Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
/*	$NetBSD: ntp_calendar.c,v 1.11 2020/05/25 20:47:24 christos Exp $	*/

/*
 * ntp_calendar.c - calendar and helper functions
 *
 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
 * The contents of 'html/copyright.html' apply.
 *
 * --------------------------------------------------------------------
 * Some notes on the implementation:
 *
 * Calendar algorithms thrive on the division operation, which is one of
 * the slowest numerical operations in any CPU. What saves us here from
 * abysmal performance is the fact that all divisions are divisions by
 * constant numbers, and most compilers can do this by a multiplication
 * operation.  But this might not work when using the div/ldiv/lldiv
 * function family, because many compilers are not able to do inline
 * expansion of the code with following optimisation for the
 * constant-divider case.
 *
 * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
 * are inherently target dependent. Nothing that could not be cured with
 * autoconf, but still a mess...
 *
 * Furthermore, we need floor division in many places. C either leaves
 * the division behaviour undefined (< C99) or demands truncation to
 * zero (>= C99), so additional steps are required to make sure the
 * algorithms work. The {l,ll}div function family is requested to
 * truncate towards zero, which is also the wrong direction for our
 * purpose.
 *
 * For all this, all divisions by constant are coded manually, even when
 * there is a joined div/mod operation: The optimiser should sort that
 * out, if possible. Most of the calculations are done with unsigned
 * types, explicitely using two's complement arithmetics where
 * necessary. This minimises the dependecies to compiler and target,
 * while still giving reasonable to good performance.
 *
 * The implementation uses a few tricks that exploit properties of the
 * two's complement: Floor division on negative dividents can be
 * executed by using the one's complement of the divident. One's
 * complement can be easily created using XOR and a mask.
 *
 * Finally, check for overflow conditions is minimal. There are only two
 * calculation steps in the whole calendar that potentially suffer from
 * an internal overflow, and these are coded in a way that avoids
 * it. All other functions do not suffer from internal overflow and
 * simply return the result truncated to 32 bits.
 */

#include <config.h>
#include <sys/types.h>

#include "ntp_types.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include "ntp_fp.h"
#include "ntp_unixtime.h"

#include "ntpd.h"
#include "lib_strbuf.h"

/* For now, let's take the conservative approach: if the target property
 * macros are not defined, check a few well-known compiler/architecture
 * settings. Default is to assume that the representation of signed
 * integers is unknown and shift-arithmetic-right is not available.
 */
#ifndef TARGET_HAS_2CPL
# if defined(__GNUC__)
#  if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
#   define TARGET_HAS_2CPL 1
#  else
#   define TARGET_HAS_2CPL 0
#  endif
# elif defined(_MSC_VER)
#  if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
#   define TARGET_HAS_2CPL 1
#  else
#   define TARGET_HAS_2CPL 0
#  endif
# else
#  define TARGET_HAS_2CPL 0
# endif
#endif

#ifndef TARGET_HAS_SAR
# define TARGET_HAS_SAR 0
#endif

#if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
# define HAVE_64BITREGS
#endif

/*
 *---------------------------------------------------------------------
 * replacing the 'time()' function
 *---------------------------------------------------------------------
 */

static systime_func_ptr systime_func = &time;
static inline time_t now(void);


systime_func_ptr
ntpcal_set_timefunc(
	systime_func_ptr nfunc
	)
{
	systime_func_ptr res;

	res = systime_func;
	if (NULL == nfunc)
		nfunc = &time;
	systime_func = nfunc;

	return res;
}


static inline time_t
now(void)
{
	return (*systime_func)(NULL);
}

/*
 *---------------------------------------------------------------------
 * Get sign extension mask and unsigned 2cpl rep for a signed integer
 *---------------------------------------------------------------------
 */

static inline uint32_t
int32_sflag(
	const int32_t v)
{
#   if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4

	/* Let's assume that shift is the fastest way to get the sign
	 * extension of of a signed integer. This might not always be
	 * true, though -- On 8bit CPUs or machines without barrel
	 * shifter this will kill the performance. So we make sure
	 * we do this only if 'int' has at least 4 bytes.
	 */
	return (uint32_t)(v >> 31);

#   else

	/* This should be a rather generic approach for getting a sign
	 * extension mask...
	 */
	return UINT32_C(0) - (uint32_t)(v < 0);

#   endif
}

static inline int32_t
uint32_2cpl_to_int32(
	const uint32_t vu)
{
	int32_t v;

#   if TARGET_HAS_2CPL

	/* Just copy through the 32 bits from the unsigned value if
	 * we're on a two's complement target.
	 */
	v = (int32_t)vu;

#   else

	/* Convert to signed integer, making sure signed integer
	 * overflow cannot happen. Again, the optimiser might or might
	 * not find out that this is just a copy of 32 bits on a target
	 * with two's complement representation for signed integers.
	 */
	if (vu > INT32_MAX)
		v = -(int32_t)(~vu) - 1;
	else
		v = (int32_t)vu;

#   endif

	return v;
}

/*
 *---------------------------------------------------------------------
 * Convert between 'time_t' and 'vint64'
 *---------------------------------------------------------------------
 */
vint64
time_to_vint64(
	const time_t * ptt
	)
{
	vint64 res;
	time_t tt;

	tt = *ptt;

#   if SIZEOF_TIME_T <= 4

	res.D_s.hi = 0;
	if (tt < 0) {
		res.D_s.lo = (uint32_t)-tt;
		M_NEG(res.D_s.hi, res.D_s.lo);
	} else {
		res.D_s.lo = (uint32_t)tt;
	}

#   elif defined(HAVE_INT64)

	res.q_s = tt;

#   else
	/*
	 * shifting negative signed quantities is compiler-dependent, so
	 * we better avoid it and do it all manually. And shifting more
	 * than the width of a quantity is undefined. Also a don't do!
	 */
	if (tt < 0) {
		tt = -tt;
		res.D_s.lo = (uint32_t)tt;
		res.D_s.hi = (uint32_t)(tt >> 32);
		M_NEG(res.D_s.hi, res.D_s.lo);
	} else {
		res.D_s.lo = (uint32_t)tt;
		res.D_s.hi = (uint32_t)(tt >> 32);
	}

#   endif

	return res;
}


time_t
vint64_to_time(
	const vint64 *tv
	)
{
	time_t res;

#   if SIZEOF_TIME_T <= 4

	res = (time_t)tv->D_s.lo;

#   elif defined(HAVE_INT64)

	res = (time_t)tv->q_s;

#   else

	res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;

#   endif

	return res;
}

/*
 *---------------------------------------------------------------------
 * Get the build date & time
 *---------------------------------------------------------------------
 */
int
ntpcal_get_build_date(
	struct calendar * jd
	)
{
	/* The C standard tells us the format of '__DATE__':
	 *
	 * __DATE__ The date of translation of the preprocessing
	 * translation unit: a character string literal of the form "Mmm
	 * dd yyyy", where the names of the months are the same as those
	 * generated by the asctime function, and the first character of
	 * dd is a space character if the value is less than 10. If the
	 * date of translation is not available, an
	 * implementation-defined valid date shall be supplied.
	 *
	 * __TIME__ The time of translation of the preprocessing
	 * translation unit: a character string literal of the form
	 * "hh:mm:ss" as in the time generated by the asctime
	 * function. If the time of translation is not available, an
	 * implementation-defined valid time shall be supplied.
	 *
	 * Note that MSVC declares DATE and TIME to be in the local time
	 * zone, while neither the C standard nor the GCC docs make any
	 * statement about this. As a result, we may be +/-12hrs off
	 * UTC.	 But for practical purposes, this should not be a
	 * problem.
	 *
	 */
#   ifdef MKREPRO_DATE
	static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
#   else
	static const char build[] = __TIME__ "/" __DATE__;
#   endif
	static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";

	char		  monstr[4];
	const char *	  cp;
	unsigned short	  hour, minute, second, day, year;
	/* Note: The above quantities are used for sscanf 'hu' format,
	 * so using 'uint16_t' is contra-indicated!
	 */

#   ifdef DEBUG
	static int	  ignore  = 0;
#   endif

	ZERO(*jd);
	jd->year     = 1970;
	jd->month    = 1;
	jd->monthday = 1;

#   ifdef DEBUG
	/* check environment if build date should be ignored */
	if (0 == ignore) {
	    const char * envstr;
	    envstr = getenv("NTPD_IGNORE_BUILD_DATE");
	    ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
	}
	if (ignore > 1)
	    return FALSE;
#   endif

	if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
			&hour, &minute, &second, monstr, &day, &year)) {
		cp = strstr(mlist, monstr);
		if (NULL != cp) {
			jd->year     = year;
			jd->month    = (uint8_t)((cp - mlist) / 3 + 1);
			jd->monthday = (uint8_t)day;
			jd->hour     = (uint8_t)hour;
			jd->minute   = (uint8_t)minute;
			jd->second   = (uint8_t)second;

			return TRUE;
		}
	}

	return FALSE;
}


/*
 *---------------------------------------------------------------------
 * basic calendar stuff
 *---------------------------------------------------------------------
 */

/*
 * Some notes on the terminology:
 *
 * We use the proleptic Gregorian calendar, which is the Gregorian
 * calendar extended in both directions ad infinitum. This totally
 * disregards the fact that this calendar was invented in 1582, and
 * was adopted at various dates over the world; sometimes even after
 * the start of the NTP epoch.
 *
 * Normally date parts are given as current cycles, while time parts
 * are given as elapsed cycles:
 *
 * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
 * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
 *
 * The basic calculations for this calendar implementation deal with
 * ELAPSED date units, which is the number of full years, full months
 * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
 * that notation.
 *
 * To ease the numeric computations, month and day values outside the
 * normal range are acceptable: 2001-03-00 will be treated as the day
 * before 2001-03-01, 2000-13-32 will give the same result as
 * 2001-02-01 and so on.
 *
 * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
 * (day number).  This is the number of days elapsed since 0000-12-31
 * in the proleptic Gregorian calendar. The begin of the Christian Era
 * (0001-01-01) is RD(1).
 */

/*
 * ====================================================================
 *
 * General algorithmic stuff
 *
 * ====================================================================
 */

/*
 *---------------------------------------------------------------------
 * fast modulo 7 operations (floor/mathematical convention)
 *---------------------------------------------------------------------
 */
int
u32mod7(
	uint32_t x
	)
{
	/* This is a combination of tricks from "Hacker's Delight" with
	 * some modifications, like a multiplication that rounds up to
	 * drop the final adjustment stage.
	 *
	 * Do a partial reduction by digit sum to keep the value in the
	 * range permitted for the mul/shift stage. There are several
	 * possible and absolutely equivalent shift/mask combinations;
	 * this one is ARM-friendly because of a mask that fits into 16
	 * bit.
	 */
	x = (x >> 15) + (x & UINT32_C(0x7FFF));
	/* Take reminder as (mod 8) by mul/shift. Since the multiplier
	 * was calculated using ceil() instead of floor(), it skips the
	 * value '7' properly.
	 *    M <- ceil(ldexp(8/7, 29))
	 */
	return (int)((x * UINT32_C(0x24924925)) >> 29);
}

int
i32mod7(
	int32_t x
	)
{
	/* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
	 * numbers to map them into the postive range. Only the term '-4'
	 * survives, obviously.
	 */
	uint32_t ux = (uint32_t)x;
	return u32mod7((x < 0) ? (ux - 4u) : ux);
}

uint32_t
i32fmod(
	int32_t	 x,
	uint32_t d
	)
{
	uint32_t ux = (uint32_t)x;
	uint32_t sf = UINT32_C(0) - (x < 0);
	ux = (sf ^ ux ) % d;
	return (d & sf) + (sf ^ ux);
}

/*
 *---------------------------------------------------------------------
 * Do a periodic extension of 'value' around 'pivot' with a period of
 * 'cycle'.
 *
 * The result 'res' is a number that holds to the following properties:
 *
 *   1)	 res MOD cycle == value MOD cycle
 *   2)	 pivot <= res < pivot + cycle
 *	 (replace </<= with >/>= for negative cycles)
 *
 * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
 * is not the same as the '%' operator in C: C requires division to be
 * a truncated division, where remainder and dividend have the same
 * sign if the remainder is not zero, whereas floor division requires
 * divider and modulus to have the same sign for a non-zero modulus.
 *
 * This function has some useful applications:
 *
 * + let Y be a calendar year and V a truncated 2-digit year: then
 *	periodic_extend(Y-50, V, 100)
 *   is the closest expansion of the truncated year with respect to
 *   the full year, that is a 4-digit year with a difference of less
 *   than 50 years to the year Y. ("century unfolding")
 *
 * + let T be a UN*X time stamp and V be seconds-of-day: then
 *	perodic_extend(T-43200, V, 86400)
 *   is a time stamp that has the same seconds-of-day as the input
 *   value, with an absolute difference to T of <= 12hrs.  ("day
 *   unfolding")
 *
 * + Wherever you have a truncated periodic value and a non-truncated
 *   base value and you want to match them somehow...
 *
 * Basically, the function delivers 'pivot + (value - pivot) % cycle',
 * but the implementation takes some pains to avoid internal signed
 * integer overflows in the '(value - pivot) % cycle' part and adheres
 * to the floor division convention.
 *
 * If 64bit scalars where available on all intended platforms, writing a
 * version that uses 64 bit ops would be easy; writing a general
 * division routine for 64bit ops on a platform that can only do
 * 32/16bit divisions and is still performant is a bit more
 * difficult. Since most usecases can be coded in a way that does only
 * require the 32bit version a 64bit version is NOT provided here.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_periodic_extend(
	int32_t pivot,
	int32_t value,
	int32_t cycle
	)
{
	/* Implement a 4-quadrant modulus calculation by 2 2-quadrant
	 * branches, one for positive and one for negative dividers.
	 * Everything else can be handled by bit level logic and
	 * conditional one's complement arithmetic.  By convention, we
	 * assume
	 *
	 * x % b == 0  if  |b| < 2
	 *
	 * that is, we don't actually divide for cycles of -1,0,1 and
	 * return the pivot value in that case.
	 */
	uint32_t	uv = (uint32_t)value;
	uint32_t	up = (uint32_t)pivot;
	uint32_t	uc, sf;

	if (cycle > 1)
	{
		uc = (uint32_t)cycle;
		sf = UINT32_C(0) - (value < pivot);

		uv = sf ^ (uv - up);
		uv %= uc;
		pivot += (uc & sf) + (sf ^ uv);
	}
	else if (cycle < -1)
	{
		uc = ~(uint32_t)cycle + 1;
		sf = UINT32_C(0) - (value > pivot);

		uv = sf ^ (up - uv);
		uv %= uc;
		pivot -= (uc & sf) + (sf ^ uv);
	}
	return pivot;
}

/*---------------------------------------------------------------------
 * Note to the casual reader
 *
 * In the next two functions you will find (or would have found...)
 * the expression
 *
 *   res.Q_s -= 0x80000000;
 *
 * There was some ruckus about a possible programming error due to
 * integer overflow and sign propagation.
 *
 * This assumption is based on a lack of understanding of the C
 * standard. (Though this is admittedly not one of the most 'natural'
 * aspects of the 'C' language and easily to get wrong.)
 *
 * see
 *	http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
 *	"ISO/IEC 9899:201x Committee Draft — April 12, 2011"
 *	6.4.4.1 Integer constants, clause 5
 *
 * why there is no sign extension/overflow problem here.
 *
 * But to ease the minds of the doubtful, I added back the 'u' qualifiers
 * that somehow got lost over the last years.
 */


/*
 *---------------------------------------------------------------------
 * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
 * scale with proper epoch unfolding around a given pivot or the current
 * system time. This function happily accepts negative pivot values as
 * timestamps before 1970-01-01, so be aware of possible trouble on
 * platforms with 32bit 'time_t'!
 *
 * This is also a periodic extension, but since the cycle is 2^32 and
 * the shift is 2^31, we can do some *very* fast math without explicit
 * divisions.
 *---------------------------------------------------------------------
 */
vint64
ntpcal_ntp_to_time(
	uint32_t	ntp,
	const time_t *	pivot
	)
{
	vint64 res;

#   if defined(HAVE_INT64)

	res.q_s = (pivot != NULL)
		      ? *pivot
		      : now();
	res.Q_s -= 0x80000000u;		/* unshift of half range */
	ntp	-= (uint32_t)JAN_1970;	/* warp into UN*X domain */
	ntp	-= res.D_s.lo;		/* cycle difference	 */
	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */

#   else /* no 64bit scalars */

	time_t tmp;

	tmp = (pivot != NULL)
		  ? *pivot
		  : now();
	res = time_to_vint64(&tmp);
	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
	ntp -= (uint32_t)JAN_1970;	/* warp into UN*X domain */
	ntp -= res.D_s.lo;		/* cycle difference	 */
	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);

#   endif /* no 64bit scalars */

	return res;
}

/*
 *---------------------------------------------------------------------
 * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
 * scale with proper epoch unfolding around a given pivot or the current
 * system time.
 *
 * Note: The pivot must be given in the UN*X time domain!
 *
 * This is also a periodic extension, but since the cycle is 2^32 and
 * the shift is 2^31, we can do some *very* fast math without explicit
 * divisions.
 *---------------------------------------------------------------------
 */
vint64
ntpcal_ntp_to_ntp(
	uint32_t      ntp,
	const time_t *pivot
	)
{
	vint64 res;

#   if defined(HAVE_INT64)

	res.q_s = (pivot)
		      ? *pivot
		      : now();
	res.Q_s -= 0x80000000u;		/* unshift of half range */
	res.Q_s += (uint32_t)JAN_1970;	/* warp into NTP domain	 */
	ntp	-= res.D_s.lo;		/* cycle difference	 */
	res.Q_s += (uint64_t)ntp;	/* get expanded time	 */

#   else /* no 64bit scalars */

	time_t tmp;

	tmp = (pivot)
		  ? *pivot
		  : now();
	res = time_to_vint64(&tmp);
	M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
	M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
	ntp -= res.D_s.lo;		/* cycle difference	 */
	M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);

#   endif /* no 64bit scalars */

	return res;
}


/*
 * ====================================================================
 *
 * Splitting values to composite entities
 *
 * ====================================================================
 */

/*
 *---------------------------------------------------------------------
 * Split a 64bit seconds value into elapsed days in 'res.hi' and
 * elapsed seconds since midnight in 'res.lo' using explicit floor
 * division. This function happily accepts negative time values as
 * timestamps before the respective epoch start.
 *---------------------------------------------------------------------
 */
ntpcal_split
ntpcal_daysplit(
	const vint64 *ts
	)
{
	ntpcal_split res;
	uint32_t Q, R;

#   if defined(HAVE_64BITREGS)

	/* Assume we have 64bit registers an can do a divison by
	 * constant reasonably fast using the one's complement trick..
	 */
	uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
	Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
	R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);

#   elif defined(UINT64_MAX) && !defined(__arm__)

	/* We rely on the compiler to do efficient 64bit divisions as
	 * good as possible. Which might or might not be true. At least
	 * for ARM CPUs, the sum-by-digit code in the next section is
	 * faster for many compilers. (This might change over time, but
	 * the 64bit-by-32bit division will never outperform the exact
	 * division by a substantial factor....)
	 */
	if (ts->q_s < 0)
		Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
	else
		Q =  (uint32_t)( ts->Q_s / SECSPERDAY);
	R = ts->D_s.lo - Q * SECSPERDAY;

#   else

	/* We don't have 64bit regs. That hurts a bit.
	 *
	 * Here we use a mean trick to get away with just one explicit
	 * modulo operation and pure 32bit ops.
	 *
	 * Remember: 86400 <--> 128 * 675
	 *
	 * So we discard the lowest 7 bit and do an exact division by
	 * 675, modulo 2**32.
	 *
	 * First we shift out the lower 7 bits.
	 *
	 * Then we use a digit-wise pseudo-reduction, where a 'digit' is
	 * actually a 16-bit group. This is followed by a full reduction
	 * with a 'true' division step. This yields the modulus of the
	 * full 64bit value. The sign bit gets some extra treatment.
	 *
	 * Then we decrement the lower limb by that modulus, so it is
	 * exactly divisible by 675. [*]
	 *
	 * Then we multiply with the modular inverse of 675 (mod 2**32)
	 * and voila, we have the result.
	 *
	 * Special Thanks to Henry S. Warren and his "Hacker's delight"
	 * for giving that idea.
	 *
	 * (Note[*]: that's not the full truth. We would have to
	 * subtract the modulus from the full 64 bit number to get a
	 * number that is divisible by 675. But since we use the
	 * multiplicative inverse (mod 2**32) there's no reason to carry
	 * the subtraction into the upper bits!)
	 */
	uint32_t al = ts->D_s.lo;
	uint32_t ah = ts->D_s.hi;

	/* shift out the lower 7 bits, smash sign bit */
	al = (al >> 7) | (ah << 25);
	ah = (ah >> 7) & 0x00FFFFFFu;

	R  = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
	R += (al & 0xFFFF);
	R += (al >> 16	 ) * 61u;	/* 2**16 % 675 */
	R += (ah & 0xFFFF) * 346u;	/* 2**32 % 675 */
	R += (ah >> 16	 ) * 181u;	/* 2**48 % 675 */
	R %= 675u;			/* final reduction */
	Q  = (al - R) * 0x2D21C10Bu;	/* modinv(675, 2**32) */
	R  = (R << 7) | (ts->d_s.lo & 0x07F);

#   endif

	res.hi = uint32_2cpl_to_int32(Q);
	res.lo = R;

	return res;
}

/*
 *---------------------------------------------------------------------
 * Split a 64bit seconds value into elapsed weeks in 'res.hi' and
 * elapsed seconds since week start in 'res.lo' using explicit floor
 * division. This function happily accepts negative time values as
 * timestamps before the respective epoch start.
 *---------------------------------------------------------------------
 */
ntpcal_split
ntpcal_weeksplit(
	const vint64 *ts
	)
{
	ntpcal_split res;
	uint32_t Q, R;

	/* This is a very close relative to the day split function; for
	 * details, see there!
	 */

#   if defined(HAVE_64BITREGS)

	uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
	Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
	R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);

#   elif defined(UINT64_MAX) && !defined(__arm__)

	if (ts->q_s < 0)
		Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
	else
		Q =  (uint32_t)( ts->Q_s / SECSPERWEEK);
	R = ts->D_s.lo - Q * SECSPERWEEK;

#   else

	/* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
	uint32_t al = ts->D_s.lo;
	uint32_t ah = ts->D_s.hi;

	al = (al >> 7) | (ah << 25);
	ah = (ah >> 7) & 0x00FFFFFF;

	R  = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
	R += (al & 0xFFFF);
	R += (al >> 16	 ) * 4111u;	/* 2**16 % 4725 */
	R += (ah & 0xFFFF) * 3721u;	/* 2**32 % 4725 */
	R += (ah >> 16	 ) * 2206u;	/* 2**48 % 4725 */
	R %= 4725u;			/* final reduction */
	Q  = (al - R) * 0x98BBADDDu;	/* modinv(4725, 2**32) */
	R  = (R << 7) | (ts->d_s.lo & 0x07F);

#   endif

	res.hi = uint32_2cpl_to_int32(Q);
	res.lo = R;

	return res;
}

/*
 *---------------------------------------------------------------------
 * Split a 32bit seconds value into h/m/s and excessive days.  This
 * function happily accepts negative time values as timestamps before
 * midnight.
 *---------------------------------------------------------------------
 */
static int32_t
priv_timesplit(
	int32_t split[3],
	int32_t ts
	)
{
	/* Do 3 chained floor divisions by positive constants, using the
	 * one's complement trick and factoring out the intermediate XOR
	 * ops to reduce the number of operations.
	 */
	uint32_t us, um, uh, ud, sf32;

	sf32 = int32_sflag(ts);

	us = (uint32_t)ts;
	um = (sf32 ^ us) / SECSPERMIN;
	uh = um / MINSPERHR;
	ud = uh / HRSPERDAY;

	um ^= sf32;
	uh ^= sf32;
	ud ^= sf32;

	split[0] = (int32_t)(uh - ud * HRSPERDAY );
	split[1] = (int32_t)(um - uh * MINSPERHR );
	split[2] = (int32_t)(us - um * SECSPERMIN);

	return uint32_2cpl_to_int32(ud);
}

/*
 *---------------------------------------------------------------------
 * Given the number of elapsed days in the calendar era, split this
 * number into the number of elapsed years in 'res.hi' and the number
 * of elapsed days of that year in 'res.lo'.
 *
 * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
 * regular years and a non-zero value for leap years.
 *---------------------------------------------------------------------
 */
ntpcal_split
ntpcal_split_eradays(
	int32_t days,
	int  *isleapyear
	)
{
	/* Use the fast cycle split algorithm here, to calculate the
	 * centuries and years in a century with one division each. This
	 * reduces the number of division operations to two, but is
	 * susceptible to internal range overflow. We take some extra
	 * steps to avoid the gap.
	 */
	ntpcal_split res;
	int32_t	 n100, n001; /* calendar year cycles */
	uint32_t uday, Q;

	/* split off centuries first
	 *
	 * We want to execute '(days * 4 + 3) /% 146097' under floor
	 * division rules in the first step. Well, actually we want to
	 * calculate 'floor((days + 0.75) / 36524.25)', but we want to
	 * do it in scaled integer calculation.
	 */
#   if defined(HAVE_64BITREGS)

	/* not too complicated with an intermediate 64bit value */
	uint64_t	ud64, sf64;
	ud64 = ((uint64_t)days << 2) | 3u;
	sf64 = (uint64_t)-(days < 0);
	Q    = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
	uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
	n100 = uint32_2cpl_to_int32(Q);

#   else

	/* '4*days+3' suffers from range overflow when going to the
	 * limits. We solve this by doing an exact division (mod 2^32)
	 * after caclulating the remainder first.
	 *
	 * We start with a partial reduction by digit sums, extracting
	 * the upper bits from the original value before they get lost
	 * by scaling, and do one full division step to get the true
	 * remainder.  Then a final multiplication with the
	 * multiplicative inverse of 146097 (mod 2^32) gives us the full
	 * quotient.
	 *
	 * (-2^33) % 146097	--> 130717    : the sign bit value
	 * ( 2^20) % 146097	--> 25897     : the upper digit value
	 * modinv(146097, 2^32) --> 660721233 : the inverse
	 */
	uint32_t ux = ((uint32_t)days << 2) | 3;
	uday  = (days < 0) ? 130717u : 0u;	    /* sign dgt */
	uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
	uday += (ux & 0xFFFFFu);		    /* lo dgt */
	uday %= GREGORIAN_CYCLE_DAYS;		    /* full reduction */
	Q     = (ux  - uday) * 660721233u;	    /* exact div */
	n100  = uint32_2cpl_to_int32(Q);

#   endif

	/* Split off years in century -- days >= 0 here, and we're far
	 * away from integer overflow trouble now. */
	uday |= 3;
	n001  = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
	uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;

	/* Assemble the year and day in year */
	res.hi = n100 * 100 + n001;
	res.lo = uday / 4u;

	/* Possibly set the leap year flag */
	if (isleapyear) {
		uint32_t tc = (uint32_t)n100 + 1;
		uint32_t ty = (uint32_t)n001 + 1;
		*isleapyear = !(ty & 3)
		    && ((ty != 100) || !(tc & 3));
	}
	return res;
}

/*
 *---------------------------------------------------------------------
 * Given a number of elapsed days in a year and a leap year indicator,
 * split the number of elapsed days into the number of elapsed months in
 * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
 *
 * This function will fail and return {-1,-1} if the number of elapsed
 * days is not in the valid range!
 *---------------------------------------------------------------------
 */
ntpcal_split
ntpcal_split_yeardays(
	int32_t eyd,
	int	isleap
	)
{
	/* Use the unshifted-year, February-with-30-days approach here.
	 * Fractional interpolations are used in both directions, with
	 * the smallest power-of-two divider to avoid any true division.
	 */
	ntpcal_split	res = {-1, -1};

	/* convert 'isleap' to number of defective days */
	isleap = 1 + !isleap;
	/* adjust for February of 30 nominal days */
	if (eyd >= 61 - isleap)
		eyd += isleap;
	/* if in range, convert to months and days in month */
	if (eyd >= 0 && eyd < 367) {
		res.hi = (eyd * 67 + 32) >> 11;
		res.lo = eyd - ((489 * res.hi + 8) >> 4);
	}

	return res;
}

/*
 *---------------------------------------------------------------------
 * Convert a RD into the date part of a 'struct calendar'.
 *---------------------------------------------------------------------
 */
int
ntpcal_rd_to_date(
	struct calendar *jd,
	int32_t		 rd
	)
{
	ntpcal_split split;
	int	     leapy;
	u_int	     ymask;

	/* Get day-of-week first. It's simply the RD (mod 7)... */
	jd->weekday = i32mod7(rd);

	split = ntpcal_split_eradays(rd - 1, &leapy);
	/* Get year and day-of-year, with overflow check. If any of the
	 * upper 16 bits is set after shifting to unity-based years, we
	 * will have an overflow when converting to an unsigned 16bit
	 * year. Shifting to the right is OK here, since it does not
	 * matter if the shift is logic or arithmetic.
	 */
	split.hi += 1;
	ymask = 0u - ((split.hi >> 16) == 0);
	jd->year = (uint16_t)(split.hi & ymask);
	jd->yearday = (uint16_t)split.lo + 1;

	/* convert to month and mday */
	split = ntpcal_split_yeardays(split.lo, leapy);
	jd->month    = (uint8_t)split.hi + 1;
	jd->monthday = (uint8_t)split.lo + 1;

	return ymask ? leapy : -1;
}

/*
 *---------------------------------------------------------------------
 * Convert a RD into the date part of a 'struct tm'.
 *---------------------------------------------------------------------
 */
int
ntpcal_rd_to_tm(
	struct tm  *utm,
	int32_t	    rd
	)
{
	ntpcal_split split;
	int	     leapy;

	/* get day-of-week first */
	utm->tm_wday = i32mod7(rd);

	/* get year and day-of-year */
	split = ntpcal_split_eradays(rd - 1, &leapy);
	utm->tm_year = split.hi - 1899;
	utm->tm_yday = split.lo;	/* 0-based */

	/* convert to month and mday */
	split = ntpcal_split_yeardays(split.lo, leapy);
	utm->tm_mon  = split.hi;	/* 0-based */
	utm->tm_mday = split.lo + 1;	/* 1-based */

	return leapy;
}

/*
 *---------------------------------------------------------------------
 * Take a value of seconds since midnight and split it into hhmmss in a
 * 'struct calendar'.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_daysec_to_date(
	struct calendar *jd,
	int32_t		sec
	)
{
	int32_t days;
	int   ts[3];

	days = priv_timesplit(ts, sec);
	jd->hour   = (uint8_t)ts[0];
	jd->minute = (uint8_t)ts[1];
	jd->second = (uint8_t)ts[2];

	return days;
}

/*
 *---------------------------------------------------------------------
 * Take a value of seconds since midnight and split it into hhmmss in a
 * 'struct tm'.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_daysec_to_tm(
	struct tm *utm,
	int32_t	   sec
	)
{
	int32_t days;
	int32_t ts[3];

	days = priv_timesplit(ts, sec);
	utm->tm_hour = ts[0];
	utm->tm_min  = ts[1];
	utm->tm_sec  = ts[2];

	return days;
}

/*
 *---------------------------------------------------------------------
 * take a split representation for day/second-of-day and day offset
 * and convert it to a 'struct calendar'. The seconds will be normalised
 * into the range of a day, and the day will be adjusted accordingly.
 *
 * returns >0 if the result is in a leap year, 0 if in a regular
 * year and <0 if the result did not fit into the calendar struct.
 *---------------------------------------------------------------------
 */
int
ntpcal_daysplit_to_date(
	struct calendar	   *jd,
	const ntpcal_split *ds,
	int32_t		    dof
	)
{
	dof += ntpcal_daysec_to_date(jd, ds->lo);
	return ntpcal_rd_to_date(jd, ds->hi + dof);
}

/*
 *---------------------------------------------------------------------
 * take a split representation for day/second-of-day and day offset
 * and convert it to a 'struct tm'. The seconds will be normalised
 * into the range of a day, and the day will be adjusted accordingly.
 *
 * returns 1 if the result is in a leap year and zero if in a regular
 * year.
 *---------------------------------------------------------------------
 */
int
ntpcal_daysplit_to_tm(
	struct tm	   *utm,
	const ntpcal_split *ds ,
	int32_t		    dof
	)
{
	dof += ntpcal_daysec_to_tm(utm, ds->lo);

	return ntpcal_rd_to_tm(utm, ds->hi + dof);
}

/*
 *---------------------------------------------------------------------
 * Take a UN*X time and convert to a calendar structure.
 *---------------------------------------------------------------------
 */
int
ntpcal_time_to_date(
	struct calendar	*jd,
	const vint64	*ts
	)
{
	ntpcal_split ds;

	ds = ntpcal_daysplit(ts);
	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
	ds.hi += DAY_UNIX_STARTS;

	return ntpcal_rd_to_date(jd, ds.hi);
}


/*
 * ====================================================================
 *
 * merging composite entities
 *
 * ====================================================================
 */

#if !defined(HAVE_INT64)
/* multiplication helper. Seconds in days and weeks are multiples of 128,
 * and without that factor fit well into 16 bit. So a multiplication
 * of 32bit by 16bit and some shifting can be used on pure 32bit machines
 * with compilers that do not support 64bit integers.
 *
 * Calculate ( hi * mul * 128 ) + lo
 */
static vint64
_dwjoin(
	uint16_t	mul,
	int32_t		hi,
	int32_t		lo
	)
{
	vint64		res;
	uint32_t	p1, p2, sf;

	/* get sign flag and absolute value of 'hi' in p1 */
	sf = (uint32_t)-(hi < 0);
	p1 = ((uint32_t)hi + sf) ^ sf;

	/* assemble major units: res <- |hi| * mul */
	res.D_s.lo = (p1 & 0xFFFF) * mul;
	res.D_s.hi = 0;
	p1 = (p1 >> 16) * mul;
	p2 = p1 >> 16;
	p1 = p1 << 16;
	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);

	/* mul by 128, using shift: res <-- res << 7 */
	res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
	res.D_s.lo = (res.D_s.lo << 7);

	/* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
	M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
	res.D_s.lo ^= sf;
	res.D_s.hi ^= sf;

	/* properly add seconds: res <-- res + [sx(lo)|lo] */
	p2 = (uint32_t)-(lo < 0);
	p1 = (uint32_t)lo;
	M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
	return res;
}
#endif

/*
 *---------------------------------------------------------------------
 * Merge a number of days and a number of seconds into seconds,
 * expressed in 64 bits to avoid overflow.
 *---------------------------------------------------------------------
 */
vint64
ntpcal_dayjoin(
	int32_t days,
	int32_t secs
	)
{
	vint64 res;

#   if defined(HAVE_INT64)

	res.q_s	 = days;
	res.q_s *= SECSPERDAY;
	res.q_s += secs;

#   else

	res = _dwjoin(675, days, secs);

#   endif

	return res;
}

/*
 *---------------------------------------------------------------------
 * Merge a number of weeks and a number of seconds into seconds,
 * expressed in 64 bits to avoid overflow.
 *---------------------------------------------------------------------
 */
vint64
ntpcal_weekjoin(
	int32_t week,
	int32_t secs
	)
{
	vint64 res;

#   if defined(HAVE_INT64)

	res.q_s	 = week;
	res.q_s *= SECSPERWEEK;
	res.q_s += secs;

#   else

	res = _dwjoin(4725, week, secs);

#   endif

	return res;
}

/*
 *---------------------------------------------------------------------
 * get leap years since epoch in elapsed years
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_leapyears_in_years(
	int32_t years
	)
{
	/* We use the in-out-in algorithm here, using the one's
	 * complement division trick for negative numbers. The chained
	 * division sequence by 4/25/4 gives the compiler the chance to
	 * get away with only one true division and doing shifts otherwise.
	 */

	uint32_t sf32, sum, uyear;

	sf32  = int32_sflag(years);
	uyear = (uint32_t)years;
	uyear ^= sf32;

	sum  = (uyear /=  4u);	/*   4yr rule --> IN  */
	sum -= (uyear /= 25u);	/* 100yr rule --> OUT */
	sum += (uyear /=  4u);	/* 400yr rule --> IN  */

	/* Thanks to the alternation of IN/OUT/IN we can do the sum
	 * directly and have a single one's complement operation
	 * here. (Only if the years are negative, of course.) Otherwise
	 * the one's complement would have to be done when
	 * adding/subtracting the terms.
	 */
	return uint32_2cpl_to_int32(sf32 ^ sum);
}

/*
 *---------------------------------------------------------------------
 * Convert elapsed years in Era into elapsed days in Era.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_days_in_years(
	int32_t years
	)
{
	return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
}

/*
 *---------------------------------------------------------------------
 * Convert a number of elapsed month in a year into elapsed days in year.
 *
 * The month will be normalized, and 'res.hi' will contain the
 * excessive years that must be considered when converting the years,
 * while 'res.lo' will contain the number of elapsed days since start
 * of the year.
 *
 * This code uses the shifted-month-approach to convert month to days,
 * because then there is no need to have explicit leap year
 * information.	 The slight disadvantage is that for most month values
 * the result is a negative value, and the year excess is one; the
 * conversion is then simply based on the start of the following year.
 *---------------------------------------------------------------------
 */
ntpcal_split
ntpcal_days_in_months(
	int32_t m
	)
{
	ntpcal_split res;

	/* Add ten months with proper year adjustment. */
	if (m < 2) {
	    res.lo  = m + 10;
	    res.hi  = 0;
	} else {
	    res.lo  = m - 2;
	    res.hi  = 1;
	}

	/* Possibly normalise by floor division. This does not hapen for
	 * input in normal range. */
	if (res.lo < 0 || res.lo >= 12) {
		uint32_t mu, Q, sf32;
		sf32 = int32_sflag(res.lo);
		mu   = (uint32_t)res.lo;
		Q    = sf32 ^ ((sf32 ^ mu) / 12u);

		res.hi += uint32_2cpl_to_int32(Q);
		res.lo	= mu - Q * 12u;
	}

	/* Get cummulated days in year with unshift. Use the fractional
	 * interpolation with smallest possible power of two in the
	 * divider.
	 */
	res.lo = ((res.lo * 979 + 16) >> 5) - 306;

	return res;
}

/*
 *---------------------------------------------------------------------
 * Convert ELAPSED years/months/days of gregorian calendar to elapsed
 * days in Gregorian epoch.
 *
 * If you want to convert years and days-of-year, just give a month of
 * zero.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_edate_to_eradays(
	int32_t years,
	int32_t mons,
	int32_t mdays
	)
{
	ntpcal_split tmp;
	int32_t	     res;

	if (mons) {
		tmp = ntpcal_days_in_months(mons);
		res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
	} else
		res = ntpcal_days_in_years(years);
	res += mdays;

	return res;
}

/*
 *---------------------------------------------------------------------
 * Convert ELAPSED years/months/days of gregorian calendar to elapsed
 * days in year.
 *
 * Note: This will give the true difference to the start of the given
 * year, even if months & days are off-scale.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_edate_to_yeardays(
	int32_t years,
	int32_t mons,
	int32_t mdays
	)
{
	ntpcal_split tmp;

	if (0 <= mons && mons < 12) {
		if (mons >= 2)
			mdays -= 2 - is_leapyear(years+1);
		mdays += (489 * mons + 8) >> 4;
	} else {
		tmp = ntpcal_days_in_months(mons);
		mdays += tmp.lo
		       + ntpcal_days_in_years(years + tmp.hi)
		       - ntpcal_days_in_years(years);
	}

	return mdays;
}

/*
 *---------------------------------------------------------------------
 * Convert elapsed days and the hour/minute/second information into
 * total seconds.
 *
 * If 'isvalid' is not NULL, do a range check on the time specification
 * and tell if the time input is in the normal range, permitting for a
 * single leapsecond.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_etime_to_seconds(
	int32_t hours,
	int32_t minutes,
	int32_t seconds
	)
{
	int32_t res;

	res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;

	return res;
}

/*
 *---------------------------------------------------------------------
 * Convert the date part of a 'struct tm' (that is, year, month,
 * day-of-month) into the RD of that day.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_tm_to_rd(
	const struct tm *utm
	)
{
	return ntpcal_edate_to_eradays(utm->tm_year + 1899,
				       utm->tm_mon,
				       utm->tm_mday - 1) + 1;
}

/*
 *---------------------------------------------------------------------
 * Convert the date part of a 'struct calendar' (that is, year, month,
 * day-of-month) into the RD of that day.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_date_to_rd(
	const struct calendar *jd
	)
{
	return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
				       (int32_t)jd->month - 1,
				       (int32_t)jd->monthday - 1) + 1;
}

/*
 *---------------------------------------------------------------------
 * convert a year number to rata die of year start
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_year_to_ystart(
	int32_t year
	)
{
	return ntpcal_days_in_years(year - 1) + 1;
}

/*
 *---------------------------------------------------------------------
 * For a given RD, get the RD of the associated year start,
 * that is, the RD of the last January,1st on or before that day.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_rd_to_ystart(
	int32_t rd
	)
{
	/*
	 * Rather simple exercise: split the day number into elapsed
	 * years and elapsed days, then remove the elapsed days from the
	 * input value. Nice'n sweet...
	 */
	return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
}

/*
 *---------------------------------------------------------------------
 * For a given RD, get the RD of the associated month start.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_rd_to_mstart(
	int32_t rd
	)
{
	ntpcal_split split;
	int	     leaps;

	split = ntpcal_split_eradays(rd - 1, &leaps);
	split = ntpcal_split_yeardays(split.lo, leaps);

	return rd - split.lo;
}

/*
 *---------------------------------------------------------------------
 * take a 'struct calendar' and get the seconds-of-day from it.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_date_to_daysec(
	const struct calendar *jd
	)
{
	return ntpcal_etime_to_seconds(jd->hour, jd->minute,
				       jd->second);
}

/*
 *---------------------------------------------------------------------
 * take a 'struct tm' and get the seconds-of-day from it.
 *---------------------------------------------------------------------
 */
int32_t
ntpcal_tm_to_daysec(
	const struct tm *utm
	)
{
	return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
				       utm->tm_sec);
}

/*
 *---------------------------------------------------------------------
 * take a 'struct calendar' and convert it to a 'time_t'
 *---------------------------------------------------------------------
 */
time_t
ntpcal_date_to_time(
	const struct calendar *jd
	)
{
	vint64	join;
	int32_t days, secs;

	days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
	secs = ntpcal_date_to_daysec(jd);
	join = ntpcal_dayjoin(days, secs);

	return vint64_to_time(&join);
}


/*
 * ====================================================================
 *
 * extended and unchecked variants of caljulian/caltontp
 *
 * ====================================================================
 */
int
ntpcal_ntp64_to_date(
	struct calendar *jd,
	const vint64	*ntp
	)
{
	ntpcal_split ds;

	ds = ntpcal_daysplit(ntp);
	ds.hi += ntpcal_daysec_to_date(jd, ds.lo);

	return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
}

int
ntpcal_ntp_to_date(
	struct calendar *jd,
	uint32_t	 ntp,
	const time_t	*piv
	)
{
	vint64	ntp64;

	/*
	 * Unfold ntp time around current time into NTP domain. Split
	 * into days and seconds, shift days into CE domain and
	 * process the parts.
	 */
	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
	return ntpcal_ntp64_to_date(jd, &ntp64);
}


vint64
ntpcal_date_to_ntp64(
	const struct calendar *jd
	)
{
	/*
	 * Convert date to NTP. Ignore yearday, use d/m/y only.
	 */
	return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
			      ntpcal_date_to_daysec(jd));
}


uint32_t
ntpcal_date_to_ntp(
	const struct calendar *jd
	)
{
	/*
	 * Get lower half of 64bit NTP timestamp from date/time.
	 */
	return ntpcal_date_to_ntp64(jd).d_s.lo;
}



/*
 * ====================================================================
 *
 * day-of-week calculations
 *
 * ====================================================================
 */
/*
 * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
 * greater-or equal, closest, less-or-equal or less-than the given RDN
 * and denotes the given day-of-week
 */
int32_t
ntpcal_weekday_gt(
	int32_t rdn,
	int32_t dow
	)
{
	return ntpcal_periodic_extend(rdn+1, dow, 7);
}

int32_t
ntpcal_weekday_ge(
	int32_t rdn,
	int32_t dow
	)
{
	return ntpcal_periodic_extend(rdn, dow, 7);
}

int32_t
ntpcal_weekday_close(
	int32_t rdn,
	int32_t dow
	)
{
	return ntpcal_periodic_extend(rdn-3, dow, 7);
}

int32_t
ntpcal_weekday_le(
	int32_t rdn,
	int32_t dow
	)
{
	return ntpcal_periodic_extend(rdn, dow, -7);
}

int32_t
ntpcal_weekday_lt(
	int32_t rdn,
	int32_t dow
	)
{
	return ntpcal_periodic_extend(rdn-1, dow, -7);
}

/*
 * ====================================================================
 *
 * ISO week-calendar conversions
 *
 * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
 * It is related to the Gregorian calendar, and a ISO year starts at the
 * Monday closest to Jan,1st of the corresponding Gregorian year.  A ISO
 * calendar year has always 52 or 53 weeks, and like the Grogrian
 * calendar the ISO8601 calendar repeats itself every 400 years, or
 * 146097 days, or 20871 weeks.
 *
 * While it is possible to write ISO calendar functions based on the
 * Gregorian calendar functions, the following implementation takes a
 * different approach, based directly on years and weeks.
 *
 * Analysis of the tabulated data shows that it is not possible to
 * interpolate from years to weeks over a full 400 year range; cyclic
 * shifts over 400 years do not provide a solution here. But it *is*
 * possible to interpolate over every single century of the 400-year
 * cycle. (The centennial leap year rule seems to be the culprit here.)
 *
 * It can be shown that a conversion from years to weeks can be done
 * using a linear transformation of the form
 *
 *   w = floor( y * a + b )
 *
 * where the slope a must hold to
 *
 *  52.1780821918 <= a < 52.1791044776
 *
 * and b must be chosen according to the selected slope and the number
 * of the century in a 400-year period.
 *
 * The inverse calculation can also be done in this way. Careful scaling
 * provides an unlimited set of integer coefficients a,k,b that enable
 * us to write the calulation in the form
 *
 *   w = (y * a	 + b ) / k
 *   y = (w * a' + b') / k'
 *
 * In this implementation the values of k and k' are chosen to be the
 * smallest possible powers of two, so the division can be implemented
 * as shifts if the optimiser chooses to do so.
 *
 * ====================================================================
 */

/*
 * Given a number of elapsed (ISO-)years since the begin of the
 * christian era, return the number of elapsed weeks corresponding to
 * the number of years.
 */
int32_t
isocal_weeks_in_years(
	int32_t years
	)
{
	/*
	 * use: w = (y * 53431 + b[c]) / 1024 as interpolation
	 */
	static const uint16_t bctab[4] = { 157, 449, 597, 889 };

	int32_t	 cs, cw;
	uint32_t cc, ci, yu, sf32;

	sf32 = int32_sflag(years);
	yu   = (uint32_t)years;

	/* split off centuries, using floor division */
	cc  = sf32 ^ ((sf32 ^ yu) / 100u);
	yu -= cc * 100u;

	/* calculate century cycles shift and cycle index:
	 * Assuming a century is 5217 weeks, we have to add a cycle
	 * shift that is 3 for every 4 centuries, because 3 of the four
	 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
	 * correction, and the second century is the defective one.
	 *
	 * Needs floor division by 4, which is done with masking and
	 * shifting.
	 */
	ci = cc * 3u + 1;
	cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
	ci = ci & 3u;

	/* Get weeks in century. Can use plain division here as all ops
	 * are >= 0,  and let the compiler sort out the possible
	 * optimisations.
	 */
	cw = (yu * 53431u + bctab[ci]) / 1024u;

	return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
}

/*
 * Given a number of elapsed weeks since the begin of the christian
 * era, split this number into the number of elapsed years in res.hi
 * and the excessive number of weeks in res.lo. (That is, res.lo is
 * the number of elapsed weeks in the remaining partial year.)
 */
ntpcal_split
isocal_split_eraweeks(
	int32_t weeks
	)
{
	/*
	 * use: y = (w * 157 + b[c]) / 8192 as interpolation
	 */

	static const uint16_t bctab[4] = { 85, 130, 17, 62 };

	ntpcal_split res;
	int32_t	 cc, ci;
	uint32_t sw, cy, Q;

	/* Use two fast cycle-split divisions again. Herew e want to
	 * execute '(weeks * 4 + 2) /% 20871' under floor division rules
	 * in the first step.
	 *
	 * This is of course (again) susceptible to internal overflow if
	 * coded directly in 32bit. And again we use 64bit division on
	 * a 64bit target and exact division after calculating the
	 * remainder first on a 32bit target. With the smaller divider,
	 * that's even a bit neater.
	 */
#   if defined(HAVE_64BITREGS)

	/* Full floor division with 64bit values. */
	uint64_t sf64, sw64;
	sf64 = (uint64_t)-(weeks < 0);
	sw64 = ((uint64_t)weeks << 2) | 2u;
	Q    = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
	sw   = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);

#   else

	/* Exact division after calculating the remainder via partial
	 * reduction by digit sum.
	 * (-2^33) % 20871     --> 5491	     : the sign bit value
	 * ( 2^20) % 20871     --> 5026	     : the upper digit value
	 * modinv(20871, 2^32) --> 330081335 : the inverse
	 */
	uint32_t ux = ((uint32_t)weeks << 2) | 2;
	sw  = (weeks < 0) ? 5491u : 0u;		  /* sign dgt */
	sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
	sw += (ux & 0xFFFFFu);			  /* lo dgt */
	sw %= GREGORIAN_CYCLE_WEEKS;		  /* full reduction */
	Q   = (ux  - sw) * 330081335u;		  /* exact div */

#   endif

	ci  = Q & 3u;
	cc  = uint32_2cpl_to_int32(Q);

	/* Split off years; sw >= 0 here! The scaled weeks in the years
	 * are scaled up by 157 afterwards.
	 */
	sw  = (sw / 4u) * 157u + bctab[ci];
	cy  = sw / 8192u;	/* sw >> 13 , let the compiler sort it out */
	sw  = sw % 8192u;	/* sw & 8191, let the compiler sort it out */

	/* assemble elapsed years and downscale the elapsed weeks in
	 * the year.
	 */
	res.hi = 100*cc + cy;
	res.lo = sw / 157u;

	return res;
}

/*
 * Given a second in the NTP time scale and a pivot, expand the NTP
 * time stamp around the pivot and convert into an ISO calendar time
 * stamp.
 */
int
isocal_ntp64_to_date(
	struct isodate *id,
	const vint64   *ntp
	)
{
	ntpcal_split ds;
	int32_t	     ts[3];
	uint32_t     uw, ud, sf32;

	/*
	 * Split NTP time into days and seconds, shift days into CE
	 * domain and process the parts.
	 */
	ds = ntpcal_daysplit(ntp);

	/* split time part */
	ds.hi += priv_timesplit(ts, ds.lo);
	id->hour   = (uint8_t)ts[0];
	id->minute = (uint8_t)ts[1];
	id->second = (uint8_t)ts[2];

	/* split days into days and weeks, using floor division in unsigned */
	ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
	sf32 = int32_sflag(ds.hi);
	ud   = (uint32_t)ds.hi;
	uw   = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
	ud  -= uw * DAYSPERWEEK;

	ds.hi = uint32_2cpl_to_int32(uw);
	ds.lo = ud;

	id->weekday = (uint8_t)ds.lo + 1;	/* weekday result    */

	/* get year and week in year */
	ds = isocal_split_eraweeks(ds.hi);	/* elapsed years&week*/
	id->year = (uint16_t)ds.hi + 1;		/* shift to current  */
	id->week = (uint8_t )ds.lo + 1;

	return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
}

int
isocal_ntp_to_date(
	struct isodate *id,
	uint32_t	ntp,
	const time_t   *piv
	)
{
	vint64	ntp64;

	/*
	 * Unfold ntp time around current time into NTP domain, then
	 * convert the full time stamp.
	 */
	ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
	return isocal_ntp64_to_date(id, &ntp64);
}

/*
 * Convert a ISO date spec into a second in the NTP time scale,
 * properly truncated to 32 bit.
 */
vint64
isocal_date_to_ntp64(
	const struct isodate *id
	)
{
	int32_t weeks, days, secs;

	weeks = isocal_weeks_in_years((int32_t)id->year - 1)
	      + (int32_t)id->week - 1;
	days = weeks * 7 + (int32_t)id->weekday;
	/* days is RDN of ISO date now */
	secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);

	return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
}

uint32_t
isocal_date_to_ntp(
	const struct isodate *id
	)
{
	/*
	 * Get lower half of 64bit NTP timestamp from date/time.
	 */
	return isocal_date_to_ntp64(id).d_s.lo;
}

/*
 * ====================================================================
 * 'basedate' support functions
 * ====================================================================
 */

static int32_t s_baseday = NTP_TO_UNIX_DAYS;
static int32_t s_gpsweek = 0;

int32_t
basedate_eval_buildstamp(void)
{
	struct calendar jd;
	int32_t		ed;

	if (!ntpcal_get_build_date(&jd))
		return NTP_TO_UNIX_DAYS;

	/* The time zone of the build stamp is unspecified; we remove
	 * one day to provide a certain slack. And in case somebody
	 * fiddled with the system clock, we make sure we do not go
	 * before the UNIX epoch (1970-01-01). It's probably not possible
	 * to do this to the clock on most systems, but there are other
	 * ways to tweak the build stamp.
	 */
	jd.monthday -= 1;
	ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
	return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
}

int32_t
basedate_eval_string(
	const char * str
	)
{
	u_short	y,m,d;
	u_long	ned;
	int	rc, nc;
	size_t	sl;

	sl = strlen(str);
	rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
	if (rc == 3 && (size_t)nc == sl) {
		if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
			return ntpcal_edate_to_eradays(y-1, m-1, d)
			    - DAY_NTP_STARTS;
		goto buildstamp;
	}

	rc = sscanf(str, "%lu%n", &ned, &nc);
	if (rc == 1 && (size_t)nc == sl) {
		if (ned <= INT32_MAX)
			return (int32_t)ned;
		goto buildstamp;
	}

  buildstamp:
	msyslog(LOG_WARNING,
		"basedate string \"%s\" invalid, build date substituted!",
		str);
	return basedate_eval_buildstamp();
}

uint32_t
basedate_get_day(void)
{
	return s_baseday;
}

int32_t
basedate_set_day(
	int32_t day
	)
{
	struct calendar	jd;
	int32_t		retv;

	/* set NTP base date for NTP era unfolding */
	if (day < NTP_TO_UNIX_DAYS) {
		msyslog(LOG_WARNING,
			"baseday_set_day: invalid day (%lu), UNIX epoch substituted",
			(unsigned long)day);
		day = NTP_TO_UNIX_DAYS;
	}
	retv = s_baseday;
	s_baseday = day;
	ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
	msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
		jd.year, (u_short)jd.month, (u_short)jd.monthday);

	/* set GPS base week for GPS week unfolding */
	day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
	    - DAY_NTP_STARTS;
	if (day < NTP_TO_GPS_DAYS)
	    day = NTP_TO_GPS_DAYS;
	s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
	ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
	msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
		jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);

	return retv;
}

time_t
basedate_get_eracenter(void)
{
	time_t retv;
	retv  = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
	retv *= SECSPERDAY;
	retv += (UINT32_C(1) << 31);
	return retv;
}

time_t
basedate_get_erabase(void)
{
	time_t retv;
	retv  = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
	retv *= SECSPERDAY;
	return retv;
}

uint32_t
basedate_get_gpsweek(void)
{
    return s_gpsweek;
}

uint32_t
basedate_expand_gpsweek(
    unsigned short weekno
    )
{
    /* We do a fast modulus expansion here. Since all quantities are
     * unsigned and we cannot go before the start of the GPS epoch
     * anyway, and since the truncated GPS week number is 10 bit, the
     * expansion becomes a simple sub/and/add sequence.
     */
    #if GPSWEEKS != 1024
    # error GPSWEEKS defined wrong -- should be 1024!
    #endif

    uint32_t diff;
    diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
    return s_gpsweek + diff;
}

/*
 * ====================================================================
 * misc. helpers
 * ====================================================================
 */

/* --------------------------------------------------------------------
 * reconstruct the centrury from a truncated date and a day-of-week
 *
 * Given a date with truncated year (2-digit, 0..99) and a day-of-week
 * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
 */
int32_t
ntpcal_expand_century(
	uint32_t y,
	uint32_t m,
	uint32_t d,
	uint32_t wd)
{
	/* This algorithm is short but tricky... It's related to
	 * Zeller's congruence, partially done backwards.
	 *
	 * A few facts to remember:
	 *  1) The Gregorian calendar has a cycle of 400 years.
	 *  2) The weekday of the 1st day of a century shifts by 5 days
	 *     during a great cycle.
	 *  3) For calendar math, a century starts with the 1st year,
	 *     which is year 1, !not! zero.
	 *
	 * So we start with taking the weekday difference (mod 7)
	 * between the truncated date (which is taken as an absolute
	 * date in the 1st century in the proleptic calendar) and the
	 * weekday given.
	 *
	 * When dividing this residual by 5, we obtain the number of
	 * centuries to add to the base. But since the residual is (mod
	 * 7), we have to make this an exact division by multiplication
	 * with the modular inverse of 5 (mod 7), which is 3:
	 *    3*5 === 1 (mod 7).
	 *
	 * If this yields a result of 4/5/6, the given date/day-of-week
	 * combination is impossible, and we return zero as resulting
	 * year to indicate failure.
	 *
	 * Then we remap the century to the range starting with year
	 * 1900.
	 */

	uint32_t c;

	/* check basic constraints */
	if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
		return 0;

	if ((m += 10u) >= 12u)		/* shift base to prev. March,1st */
		m -= 12u;
	else if (--y >= 100u)
		y += 100u;
	d += y + (y >> 2) + 2u;		/* year share */
	d += (m * 83u + 16u) >> 5;	/* month share */

	/* get (wd - d), shifted to positive value, and multiply with
	 * 3(mod 7). (Exact division, see to comment)
	 * Note: 1) d <= 184 at this point.
	 *	 2) 252 % 7 == 0, but 'wd' is off by one since we did
	 *	    '--d' above, so we add just 251 here!
	 */
	c = u32mod7(3 * (251u + wd - d));
	if (c > 3u)
		return 0;

	if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
		y -= 100u;
		c = (c + 1) & 3u;
	}
	y += (c * 100u);		/* combine into 1st cycle */
	y += (y < 300u) ? 2000 : 1600;	/* map to destination era */
	return (int)y;
}

char *
ntpcal_iso8601std(
	char *		buf,
	size_t		len,
	TcCivilDate *	cdp
	)
{
	if (!buf) {
		LIB_GETBUF(buf);
		len = LIB_BUFLENGTH;
	}
	if (len) {
		int slen = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
			       cdp->year, cdp->month, cdp->monthday,
			       cdp->hour, cdp->minute, cdp->second);
		if (slen < 0)
			*buf = '\0';
	}
	return buf;
}

/* -*-EOF-*- */