/* $NetBSD: prettydate.c,v 1.10 2020/05/25 20:47:24 christos Exp $ */
/*
* prettydate - convert a time stamp to something readable
*/
#include <config.h>
#include <stdio.h>
#include "ntp_fp.h"
#include "ntp_unixtime.h" /* includes <sys/time.h> */
#include "lib_strbuf.h"
#include "ntp_stdlib.h"
#include "ntp_assert.h"
#include "ntp_calendar.h"
#if SIZEOF_TIME_T < 4
# error sizeof(time_t) < 4 -- this will not work!
#endif
static char *common_prettydate(l_fp *, int);
const char * const months[12] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
const char * const daynames[7] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
/* Helper function to handle possible wraparound of the ntp epoch.
*
* Works by periodic extension of the ntp time stamp in the UN*X epoch.
* If the 'time_t' is 32 bit, use solar cycle warping to get the value
* in a suitable range. Also uses solar cycle warping to work around
* really buggy implementations of 'gmtime()' / 'localtime()' that
* cannot work with a negative time value, that is, times before
* 1970-01-01. (MSVCRT...)
*
* Apart from that we're assuming that the localtime/gmtime library
* functions have been updated so that they work...
*
* An explanation: The julian calendar repeats ever 28 years, because
* it's the LCM of 7 and 1461, the week and leap year cycles. This is
* called a 'solar cycle'. The gregorian calendar does the same as
* long as no centennial year (divisible by 100, but not 400) goes in
* the way. So between 1901 and 2099 (inclusive) we can warp time
* stamps by 28 years to make them suitable for localtime() and
* gmtime() if we have trouble. Of course this will play hubbubb with
* the DST zone switches, so we should do it only if necessary; but as
* we NEED a proper conversion to dates via gmtime() we should try to
* cope with as many idiosyncrasies as possible.
*
*/
/*
* solar cycle in unsigned secs and years, and the cycle limits.
*/
#define SOLAR_CYCLE_SECS 0x34AADC80UL /* 7*1461*86400*/
#define SOLAR_CYCLE_YEARS 28
#define MINFOLD -3
#define MAXFOLD 3
static struct tm *
get_struct_tm(
const vint64 *stamp,
int local)
{
struct tm *tm = NULL;
int32 folds = 0;
time_t ts;
#ifdef HAVE_INT64
int64 tl;
ts = tl = stamp->q_s;
/*
* If there is chance of truncation, try to fix it. Let the
* compiler find out if this can happen at all.
*/
while (ts != tl) { /* truncation? */
if (tl < 0) {
if (--folds < MINFOLD)
return NULL;
tl += SOLAR_CYCLE_SECS;
} else {
if (++folds > MAXFOLD)
return NULL;
tl -= SOLAR_CYCLE_SECS;
}
ts = tl; /* next try... */
}
#else
/*
* since we do not have 64-bit scalars, it's not likely we have
* 64-bit time_t. Assume 32 bits and properly reduce the value.
*/
u_int32 hi, lo;
hi = stamp->D_s.hi;
lo = stamp->D_s.lo;
while ((hi && ~hi) || ((hi ^ lo) & 0x80000000u)) {
if (M_ISNEG(hi, lo)) {
if (--folds < MINFOLD)
return NULL;
M_ADD(hi, lo, 0, SOLAR_CYCLE_SECS);
} else {
if (++folds > MAXFOLD)
return NULL;
M_SUB(hi, lo, 0, SOLAR_CYCLE_SECS);
}
}
ts = (int32)lo;
#endif
/*
* 'ts' should be a suitable value by now. Just go ahead, but
* with care:
*
* There are some pathological implementations of 'gmtime()'
* and 'localtime()' out there. No matter if we have 32-bit or
* 64-bit 'time_t', try to fix this by solar cycle warping
* again...
*
* At least the MSDN says that the (Microsoft) Windoze
* versions of 'gmtime()' and 'localtime()' will bark on time
* stamps < 0.
*/
while ((tm = (*(local ? localtime : gmtime))(&ts)) == NULL)
if (ts < 0) {
if (--folds < MINFOLD)
return NULL;
ts += SOLAR_CYCLE_SECS;
} else if (ts >= (time_t)SOLAR_CYCLE_SECS) {
if (++folds > MAXFOLD)
return NULL;
ts -= SOLAR_CYCLE_SECS;
} else
return NULL; /* That's truly pathological! */
/* 'tm' surely not NULL here! */
INSIST(tm != NULL);
if (folds != 0) {
tm->tm_year += folds * SOLAR_CYCLE_YEARS;
if (tm->tm_year <= 0 || tm->tm_year >= 200)
return NULL; /* left warp range... can't help here! */
}
return tm;
}
static char *
common_prettydate(
l_fp *ts,
int local
)
{
static const char pfmt0[] =
"%08lx.%08lx %s, %s %2d %4d %2d:%02d:%02d.%03u";
static const char pfmt1[] =
"%08lx.%08lx [%s, %s %2d %4d %2d:%02d:%02d.%03u UTC]";
char *bp;
struct tm *tm;
u_int msec;
u_int32 ntps;
vint64 sec;
LIB_GETBUF(bp);
if (ts->l_ui == 0 && ts->l_uf == 0) {
strlcpy (bp, "(no time)", LIB_BUFLENGTH);
return (bp);
}
/* get & fix milliseconds */
ntps = ts->l_ui;
msec = ts->l_uf / 4294967; /* fract / (2 ** 32 / 1000) */
if (msec >= 1000u) {
msec -= 1000u;
ntps++;
}
sec = ntpcal_ntp_to_time(ntps, NULL);
tm = get_struct_tm(&sec, local);
if (!tm) {
/*
* get a replacement, but always in UTC, using
* ntpcal_time_to_date()
*/
struct calendar jd;
ntpcal_time_to_date(&jd, &sec);
snprintf(bp, LIB_BUFLENGTH, local ? pfmt1 : pfmt0,
(u_long)ts->l_ui, (u_long)ts->l_uf,
daynames[jd.weekday], months[jd.month-1],
jd.monthday, jd.year, jd.hour,
jd.minute, jd.second, msec);
} else
snprintf(bp, LIB_BUFLENGTH, pfmt0,
(u_long)ts->l_ui, (u_long)ts->l_uf,
daynames[tm->tm_wday], months[tm->tm_mon],
tm->tm_mday, 1900 + tm->tm_year, tm->tm_hour,
tm->tm_min, tm->tm_sec, msec);
return bp;
}
char *
prettydate(
l_fp *ts
)
{
return common_prettydate(ts, 1);
}
char *
gmprettydate(
l_fp *ts
)
{
return common_prettydate(ts, 0);
}
struct tm *
ntp2unix_tm(
u_int32 ntp, int local
)
{
vint64 vl;
vl = ntpcal_ntp_to_time(ntp, NULL);
return get_struct_tm(&vl, local);
}