/* udb.h - u(micro) data base, stores data and index information in mmap file.
* By W.C.A. Wijngaards
* Copyright 2010, NLnet Labs.
* BSD, see LICENSE.
*/
#ifndef UDB_H
#define UDB_H
#include <assert.h>
/**
* The micro data base UDB.
*
* File data.udb is mmapped and used to lookup and edit.
* it contains a header with space-allocation-info, and a reference to the
* base information, an object that is the entry point for the file.
* Then it contains a lot of data and index objects.
*
* The space allocator is 'buddy system', 1megareas, larger get own area.
* So worst case is 2xdata filesize (+header). Growth semi-linear.
* Chunks have size and type (for recovery). Call to reserve space.
* Call to 'realloc-in-place', if space permits.
*
* Usually you want a record-type and its indexes (sorted) to be stored in
* the file. This is a table (named by string). The record is opaque
* data.
*
* To be able to use pointers in the mmapped file, there is conversion of
* relative-pointers(to file base) to system-pointers.
*
* If an item is moved its internal pointers need to be recalculated.
* Thus a recordtype (that has internal pointers) must provide a routine.
* Structures that are 'on-disk', are denoted with _d. Except rel_ptr which
* is also on-disk.
*
* About 64-bit trouble. The pointer-size which which the application is
* compiled determines the file layout, because this makes it perform well
* in a mmap. It could in theory be converted if you really wanted to.
* Nonpointer data is best stored as a fixed bitsize (uint8, 16, 32, 64).
*/
typedef struct udb_base udb_base;
typedef struct udb_alloc udb_alloc;
/** these checks are very slow, disabled by default */
#if 0
/** perform extra checks (when --enable-checking is used) */
#ifndef NDEBUG
#define UDB_CHECK 1
#endif
#endif
/** pointers are stored like this */
typedef uint64_t udb_void;
/** convert relptr to usable pointer */
#define UDB_REL(base, relptr) ((void*)((char*)(base) + (relptr)))
/** from system pointer to relative pointer */
#define UDB_SYSTOREL(base, ptr) ((udb_void)((char*)(ptr) - (char*)(base)))
/** MAX 2**x exponent of alloced chunks, for 1Mbytes. The smallest
* chunk is 16bytes (8preamble+8data), so 0-3 is unused. */
#define UDB_ALLOC_CHUNKS_MAX 20
/** size of areas that are subdivided */
#define UDB_ALLOC_CHUNK_SIZE ((uint64_t)1<<UDB_ALLOC_CHUNKS_MAX)
/** the minimum alloc in exp, 2**x. 32bytes because of chunk_free_d size (8aligned) */
#define UDB_ALLOC_CHUNK_MINEXP 5
/** size of minimum alloc */
#define UDB_ALLOC_CHUNK_MINSIZE ((uint64_t)1<<UDB_ALLOC_CHUNK_MINEXP)
/** exp size used to mark the header (cannot be reallocated) */
#define UDB_EXP_HEADER 0
/** exp size used to mark XL(extralarge) allocations (in whole mbs) */
#define UDB_EXP_XL 1
typedef struct udb_ptr udb_ptr;
/**
* This structure is there for when you want to have a pointer into
* the mmap-ed file. It is kept track of. Set it to NULL to unlink it.
* For pointers to the mmap-ed file from within the mmap-ed file, use the
* rel_pre construct below.
*/
struct udb_ptr {
/** the data segment it points to (relative file offset) */
uint64_t data;
/** pointer to the base pointer (for convenience) */
void** base;
/** prev in udb_ptr list for this data segment */
udb_ptr* prev;
/** next in udb_ptr list for this data segment */
udb_ptr* next;
};
typedef struct udb_rel_ptr udb_rel_ptr;
/**
* A relative pointer that keeps track of the list of pointers,
* so that it can be reallocated.
*/
struct udb_rel_ptr {
/** the relative pointer to the data itself (subtract chunk_d size
* to get the chunk_d type, this is for usage speed in dereferencing
* to the userdata). */
udb_void data;
/** udb_rel_ptr* prev in relptr list */
udb_void prev;
/** udb_rel_ptr* next in relptr list */
udb_void next;
};
/**
* This is the routine that is called for every relptr
* @param base: the baseptr for REL.
* @param p: the relptr, a real pointer to it.
* @param arg: user argument.
*/
typedef void udb_walk_relptr_cb(void*, udb_rel_ptr*, void*);
/**
* This routine calls the callback for every relptr in a datablock
* params in order:
* base: the baseptr for REL macro.
* warg: the walkfunc user argument.
* t: the type of the chunk.
* d: pointer to the data part of the chunk (real pointer).
* s: max size of the data part.
* cb: the callback to call for every element.
* arg: user argument to pass to the callback.
*/
typedef void udb_walk_relptr_func(void*, void*, uint8_t, void*, uint64_t,
udb_walk_relptr_cb*, void*);
/** What sort of salvage should be performed by alloc */
enum udb_dirty_alloc {
udb_dirty_clean = 0, /* all clean */
udb_dirty_fl, /* allocs, freelists are messed up */
udb_dirty_fsize, /* file size and fsize are messed up */
udb_dirty_compact /* allocs, freelists and relptrs are messed up */
};
typedef struct udb_glob_d udb_glob_d;
/**
* The UDB global data for a file. This structure is mmapped.
* Make sure it has no structure-padding problems.
*/
struct udb_glob_d {
/** size of header in the file (offset to the first alloced chunk) */
uint64_t hsize;
/** version number of this file */
uint8_t version;
/** was the file cleanly closed, 0 is not clean, 1 is clean */
uint8_t clean_close;
/** an allocation operation was in progress, file needs to be salvaged
* type enum udb_dirty_alloc */
uint8_t dirty_alloc;
/** user flags */
uint8_t userflags;
/** padding to 8-bytes alignment */
uint8_t pad1[4];
/** size to mmap */
uint64_t fsize;
/** chunk move rollback info: oldchunk (0 is nothing).
* volatile because these values prevent dataloss, they need to be
* written immediately. */
volatile udb_void rb_old;
/** chunk move rollback info: newchunk (0 is nothing) */
volatile udb_void rb_new;
/** size of move rollback chunks */
volatile uint64_t rb_size;
/** segment of move rollback, for an XL chunk that overlaps. */
volatile uint64_t rb_seg;
/** linked list for content-listing, 0 if empty;
* this pointer is unused; and could be removed if the database
* format is modified or updated. */
udb_rel_ptr content_list;
/** user global data pointer */
udb_rel_ptr user_global;
};
/**
* The UDB database file. Contains all the data
*/
struct udb_base {
/** name of the file, alloced */
char* fname;
/** mmap base pointer (or NULL) */
void* base;
/** size of mmap */
size_t base_size;
/** fd of mmap (if -1, closed). */
int fd;
/** space allocator that is used for this base */
udb_alloc* alloc;
/** real pointer to the global data in the file */
udb_glob_d* glob_data;
/** store all linked udb_ptrs in this table, by hash(offset).
* then a linked list of ptrs (all that match the hash).
* this avoids buckets, and thus memory allocation. */
udb_ptr** ram_hash;
/** size of the current udb_ptr hashtable array */
size_t ram_size;
/** mask for the current udb_ptr hashtable lookups */
int ram_mask;
/** number of ptrs in ram, used to decide when to grow */
size_t ram_num;
/** for relocation, this walks through all relptrs in chunk */
udb_walk_relptr_func* walkfunc;
/** user data for walkfunc */
void* walkarg;
/** compaction is inhibited */
int inhibit_compact;
/** compaction is useful; deletions performed. */
int useful_compact;
};
typedef enum udb_chunk_type udb_chunk_type;
/** chunk type enum, setting these types help recovery and debug */
enum udb_chunk_type {
udb_chunk_type_free = 0,
udb_chunk_type_data, /* alloced data */
udb_chunk_type_index,
udb_chunk_type_radtree,
udb_chunk_type_radnode,
udb_chunk_type_radarray,
udb_chunk_type_zone,
udb_chunk_type_domain,
udb_chunk_type_rrset,
udb_chunk_type_rr,
udb_chunk_type_task,
udb_chunk_type_internal
};
typedef struct udb_chunk_d udb_chunk_d;
/**
* UDB chunk info (prepended for every allocated chunk).
* The chunks are in doublelinkedlists per size.
* At the end of the chunk another exp uint8 is stored (to walk backwards).
* 17 bytes overhead, datasize for 32byte chunk is 15.
*/
struct udb_chunk_d {
/** the size of this chunk (i.e. 2**x) */
uint8_t exp;
/** type for this chunk (enum chunktype; free, data or index) */
uint8_t type;
/** flags for this chunk */
uint8_t flags;
/** padding onto 8-alignment */
uint8_t pad[5];
/** udb_rel_ptr* first in list of rel-ptrs that point back here
* In the free chunk this is the previous pointer. */
udb_void ptrlist;
/* user data space starts here, 64-bit aligned */
uint8_t data[0];
/* last octet: exp of chunk */
};
typedef struct udb_free_chunk_d udb_free_chunk_d;
/**
* A free chunk. Same start as the udb_chunk_d. minsize is 32 bytes.
*/
struct udb_free_chunk_d {
/** the size of this chunk (i.e. 2**x) */
uint8_t exp;
/** type for this chunk (enum chunktype; free, data or index) */
uint8_t type;
/** flags for this chunk */
uint8_t flags;
/** padding onto 8-alignment */
uint8_t pad[5];
/** udb_chunk_d* prev of free list for this size */
udb_void prev;
/** udb_chunk_d* next of free list for this size */
udb_void next;
/* empty stuff */
/* last octet: exp of chunk */
};
typedef struct udb_xl_chunk_d udb_xl_chunk_d;
/**
* an Extra Large (XL) chunk. Same start as the udb_chunk_d. Allocated in whole
* MAX_CHUNK_SIZE parts, whole megabytes. overhead is 5x8=40 bytes.
*/
struct udb_xl_chunk_d {
/** the size of this chunk (i.e. 2**x): special XL value */
uint8_t exp;
/** type for this chunk (enum chunktype; free, data or index) */
uint8_t type;
/** flags for this chunk */
uint8_t flags;
/** padding onto 8-alignment */
uint8_t pad[5];
/** udb_rel_ptr* first in list of rel-ptrs that point back here
* In the free chunk this is the previous pointer. */
udb_void ptrlist;
/** size of this chunk in bytes */
uint64_t size;
/** data of the XL chunk */
uint8_t data[0];
/* uint64_t endsize: before last octet the size again. */
/* uint8_t pad[7]: padding to make last octet last. */
/* last octet: exp of chunk: special XL value */
};
typedef struct udb_alloc_d udb_alloc_d;
/**
* UDB alloc info on disk.
*/
struct udb_alloc_d {
/** stats: number of data bytes allocated, sum of sizes passed to alloc */
uint64_t stat_data;
/** stats: number of bytes in free chunks, sum of their 2**x size */
uint64_t stat_free;
/** stats: number of bytes in alloced chunks, sum of their 2**x size */
uint64_t stat_alloc;
/** offset to create next chunk at. can be before file-end, or be
* fsize, volatile because it is used as a 'commit', and thus we want
* this to be written to memory (and thus disk) immediately. */
volatile uint64_t nextgrow;
/** fixed size array the points to the 2**x size chunks in the file,
* This is the start of the doublelinked list, ptr to udb_free_chunk_d.
* array starts at UDB_ALLOC_CHUNK_MINEXP entry as [0]. */
udb_void free[UDB_ALLOC_CHUNKS_MAX-UDB_ALLOC_CHUNK_MINEXP+1];
};
/**
* The UDB space allocator. Assigns space in the file.
*/
struct udb_alloc {
/** the base this is part of */
udb_base* udb;
/** real pointer to space allocation info on disk; fixedsize struct */
udb_alloc_d* disk;
};
/**
* file header length, the file start with
* 64bit: magic number to identify file (and prevent stupid mistakes)
* globdata: global data. Fixed size segment. (starts with size uint64)
* allocdata: alloc global data. Fixed size segment.
* size and 0 byte: end marker for reverse search.
*/
#define UDB_HEADER_SIZE (sizeof(uint64_t)+sizeof(udb_glob_d)+ \
sizeof(udb_alloc_d)+sizeof(uint64_t)*2)
/** magic string that starts an UDB file, uint64_t, note first byte=0, to mark
* header start as a chunk. */
#define UDB_MAGIC (((uint64_t)'u'<<48)|((uint64_t)'d'<<40)|((uint64_t)'b' \
<<32)|((uint64_t)'v'<<24)|((uint64_t)'0'<<16)|((uint64_t)'b'<<8))
/* UDB BASE */
/**
* Create udb base structure and attempt to read the file.
* @param fname: file name.
* @param walkfunc: function to walk through relptrs in chunk.
* @param arg: user argument to pass to walkfunc
* @return base structure or NULL on failure.
*/
udb_base* udb_base_create_read(const char* fname, udb_walk_relptr_func walkfunc,
void* arg);
/**
* Create udb base structure and create a new file.
* @param fname: file name.
* @param walkfunc: function to walk through relptrs in chunk.
* @param arg: user argument to pass to walkfunc
* @return base structure or NULL on failure.
*/
udb_base* udb_base_create_new(const char* fname, udb_walk_relptr_func walkfunc,
void* arg);
/**
* Create udb from (O_RDWR) fd.
* @param fname: file name.
* @param fd: file descriptor.
* @param walkfunc: function to walk through relptrs in chunk.
* @param arg: user argument to pass to walkfunc
* @return base structure or NULL on failure.
*/
udb_base* udb_base_create_fd(const char* fname, int fd,
udb_walk_relptr_func walkfunc, void* arg);
/**
* Properly close the UDB base file. Separate from delete so the
* most important bits (write to disk, sockets) can be done first.
* @param udb: the udb.
*/
void udb_base_close(udb_base* udb);
/**
* Free the data structure (and close if not already) the udb.
* @param udb: the udb.
*/
void udb_base_free(udb_base* udb);
/**
* Free the udb, but keep mmap mapped for others.
* @param udb: the udb.
*/
void udb_base_free_keep_mmap(udb_base* udb);
/**
* Sync the mmap.
* @param udb: the udb.
* @param wait: if true, the call blocks until synced.
*/
void udb_base_sync(udb_base* udb, int wait);
/**
* The mmap size is updated to reflect changes by another process.
* @param udb: the udb.
*/
void udb_base_remap_process(udb_base* udb);
/**
* get the user data (relative) pointer.
* @param udb: the udb.
* @return the userdata relative pointer, 0 means nothing.
*/
udb_rel_ptr* udb_base_get_userdata(udb_base* udb);
/**
* Set the user data (relative) pointer.
* @param udb: the udb.
* @param user: user data. offset-pointer (or 0).
*/
void udb_base_set_userdata(udb_base* udb, udb_void user);
/**
* Set the user flags (to any value, uint8).
* @param udb: the udb.
* @param v: new value.
*/
void udb_base_set_userflags(udb_base* udb, uint8_t v);
/**
* Get the user flags.
* @param udb: the udb.
* @param v: new value.
*/
uint8_t udb_base_get_userflags(udb_base* udb);
/**
* Not for users of udb_base, but for udb_ptr.
* Link in a new ptr that references a data segment.
* @param udb: the udb.
* @param ptr: to link in.
*/
void udb_base_link_ptr(udb_base* udb, udb_ptr* ptr);
/**
* Not for users of udb_base, but for udb_ptr.
* Unlink a ptr that references a data segment.
* @param udb: the udb.
* @param ptr: to unlink.
*/
void udb_base_unlink_ptr(udb_base* udb, udb_ptr* ptr);
/* UDB ALLOC */
/**
* Utility for alloc, find 2**x size that is bigger than the given size.
* Does not work for amount==0.
* @param amount: amount of memory.
* @return x; the exponent where 2**x >= amount.
*/
int udb_exp_size(uint64_t amount);
/**
* Utility for alloc, what is the size that the current offset supports
* as a maximum 2**x chunk.
* Does not work for offset = 0 (result is infinite).
* @param offset: the offset into the memory region.
* @return maximum exponent where 2**x is fits the offset, thus
* offset % (2**x) == 0 and x cannot be larger.
*/
int udb_exp_offset(uint64_t offset);
/**
* Convert pointer to the data part to a pointer to the base of the chunk.
* @param data: data part.
* @return pointer to the base of the chunk.
*/
udb_void chunk_from_dataptr_ext(udb_void data);
/**
* Create empty UDB allocate structure to write to disk to initialize file.
* @param a: allocation structure to initialize. system pointer.
*/
void udb_alloc_init_new(udb_alloc_d* a);
/**
* Create new udb allocator, with specific data on disk
* @param udb: the udb.
* @param disk: disk data.
* @return udb allocator or NULL on (malloc) failure.
*/
udb_alloc* udb_alloc_create(udb_base* udb, udb_alloc_d* disk);
/**
* Free the udb allocator from memory.
* @param alloc: the udb space allocator.
*/
void udb_alloc_delete(udb_alloc* alloc);
/**
* Allocate space on the disk.
* This may involve closing and reopening the mmap.
* @param alloc: the udb space allocator.
* @param sz: size you want to use.
* @return relative pointer (or 0 on alloc failure).
*/
udb_void udb_alloc_space(udb_alloc* alloc, size_t sz);
/**
* Allocate space on disk, give already the data you want there.
* This may involve closing and reopening the mmap.
* @param alloc: the udb space allocator.
* @param d: data you want there (system pointer).
* @param sz: size you want to use.
* @return relative pointer (or 0 on alloc failure).
*/
udb_void udb_alloc_init(udb_alloc* alloc, void* d, size_t sz);
/**
* free allocated space. It may shrink the file.
* This may involve closing and reopening the mmap.
* @param alloc: the udb space allocator.
* @param r: relative pointer to data you want to free.
* @param sz: the size of the data you stop using.
* @return false if the free failed, it failed the close and mmap.
*/
int udb_alloc_free(udb_alloc* alloc, udb_void r, size_t sz);
/**
* realloc an existing allocated space. It may grow the file.
* This may involve closing and reopening the mmap.
* It could also use the existing space where it is now.
* @param alloc: the udb space allocator.
* @param r: relative pointer to data you want to realloc.
* if 0 then this is alloc_space(), and osz is ignored.
* @param osz: the old size of the data.
* @param sz: the size of the data you want to get.
* if this is 0 then a free() is done, but please do it directly,
* as you then get a returnvalue (file errors).
* @return relative pointer (0 on alloc failure, same if not moved).
*/
udb_void udb_alloc_realloc(udb_alloc* alloc, udb_void r, size_t osz,
size_t sz);
/**
* Prepare for a lot of new entries. Grow space for that.
* This can involve closing and reopening the mmap.
* This space (if large) is going to be released on next free() or close().
* @param alloc: the udb space allocator.
* @param sz: size of the entries.
* @param num: number of entries.
* @return false on failure to grow or re-mmap.
*/
int udb_alloc_grow(udb_alloc* alloc, size_t sz, size_t num);
/**
* attempt to compact the data and move free space to the end
* can shrink the db, which calls sync on the db (for portability).
* @param udb: the udb base.
* @return 0 on failure (to remap the (possibly) changed udb base).
*/
int udb_compact(udb_base* udb);
/**
* set the udb to inhibit or uninhibit compaction. Does not perform
* the compaction itself if enabled, for that call udb_compact.
* @param udb: the udb base
* @param inhibit: 0 or 1.
*/
void udb_compact_inhibited(udb_base* udb, int inhibit);
/**
* Set the alloc type for a newly alloced piece of data
* @param alloc: the udb space allocator.
* @param r: relativeptr to the data.
* @param tp: the type of that block.
*/
void udb_alloc_set_type(udb_alloc* alloc, udb_void r, udb_chunk_type tp);
/**
* See if a pointer could be valid (it points within valid space),
* for the given type side. For debug checks.
* @param udb: the udb
* @param to: the ptr (offset).
* @param destsize: the size_of of the destination of the pointer.
* @return true if it points to a valid region.
*/
int udb_valid_offset(udb_base* udb, udb_void to, size_t destsize);
/**
* See if a pointer is valid (it points to a chunk). For debug checks.
* @param udb: the udb.
* @param to: the ptr (offset).
* @return true if it points to the start of a chunks data region.
*/
int udb_valid_dataptr(udb_base* udb, udb_void to);
/**
* See if a pointer is on the relptrlist for dataptr. For debug checks.
* @param udb: the udb.
* @param rptr: the rel_ptr (offset).
* @param to: dataptr of the chunk on which ptrlist the rptr is searched.
* @return true if rptr is valid and on the ptrlist.
*/
int udb_valid_rptr(udb_base* udb, udb_void rptr, udb_void to);
/*** UDB_REL_PTR ***/
/**
* Init a new UDB rel ptr at NULL.
* @param ptr: sysptr, becomes inited.
*/
void udb_rel_ptr_init(udb_rel_ptr* ptr);
/**
* Unlink a UDB rel ptr.
* @param base: the udb base
* @param ptr: sysptr, unlinked
*/
void udb_rel_ptr_unlink(void* base, udb_rel_ptr* ptr);
/**
* Link a UDB rel ptr to a new chunk
* @param base: the udb base
* @param ptr: sysptr, linked to new value.
* @param to: the data to point to (relative ptr).
*/
void udb_rel_ptr_link(void* base, udb_rel_ptr* ptr, udb_void to);
/**
* Change rel ptr to a new value (point to another record)
* @param base: the udb base
* @param ptr: sysptr, points to new value.
* @param to: the data to point to (relative ptr).
*/
void udb_rel_ptr_set(void* base, udb_rel_ptr* ptr, udb_void to);
/**
* A chunk has moved and now edit all the relptrs in list to fix them up
* @param base: the udb base
* @param list: start of the ptr list
* @param to: where the chunk has moved to relptr to its userdata.
*/
void udb_rel_ptr_edit(void* base, udb_void list, udb_void to);
/**
* Get system pointer. Assumes there is a variable named 'base'
* that points to the udb base.
* @param ptr: the relative pointer (a sysptr to it).
* @return void* to the data.
*/
#define UDB_SYSPTR(ptr) UDB_REL(base, (ptr)->data)
/** get sys ptr for char* string */
#define UDB_CHAR(ptr) ((char*)UDB_REL(base, ptr))
/** get sys ptr for udb_rel_ptr */
#define UDB_REL_PTR(ptr) ((udb_rel_ptr*)UDB_REL(base, ptr))
/** get sys ptr for udb_glob_d */
#define UDB_GLOB(ptr) ((udb_glob_d*)UDB_REL(base, ptr))
/** get sys ptr for udb_chunk_d */
#define UDB_CHUNK(ptr) ((udb_chunk_d*)UDB_REL(base, ptr))
/** get sys ptr for udb_free_chunk_d */
#define UDB_FREE_CHUNK(ptr) ((udb_free_chunk_d*)UDB_REL(base, ptr))
/** get sys ptr for udb_xl_chunk_d */
#define UDB_XL_CHUNK(ptr) ((udb_xl_chunk_d*)UDB_REL(base, ptr))
/* udb_ptr */
/**
* Initialize an udb ptr. Set to NULL. (and thus not linked can be deleted).
* You MUST set it to 0 before you stop using the ptr.
* @param ptr: the ptr to initialise (caller has allocated it).
* @param udb: the udb base to link it to.
*/
void udb_ptr_init(udb_ptr* ptr, udb_base* udb);
/**
* Set udp ptr to a new value. If set to NULL you can delete it.
* @param ptr: the ptr.
* @param udb: the udb base to link up with that data segment's administration.
* @param newval: new value to point to (udb_void relative file offset to data).
*/
void udb_ptr_set(udb_ptr* ptr, udb_base* udb, udb_void newval);
/** dereference udb_ptr */
#define UDB_PTR(ptr) (UDB_REL(*((ptr)->base), (ptr)->data))
/**
* Ease of use udb ptr, allocate space and return ptr to it
* You MUST udb_ptr_set it to 0 before you stop using the ptr.
* @param base: udb base to use.
* @param ptr: ptr is overwritten, can be uninitialised.
* @param type: type of the allocation.
* You need a special type if the block contains udb_rel_ptr's.
* You can use udb_type_data for plain data.
* @param sz: amount to allocate.
* @return 0 on alloc failure.
*/
int udb_ptr_alloc_space(udb_ptr* ptr, udb_base* udb, udb_chunk_type type,
size_t sz);
/**
* Ease of use udb ptr, free space and set ptr to NULL (to it can be deleted).
* The space is freed on disk.
* @param ptr: the ptr.
* @param udb: udb base.
* @param sz: the size of the data you stop using.
*/
void udb_ptr_free_space(udb_ptr* ptr, udb_base* udb, size_t sz);
/**
* Get pointer to the data of the ptr. or use a macro to cast UDB_PTR to
* the type of your structure(.._d)
*/
static inline uint8_t* udb_ptr_data(udb_ptr* ptr) {
return (uint8_t*)UDB_PTR(ptr);
}
/**
* See if udb ptr is null
*/
static inline int udb_ptr_is_null(udb_ptr* ptr) {
return (ptr->data == 0);
}
/**
* Get the type of a udb_ptr chunk.
* @param ptr: udb pointer
* @return type of chunk */
udb_chunk_type udb_ptr_get_type(udb_ptr* ptr);
/** Ease of use, create new pointer to destination relptr
* You MUST udb_ptr_set it to 0 before you stop using the ptr. */
static inline void udb_ptr_new(udb_ptr* ptr, udb_base* udb, udb_rel_ptr* d) {
udb_ptr_init(ptr, udb);
udb_ptr_set(ptr, udb, d->data);
}
/** Ease of use. Stop using this ptr */
static inline void udb_ptr_unlink(udb_ptr* ptr, udb_base* udb) {
if(ptr->data)
udb_base_unlink_ptr(udb, ptr);
}
/* Ease of use. Assign rptr from rptr */
static inline void udb_rptr_set_rptr(udb_rel_ptr* dest, udb_base* udb,
udb_rel_ptr* p) {
#ifdef UDB_CHECK
if(dest->data) { assert(udb_valid_rptr(udb,
UDB_SYSTOREL(udb->base, dest), dest->data)); }
if(p->data) { assert(udb_valid_rptr(udb,
UDB_SYSTOREL(udb->base, p), p->data)); }
#endif
udb_rel_ptr_set(udb->base, dest, p->data);
}
/* Ease of use. Assign rptr from ptr */
static inline void udb_rptr_set_ptr(udb_rel_ptr* dest, udb_base* udb,
udb_ptr* p) {
#ifdef UDB_CHECK
if(dest->data) { assert(udb_valid_rptr(udb,
UDB_SYSTOREL(udb->base, dest), dest->data)); }
if(p->data) { assert(udb_valid_dataptr(udb, p->data)); }
#endif
udb_rel_ptr_set(udb->base, dest, p->data);
}
/* Ease of use. Assign ptr from rptr */
static inline void udb_ptr_set_rptr(udb_ptr* dest, udb_base* udb,
udb_rel_ptr* p) {
#ifdef UDB_CHECK
if(p->data) { assert(udb_valid_rptr(udb,
UDB_SYSTOREL(udb->base, p), p->data)); }
#endif
udb_ptr_set(dest, udb, p->data);
}
/* Ease of use. Assign ptr from ptr */
static inline void udb_ptr_set_ptr(udb_ptr* dest, udb_base* udb, udb_ptr* p) {
udb_ptr_set(dest, udb, p->data);
}
/* Ease of use, zero rptr. You use this to zero an existing pointer.
* A new rptr should be rel_ptr_init-ed before it is taken into use. */
static inline void udb_rptr_zero(udb_rel_ptr* dest, udb_base* udb) {
#ifdef UDB_CHECK
if(dest->data) { assert(udb_valid_rptr(udb,
UDB_SYSTOREL(udb->base, dest), dest->data)); }
#endif
udb_rel_ptr_set(udb->base, dest, 0);
}
/* Ease of use, zero ptr */
static inline void udb_ptr_zero(udb_ptr* dest, udb_base* udb) {
udb_ptr_set(dest, udb, 0);
}
/** ease of use, delete memory pointed at by relptr */
static inline void udb_rel_ptr_free_space(udb_rel_ptr* ptr, udb_base* udb,
size_t sz) {
udb_void d = ptr->data;
#ifdef UDB_CHECK
if(d) { assert(udb_valid_rptr(udb, UDB_SYSTOREL(udb->base, ptr), d)); }
#endif
udb_rel_ptr_set(udb->base, ptr, 0);
udb_alloc_free(udb->alloc, d, sz);
}
#endif /* UDB_H */