose the best filter to do the decodings!
  if (BestIndex != -1) {
    const Filter &Best = Filters[BestIndex];
    if (Best.getNumFiltered() == 1)
      emitSingletonTableEntry(TableInfo, Best);
    else
      Best.emitTableEntry(TableInfo);
    return;
  }

  // We don't know how to decode these instructions!  Dump the
  // conflict set and bail.

  // Print out useful conflict information for postmortem analysis.
  errs() << "Decoding Conflict:\n";

  dumpStack(errs(), "\t\t");

  for (auto Opcode : Opcodes) {
    errs() << '\t';
    emitNameWithID(errs(), Opcode.EncodingID);
    errs() << " ";
    dumpBits(
        errs(),
        getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
    errs() << '\n';
  }
}

static std::string findOperandDecoderMethod(TypedInit *TI) {
  std::string Decoder;

  Record *Record = cast<DefInit>(TI)->getDef();

  RecordVal *DecoderString = Record->getValue("DecoderMethod");
  StringInit *String = DecoderString ?
    dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
  if (String) {
    Decoder = std::string(String->getValue());
    if (!Decoder.empty())
      return Decoder;
  }

  if (Record->isSubClassOf("RegisterOperand"))
    Record = Record->getValueAsDef("RegClass");

  if (Record->isSubClassOf("RegisterClass")) {
    Decoder = "Decode" + Record->getName().str() + "RegisterClass";
  } else if (Record->isSubClassOf("PointerLikeRegClass")) {
    Decoder = "DecodePointerLikeRegClass" +
      utostr(Record->getValueAsInt("RegClassKind"));
  }

  return Decoder;
}

static bool
populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
                    const CodeGenInstruction &CGI, unsigned Opc,
                    std::map<unsigned, std::vector<OperandInfo>> &Operands) {
  const Record &Def = *CGI.TheDef;
  // If all the bit positions are not specified; do not decode this instruction.
  // We are bound to fail!  For proper disassembly, the well-known encoding bits
  // of the instruction must be fully specified.

  BitsInit &Bits = getBitsField(EncodingDef, "Inst");
  if (Bits.allInComplete()) return false;

  std::vector<OperandInfo> InsnOperands;

  // If the instruction has specified a custom decoding hook, use that instead
  // of trying to auto-generate the decoder.
  StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
  if (InstDecoder != "") {
    bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
    InsnOperands.push_back(
        OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
    Operands[Opc] = InsnOperands;
    return true;
  }

  // Generate a description of the operand of the instruction that we know
  // how to decode automatically.
  // FIXME: We'll need to have a way to manually override this as needed.

  // Gather the outputs/inputs of the instruction, so we can find their
  // positions in the encoding.  This assumes for now that they appear in the
  // MCInst in the order that they're listed.
  std::vector<std::pair<Init*, StringRef>> InOutOperands;
  DagInit *Out  = Def.getValueAsDag("OutOperandList");
  DagInit *In  = Def.getValueAsDag("InOperandList");
  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
    InOutOperands.push_back(std::make_pair(Out->getArg(i),
                                           Out->getArgNameStr(i)));
  for (unsigned i = 0; i < In->getNumArgs(); ++i)
    InOutOperands.push_back(std::make_pair(In->getArg(i),
                                           In->getArgNameStr(i)));

  // Search for tied operands, so that we can correctly instantiate
  // operands that are not explicitly represented in the encoding.
  std::map<std::string, std::string> TiedNames;
  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
    int tiedTo = CGI.Operands[i].getTiedRegister();
    if (tiedTo != -1) {
      std::pair<unsigned, unsigned> SO =
        CGI.Operands.getSubOperandNumber(tiedTo);
      TiedNames[std::string(InOutOperands[i].second)] =
          std::string(InOutOperands[SO.first].second);
      TiedNames[std::string(InOutOperands[SO.first].second)] =
          std::string(InOutOperands[i].second);
    }
  }

  std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
  std::set<std::string> NumberedInsnOperandsNoTie;
  if (Target.getInstructionSet()->
        getValueAsBit("decodePositionallyEncodedOperands")) {
    const std::vector<RecordVal> &Vals = Def.getValues();
    unsigned NumberedOp = 0;

    std::set<unsigned> NamedOpIndices;
    if (Target.getInstructionSet()->
         getValueAsBit("noNamedPositionallyEncodedOperands"))
      // Collect the set of operand indices that might correspond to named
      // operand, and skip these when assigning operands based on position.
      for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
        unsigned OpIdx;
        if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
          continue;

        NamedOpIndices.insert(OpIdx);
      }

    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
      // Ignore fixed fields in the record, we're looking for values like:
      //    bits<5> RST = { ?, ?, ?, ?, ? };
      if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
        continue;

      // Determine if Vals[i] actually contributes to the Inst encoding.
      unsigned bi = 0;
      for (; bi < Bits.getNumBits(); ++bi) {
        VarInit *Var = nullptr;
        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
        if (BI)
          Var = dyn_cast<VarInit>(BI->getBitVar());
        else
          Var = dyn_cast<VarInit>(Bits.getBit(bi));

        if (Var && Var->getName() == Vals[i].getName())
          break;
      }

      if (bi == Bits.getNumBits())
        continue;

      // Skip variables that correspond to explicitly-named operands.
      unsigned OpIdx;
      if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
        continue;

      // Get the bit range for this operand:
      unsigned bitStart = bi++, bitWidth = 1;
      for (; bi < Bits.getNumBits(); ++bi) {
        VarInit *Var = nullptr;
        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
        if (BI)
          Var = dyn_cast<VarInit>(BI->getBitVar());
        else
          Var = dyn_cast<VarInit>(Bits.getBit(bi));

        if (!Var)
          break;

        if (Var->getName() != Vals[i].getName())
          break;

        ++bitWidth;
      }

      unsigned NumberOps = CGI.Operands.size();
      while (NumberedOp < NumberOps &&
             (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
              (!NamedOpIndices.empty() && NamedOpIndices.count(
                CGI.Operands.getSubOperandNumber(NumberedOp).first))))
        ++NumberedOp;

      OpIdx = NumberedOp++;

      // OpIdx now holds the ordered operand number of Vals[i].
      std::pair<unsigned, unsigned> SO =
        CGI.Operands.getSubOperandNumber(OpIdx);
      const std::string &Name = CGI.Operands[SO.first].Name;

      LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
                        << ": " << Name << "(" << SO.first << ", " << SO.second
                        << ") => " << Vals[i].getName() << "\n");

      std::string Decoder;
      Record *TypeRecord = CGI.Operands[SO.first].Rec;

      RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
      StringInit *String = DecoderString ?
        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
      if (String && String->getValue() != "")
        Decoder = std::string(String->getValue());

      if (Decoder == "" &&
          CGI.Operands[SO.first].MIOperandInfo &&
          CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
        Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
                      getArg(SO.second);
        if (DefInit *DI = cast<DefInit>(Arg))
          TypeRecord = DI->getDef();
      }

      bool isReg = false;
      if (TypeRecord->isSubClassOf("RegisterOperand"))
        TypeRecord = TypeRecord->getValueAsDef("RegClass");
      if (TypeRecord->isSubClassOf("RegisterClass")) {
        Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
        isReg = true;
      } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
        Decoder = "DecodePointerLikeRegClass" +
                  utostr(TypeRecord->getValueAsInt("RegClassKind"));
        isReg = true;
      }

      DecoderString = TypeRecord->getValue("DecoderMethod");
      String = DecoderString ?
        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
      if (!isReg && String && String->getValue() != "")
        Decoder = std::string(String->getValue());

      RecordVal *HasCompleteDecoderVal =
        TypeRecord->getValue("hasCompleteDecoder");
      BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
        dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
      bool HasCompleteDecoder = HasCompleteDecoderBit ?
        HasCompleteDecoderBit->getValue() : true;

      OperandInfo OpInfo(Decoder, HasCompleteDecoder);
      OpInfo.addField(bitStart, bitWidth, 0);

      NumberedInsnOperands[Name].push_back(OpInfo);

      // FIXME: For complex operands with custom decoders we can't handle tied
      // sub-operands automatically. Skip those here and assume that this is
      // fixed up elsewhere.
      if (CGI.Operands[SO.first].MIOperandInfo &&
          CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
          String && String->getValue() != "")
        NumberedInsnOperandsNoTie.insert(Name);
    }
  }

  // For each operand, see if we can figure out where it is encoded.
  for (const auto &Op : InOutOperands) {
    if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
      llvm::append_range(InsnOperands,
                         NumberedInsnOperands[std::string(Op.second)]);
      continue;
    }
    if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
      if (!NumberedInsnOperandsNoTie.count(TiedNames[std::string(Op.second)])) {
        // Figure out to which (sub)operand we're tied.
        unsigned i =
            CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
        int tiedTo = CGI.Operands[i].getTiedRegister();
        if (tiedTo == -1) {
          i = CGI.Operands.getOperandNamed(Op.second);
          tiedTo = CGI.Operands[i].getTiedRegister();
        }

        if (tiedTo != -1) {
          std::pair<unsigned, unsigned> SO =
            CGI.Operands.getSubOperandNumber(tiedTo);

          InsnOperands.push_back(
              NumberedInsnOperands[TiedNames[std::string(Op.second)]]
                                  [SO.second]);
        }
      }
      continue;
    }

    TypedInit *TI = cast<TypedInit>(Op.first);

    // At this point, we can locate the decoder field, but we need to know how
    // to interpret it.  As a first step, require the target to provide
    // callbacks for decoding register classes.
    std::string Decoder = findOperandDecoderMethod(TI);
    Record *TypeRecord = cast<DefInit>(TI)->getDef();

    RecordVal *HasCompleteDecoderVal =
      TypeRecord->getValue("hasCompleteDecoder");
    BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
      dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
    bool HasCompleteDecoder = HasCompleteDecoderBit ?
      HasCompleteDecoderBit->getValue() : true;

    OperandInfo OpInfo(Decoder, HasCompleteDecoder);

    // Some bits of the operand may be required to be 1 depending on the
    // instruction's encoding. Collect those bits.
    if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
      if (const BitsInit *OpBits = dyn_cast<BitsInit>(EncodedValue->getValue()))
        for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
          if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
            if (OpBit->getValue())
              OpInfo.InitValue |= 1ULL << I;

    unsigned Base = ~0U;
    unsigned Width = 0;
    unsigned Offset = 0;

    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
      VarInit *Var = nullptr;
      VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
      if (BI)
        Var = dyn_cast<VarInit>(BI->getBitVar());
      else
        Var = dyn_cast<VarInit>(Bits.getBit(bi));

      if (!Var) {
        if (Base != ~0U) {
          OpInfo.addField(Base, Width, Offset);
          Base = ~0U;
          Width = 0;
          Offset = 0;
        }
        continue;
      }

      if (Var->getName() != Op.second &&
          Var->getName() != TiedNames[std::string(Op.second)]) {
        if (Base != ~0U) {
          OpInfo.addField(Base, Width, Offset);
          Base = ~0U;
          Width = 0;
          Offset = 0;
        }
        continue;
      }

      if (Base == ~0U) {
        Base = bi;
        Width = 1;
        Offset = BI ? BI->getBitNum() : 0;
      } else if (BI && BI->getBitNum() != Offset + Width) {
        OpInfo.addField(Base, Width, Offset);
        Base = bi;
        Width = 1;
        Offset = BI->getBitNum();
      } else {
        ++Width;
      }
    }

    if (Base != ~0U)
      OpInfo.addField(Base, Width, Offset);

    if (OpInfo.numFields() > 0)
      InsnOperands.push_back(OpInfo);
  }

  Operands[Opc] = InsnOperands;

#if 0
  LLVM_DEBUG({
      // Dumps the instruction encoding bits.
      dumpBits(errs(), Bits);

      errs() << '\n';

      // Dumps the list of operand info.
      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
        const std::string &OperandName = Info.Name;
        const Record &OperandDef = *Info.Rec;

        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
      }
    });
#endif

  return true;
}

// emitFieldFromInstruction - Emit the templated helper function
// fieldFromInstruction().
// On Windows we make sure that this function is not inlined when
// using the VS compiler. It has a bug which causes the function
// to be optimized out in some circustances. See llvm.org/pr38292
static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
  OS << "// Helper functions for extracting fields from encoded instructions.\n"
     << "// InsnType must either be integral or an APInt-like object that "
        "must:\n"
     << "// * be default-constructible and copy-constructible\n"
     << "// * be constructible from a uint64_t\n"
     << "// * be constructible from an APInt (this can be private)\n"
     << "// * Support insertBits(bits, startBit, numBits)\n"
     << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
     << "// * be convertible to bool\n"
     << "// * Support the ~, &, ==, and != operators with other objects of "
        "the same type\n"
     << "// * Support put (<<) to raw_ostream&\n"
     << "template <typename InsnType>\n"
     << "#if defined(_MSC_VER) && !defined(__clang__)\n"
     << "__declspec(noinline)\n"
     << "#endif\n"
     << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
     << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
     << "                     unsigned numBits) {\n"
     << "  assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
        "extractions!\");\n"
     << "  assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
     << "         \"Instruction field out of bounds!\");\n"
     << "  InsnType fieldMask;\n"
     << "  if (numBits == sizeof(InsnType) * 8)\n"
     << "    fieldMask = (InsnType)(-1LL);\n"
     << "  else\n"
     << "    fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
     << "  return (insn & fieldMask) >> startBit;\n"
     << "}\n"
     << "\n"
     << "template <typename InsnType>\n"
     << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
        "uint64_t>\n"
     << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
     << "                     unsigned numBits) {\n"
     << "  return insn.extractBitsAsZExtValue(numBits, startBit);\n"
     << "}\n\n";
}

// emitInsertBits - Emit the templated helper function insertBits().
static void emitInsertBits(formatted_raw_ostream &OS) {
  OS << "// Helper function for inserting bits extracted from an encoded "
        "instruction into\n"
     << "// a field.\n"
     << "template <typename InsnType>\n"
     << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
     << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
        "unsigned numBits) {\n"
     << "  assert(startBit + numBits <= sizeof field * 8);\n"
     << "  field |= (InsnType)bits << startBit;\n"
     << "}\n"
     << "\n"
     << "template <typename InsnType>\n"
     << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
     << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
        "unsigned numBits) {\n"
     << "  field.insertBits(bits, startBit, numBits);\n"
     << "}\n\n";
}

// emitDecodeInstruction - Emit the templated helper function
// decodeInstruction().
static void emitDecodeInstruction(formatted_raw_ostream &OS) {
  OS << "template <typename InsnType>\n"
     << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
        "MCInst &MI,\n"
     << "                                      InsnType insn, uint64_t "
        "Address,\n"
     << "                                      const void *DisAsm,\n"
     << "                                      const MCSubtargetInfo &STI) {\n"
     << "  const FeatureBitset &Bits = STI.getFeatureBits();\n"
     << "\n"
     << "  const uint8_t *Ptr = DecodeTable;\n"
     << "  InsnType CurFieldValue = 0;\n"
     << "  DecodeStatus S = MCDisassembler::Success;\n"
     << "  while (true) {\n"
     << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
     << "    switch (*Ptr) {\n"
     << "    default:\n"
     << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
     << "      return MCDisassembler::Fail;\n"
     << "    case MCD::OPC_ExtractField: {\n"
     << "      unsigned Start = *++Ptr;\n"
     << "      unsigned Len = *++Ptr;\n"
     << "      ++Ptr;\n"
     << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
        "\", \"\n"
     << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_FilterValue: {\n"
     << "      // Decode the field value.\n"
     << "      unsigned Len;\n"
     << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 24-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "      NumToSkip |= (*Ptr++) << 16;\n"
     << "\n"
     << "      // Perform the filter operation.\n"
     << "      if (Val != CurFieldValue)\n"
     << "        Ptr += NumToSkip;\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
        "\", \" << NumToSkip\n"
     << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
        ": \"PASS:\")\n"
     << "                   << \" continuing at \" << (Ptr - DecodeTable) << "
        "\"\\n\");\n"
     << "\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_CheckField: {\n"
     << "      unsigned Start = *++Ptr;\n"
     << "      unsigned Len = *++Ptr;\n"
     << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
     << "      // Decode the field value.\n"
     << "      InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 24-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "      NumToSkip |= (*Ptr++) << 16;\n"
     << "\n"
     << "      // If the actual and expected values don't match, skip.\n"
     << "      if (ExpectedValue != FieldValue)\n"
     << "        Ptr += NumToSkip;\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
        "\", \"\n"
     << "                   << Len << \", \" << ExpectedValue << \", \" << "
        "NumToSkip\n"
     << "                   << \"): FieldValue = \" << FieldValue << \", "
        "ExpectedValue = \"\n"
     << "                   << ExpectedValue << \": \"\n"
     << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
        "\"FAIL\\n\"));\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_CheckPredicate: {\n"
     << "      unsigned Len;\n"
     << "      // Decode the Predicate Index value.\n"
     << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 24-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "      NumToSkip |= (*Ptr++) << 16;\n"
     << "      // Check the predicate.\n"
     << "      bool Pred;\n"
     << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
     << "        Ptr += NumToSkip;\n"
     << "      (void)Pred;\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
        "<< \"): \"\n"
     << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
     << "\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_Decode: {\n"
     << "      unsigned Len;\n"
     << "      // Decode the Opcode value.\n"
     << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "\n"
     << "      MI.clear();\n"
     << "      MI.setOpcode(Opc);\n"
     << "      bool DecodeComplete;\n"
     << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
        "DecodeComplete);\n"
     << "      assert(DecodeComplete);\n"
     << "\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
     << "                   << \", using decoder \" << DecodeIdx << \": \"\n"
     << "                   << (S != MCDisassembler::Fail ? \"PASS\" : "
        "\"FAIL\") << \"\\n\");\n"
     << "      return S;\n"
     << "    }\n"
     << "    case MCD::OPC_TryDecode: {\n"
     << "      unsigned Len;\n"
     << "      // Decode the Opcode value.\n"
     << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 24-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "      NumToSkip |= (*Ptr++) << 16;\n"
     << "\n"
     << "      // Perform the decode operation.\n"
     << "      MCInst TmpMI;\n"
     << "      TmpMI.setOpcode(Opc);\n"
     << "      bool DecodeComplete;\n"
     << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
        "DecodeComplete);\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
        "Opc\n"
     << "                   << \", using decoder \" << DecodeIdx << \": \");\n"
     << "\n"
     << "      if (DecodeComplete) {\n"
     << "        // Decoding complete.\n"
     << "        LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
        "\"FAIL\") << \"\\n\");\n"
     << "        MI = TmpMI;\n"
     << "        return S;\n"
     << "      } else {\n"
     << "        assert(S == MCDisassembler::Fail);\n"
     << "        // If the decoding was incomplete, skip.\n"
     << "        Ptr += NumToSkip;\n"
     << "        LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
        "DecodeTable) << \"\\n\");\n"
     << "        // Reset decode status. This also drops a SoftFail status "
        "that could be\n"
     << "        // set before the decode attempt.\n"
     << "        S = MCDisassembler::Success;\n"
     << "      }\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_SoftFail: {\n"
     << "      // Decode the mask values.\n"
     << "      unsigned Len;\n"
     << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
     << "      if (Fail)\n"
     << "        S = MCDisassembler::SoftFail;\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
        "\"FAIL\\n\" : \"PASS\\n\"));\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_Fail: {\n"
     << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
     << "      return MCDisassembler::Fail;\n"
     << "    }\n"
     << "    }\n"
     << "  }\n"
     << "  llvm_unreachable(\"bogosity detected in disassembler state "
        "machine!\");\n"
     << "}\n\n";
}

// Emits disassembler code for instruction decoding.
void FixedLenDecoderEmitter::run(raw_ostream &o) {
  formatted_raw_ostream OS(o);
  OS << "#include \"llvm/MC/MCInst.h\"\n";
  OS << "#include \"llvm/Support/DataTypes.h\"\n";
  OS << "#include \"llvm/Support/Debug.h\"\n";
  OS << "#include \"llvm/Support/LEB128.h\"\n";
  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
  OS << "#include <assert.h>\n";
  OS << '\n';
  OS << "namespace llvm {\n\n";

  emitFieldFromInstruction(OS);
  emitInsertBits(OS);

  Target.reverseBitsForLittleEndianEncoding();

  // Parameterize the decoders based on namespace and instruction width.
  std::set<StringRef> HwModeNames;
  const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
  NumberedEncodings.reserve(NumberedInstructions.size());
  DenseMap<Record *, unsigned> IndexOfInstruction;
  // First, collect all HwModes referenced by the target.
  for (const auto &NumberedInstruction : NumberedInstructions) {
    IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();

    if (const RecordVal *RV =
            NumberedInstruction->TheDef->getValue("EncodingInfos")) {
      if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
        const CodeGenHwModes &HWM = Target.getHwModes();
        EncodingInfoByHwMode EBM(DI->getDef(), HWM);
        for (auto &KV : EBM)
          HwModeNames.insert(HWM.getMode(KV.first).Name);
      }
    }
  }

  // If HwModeNames is empty, add the empty string so we always have one HwMode.
  if (HwModeNames.empty())
    HwModeNames.insert("");

  for (const auto &NumberedInstruction : NumberedInstructions) {
    IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();

    if (const RecordVal *RV =
            NumberedInstruction->TheDef->getValue("EncodingInfos")) {
      if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
        const CodeGenHwModes &HWM = Target.getHwModes();
        EncodingInfoByHwMode EBM(DI->getDef(), HWM);
        for (auto &KV : EBM) {
          NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
                                         HWM.getMode(KV.first).Name);
          HwModeNames.insert(HWM.getMode(KV.first).Name);
        }
        continue;
      }
    }
    // This instruction is encoded the same on all HwModes. Emit it for all
    // HwModes.
    for (StringRef HwModeName : HwModeNames)
      NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
                                     NumberedInstruction, HwModeName);
  }
  for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
    NumberedEncodings.emplace_back(
        NumberedAlias,
        &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));

  std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
      OpcMap;
  std::map<unsigned, std::vector<OperandInfo>> Operands;

  for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
    const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
    const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
    const Record *Def = Inst->TheDef;
    unsigned Size = EncodingDef->getValueAsInt("Size");
    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
        Def->getValueAsBit("isPseudo") ||
        Def->getValueAsBit("isAsmParserOnly") ||
        Def->getValueAsBit("isCodeGenOnly")) {
      NumEncodingsLackingDisasm++;
      continue;
    }

    if (i < NumberedInstructions.size())
      NumInstructions++;
    NumEncodings++;

    if (!Size)
      continue;

    if (populateInstruction(Target, *EncodingDef, *Inst, i, Operands)) {
      std::string DecoderNamespace =
          std::string(EncodingDef->getValueAsString("DecoderNamespace"));
      if (!NumberedEncodings[i].HwModeName.empty())
        DecoderNamespace +=
            std::string("_") + NumberedEncodings[i].HwModeName.str();
      OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
          i, IndexOfInstruction.find(Def)->second);
    } else {
      NumEncodingsOmitted++;
    }
  }

  DecoderTableInfo TableInfo;
  for (const auto &Opc : OpcMap) {
    // Emit the decoder for this namespace+width combination.
    ArrayRef<EncodingAndInst> NumberedEncodingsRef(
        NumberedEncodings.data(), NumberedEncodings.size());
    FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
                     8 * Opc.first.second, this);

    // The decode table is cleared for each top level decoder function. The
    // predicates and decoders themselves, however, are shared across all
    // decoders to give more opportunities for uniqueing.
    TableInfo.Table.clear();
    TableInfo.FixupStack.clear();
    TableInfo.Table.reserve(16384);
    TableInfo.FixupStack.emplace_back();
    FC.emitTableEntries(TableInfo);
    // Any NumToSkip fixups in the top level scope can resolve to the
    // OPC_Fail at the end of the table.
    assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
    // Resolve any NumToSkip fixups in the current scope.
    resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
                       TableInfo.Table.size());
    TableInfo.FixupStack.clear();

    TableInfo.Table.push_back(MCD::OPC_Fail);

    // Print the table to the output stream.
    emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
    OS.flush();
  }

  // Emit the predicate function.
  emitPredicateFunction(OS, TableInfo.Predicates, 0);

  // Emit the decoder function.
  emitDecoderFunction(OS, TableInfo.Decoders, 0);

  // Emit the main entry point for the decoder, decodeInstruction().
  emitDecodeInstruction(OS);

  OS << "\n} // end namespace llvm\n";
}

namespace llvm {

void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
                         const std::string &PredicateNamespace,
                         const std::string &GPrefix,
                         const std::string &GPostfix, const std::string &ROK,
                         const std::string &RFail, const std::string &L) {
  FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
                         ROK, RFail, L).run(OS);
}

} // end namespace llvm