Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
;; Predicate definitions for Renesas / SuperH SH.
;; Copyright (C) 2005-2020 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.


;; Returns 1 if OP is a normal arithmetic register.
(define_predicate "arith_reg_operand"
  (match_code "subreg,reg,sign_extend")
{
  if (register_operand (op, mode))
    {
      int regno;

      if (REG_P (op))
	regno = REGNO (op);
      else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
	regno = REGNO (SUBREG_REG (op));
      else
	return 1;

      return (regno != T_REG && regno != PR_REG
	      && regno != FPUL_REG && regno != FPSCR_REG
	      && regno != MACH_REG && regno != MACL_REG);
    }
  /* Allow a no-op sign extension - compare LOAD_EXTEND_OP.
     We allow SImode here, as not using an FP register is just a matter of
     proper register allocation.  */

#if 0 /* Can't do this because of PROMOTE_MODE for unsigned vars.  */
  if (GET_MODE (op) == SImode && GET_CODE (op) == SIGN_EXTEND
      && GET_MODE (XEXP (op, 0)) == HImode
      && REG_P (XEXP (op, 0))
      && REGNO (XEXP (op, 0)) <= LAST_GENERAL_REG)
    return register_operand (XEXP (op, 0), VOIDmode);
#endif
  if (GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_INT
      && GET_CODE (op) == SUBREG
      && GET_MODE (SUBREG_REG (op)) == DImode
      && GET_CODE (SUBREG_REG (op)) == SIGN_EXTEND
      && GET_MODE (XEXP (SUBREG_REG (op), 0)) == SImode
      && GET_CODE (XEXP (SUBREG_REG (op), 0)) != SUBREG)
    return register_operand (XEXP (SUBREG_REG (op), 0), VOIDmode);
  return 0;
})

;; Like above, but for DImode destinations: forbid paradoxical DImode
;; subregs, because this would lead to missing sign extensions when
;; truncating from DImode to SImode.
(define_predicate "arith_reg_dest"
  (and (match_code "subreg,reg")
       (match_operand 0 "arith_reg_operand")))

;; Returns true if OP is a valid source operand for an arithmetic insn.
(define_predicate "arith_operand"
  (and (match_code "subreg,reg,const_int,truncate")
       (ior (match_operand 0 "arith_reg_operand")
	    (match_test "satisfies_constraint_I08 (op)"))))

;; Likewise arith_operand but always permits const_int.
(define_predicate "arith_or_int_operand"
  (and (match_code "subreg,reg,const_int,const_vector")
       (ior (match_operand 0 "arith_operand")
	    (match_operand 0 "const_int_operand"))))

;; Returns true if OP is a valid source operand for a compare insn.
(define_predicate "arith_reg_or_0_operand" 
  (and (match_code "subreg,reg,const_int,const_vector")
       (ior (match_operand 0 "arith_reg_operand")
	    (match_test "satisfies_constraint_Z (op)"))))

;; Returns true if OP is either a register or constant 0 or constant 1.
(define_predicate "arith_reg_or_0_or_1_operand"
  (and (match_code "subreg,reg,const_int,const_vector")
       (ior (match_operand 0 "arith_reg_or_0_operand")
	    (match_test "satisfies_constraint_M (op)"))))

;; Returns true if OP is a suitable constant for the minimum value of a
;; clips.b or clips.w insn.
(define_predicate "clips_min_const_int"
  (and (match_code "const_int")
       (ior (match_test "INTVAL (op) == -128")
	    (match_test "INTVAL (op) == -32768"))))

;; Returns true if OP is a suitable constant for the maximum value of a
;; clips.b or clips.w insn.
(define_predicate "clips_max_const_int"
  (and (match_code "const_int")
       (ior (match_test "INTVAL (op) == 127")
	    (match_test "INTVAL (op) == 32767"))))

;; Returns true if OP is a suitable constant for the maximum value of a
;; clipu.b or clipu.w insn.
(define_predicate "clipu_max_const_int"
  (and (match_code "const_int")
       (ior (match_test "INTVAL (op) == 255")
	    (match_test "INTVAL (op) == 65535"))))

;; Returns true if OP is a floating point register that can be used in floating
;; point arithmetic operations.
(define_predicate "fp_arith_reg_operand"
  (match_code "subreg,reg")
{
  if (register_operand (op, mode))
    {
      int regno;

      if (REG_P (op))
	regno = REGNO (op);
      else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
	regno = REGNO (SUBREG_REG (op));
      else
	return 1;

      return (regno >= FIRST_PSEUDO_REGISTER
	      || FP_REGISTER_P (regno));
    }
  return 0;
})

;; Returns true if OP is the FPSCR.
(define_predicate "fpscr_operand"
  (and (match_code "reg")
       (match_test "REGNO (op) == FPSCR_REG")))

;; Returns true if OP is a valid source operand for a FPSCR move insn.
(define_predicate "fpscr_movsrc_operand"
  (match_code "reg,subreg,mem")
{
  if (arith_reg_operand (op, mode))
    return true;

  return MEM_P (op) && GET_CODE (XEXP (op, 0)) == POST_INC;
})

;; Returns true if OP is a valid destination operand for a FPSCR move insn.
(define_predicate "fpscr_movdst_operand"
  (match_code "reg,subreg,mem")
{
  if (arith_reg_dest (op, mode))
    return true;

  return MEM_P (op) && GET_CODE (XEXP (op, 0)) == PRE_DEC;
})

;; Returns true if OP is an operand that is either the fpul hard reg or
;; a pseudo.  This prevents combine from propagating function arguments
;; in hard regs into insns that need the operand in fpul.  If it's a pseudo
;; reload can fix it up.
(define_predicate "fpul_operand"
  (match_code "reg")
{
  return REG_P (op)
	 && (REGNO (op) == FPUL_REG || REGNO (op) >= FIRST_PSEUDO_REGISTER)
	 && GET_MODE (op) == mode;
})

;; Returns true if OP is a valid fpul input operand for the fsca insn.
;; The value in fpul is a fixed-point value and its scaling is described
;; in the fsca insn by a mult:SF.  To allow pre-scaled fixed-point inputs
;; in fpul we have to permit things like
;;   (reg:SI)
;;   (fix:SF (float:SF (reg:SI)))
(define_predicate "fpul_fsca_operand"
  (match_code "fix,reg")
{
  if (fpul_operand (op, SImode))
    return true;
  if (GET_CODE (op) == FIX && GET_MODE (op) == SImode
      && GET_CODE (XEXP (op, 0)) == FLOAT && GET_MODE (XEXP (op, 0)) == SFmode)
    return fpul_fsca_operand (XEXP (XEXP (op, 0), 0),
			      GET_MODE (XEXP (XEXP (op, 0), 0)));
  return false;
})

;; Returns true if OP is a valid constant scale factor for the fsca insn.
(define_predicate "fsca_scale_factor"
  (and (match_code "const_double")
       (match_test "op == sh_fsca_int2sf ()")))

;; Returns true if OP is an operand that is zero extended during an operation.
(define_predicate "general_extend_operand"
  (match_code "subreg,reg,mem,truncate")
{
  if (reload_completed && GET_CODE (op) == TRUNCATE)
    return arith_operand (op, mode);

  if (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op))))
    return general_movsrc_operand (op, mode);

  return nonimmediate_operand (op, mode);
})

;; Returns 1 if OP is a simple register address.
(define_predicate "simple_mem_operand"
  (and (match_code "mem")
       (match_code "reg" "0")
       (match_test "arith_reg_operand (XEXP (op, 0), SImode)")))

;; Returns 1 if OP is a valid displacement address.
(define_predicate "displacement_mem_operand"
  (and (match_code "mem")
       (match_code "plus" "0")
       (match_code "reg" "00")
       (match_test "arith_reg_operand (XEXP (XEXP (op, 0), 0), SImode)")
       (match_test "sh_legitimate_index_p (GET_MODE (op),
					   XEXP (XEXP (op, 0), 1),
					   TARGET_SH2A, true)")))

;; Returns true if OP is a displacement address that can fit into a
;; 16 bit (non-SH2A) memory load / store insn.
(define_predicate "short_displacement_mem_operand"
  (and (match_code "mem")
       (match_operand 0 "displacement_mem_operand")
       (match_test "sh_disp_addr_displacement (op)
		    <= sh_max_mov_insn_displacement (GET_MODE (op), false)")))

;; Returns true if OP is a displacement address that does not fit into
;; a 16 bit (non-SH2A) memory load / store insn.
(define_predicate "long_displacement_mem_operand"
  (and (match_operand 0 "displacement_mem_operand")
       (not (match_operand 0 "short_displacement_mem_operand"))))

;; Returns true if OP is a post-increment addressing mode memory reference.
(define_predicate "post_inc_mem"
  (and (match_code "mem")
       (match_code "post_inc" "0")
       (match_code "reg" "00")))

;; Returns true if OP is a pre-decrement addressing mode memory reference.
(define_predicate "pre_dec_mem"
  (and (match_code "mem")
       (match_code "pre_dec" "0")
       (match_code "reg" "00")))

;; Returns 1 if the operand can be used in an SH2A movu.{b|w} insn.
(define_predicate "zero_extend_movu_operand"
  (and (ior (match_operand 0 "displacement_mem_operand")
	    (match_operand 0 "simple_mem_operand"))
       (ior (match_test "GET_MODE (op) == QImode")
	    (match_test "GET_MODE (op) == HImode"))))

;; Returns 1 if OP can be source of a simple move operation. Same as
;; general_operand, but a LABEL_REF is valid, PRE_DEC is invalid as
;; are subregs of system registers.
(define_predicate "general_movsrc_operand"
  (match_code "subreg,reg,const_int,const_double,mem,symbol_ref,label_ref,
	       const,const_vector")
{
  if (t_reg_operand (op, mode))
    return 0;

  if (fpscr_operand (op, mode))
    return false;

  /* Disallow PC relative QImode loads, since these is no insn to do that
     and an imm8 load should be used instead.  */
  if (IS_PC_RELATIVE_LOAD_ADDR_P (op) && GET_MODE (op) == QImode)
    return false;

  if (MEM_P (op))
    {
      rtx inside = XEXP (op, 0);

      /* Disallow mems with GBR address here.  They have to go through
	 separate special patterns.  */
      if ((REG_P (inside) && REGNO (inside) == GBR_REG)
	  || (GET_CODE (inside) == PLUS && REG_P (XEXP (inside, 0))
	      && REGNO (XEXP (inside, 0)) == GBR_REG))
	return 0;

      if (GET_CODE (inside) == CONST)
	inside = XEXP (inside, 0);

      if (GET_CODE (inside) == LABEL_REF)
	return 1;

      if (GET_CODE (inside) == PLUS
	  && GET_CODE (XEXP (inside, 0)) == LABEL_REF
	  && CONST_INT_P (XEXP (inside, 1)))
	return 1;

      /* Only post inc allowed.  */
      if (GET_CODE (inside) == PRE_DEC)
	return 0;
    }

  if (mode == GET_MODE (op)
      && (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))))
    {
      rtx mem_rtx = MEM_P (op) ? op : SUBREG_REG (op);
      rtx x = XEXP (mem_rtx, 0);

      if (GET_CODE (x) == PLUS)
	{
	  rtx y = XEXP (x, 0);

	  if (! REG_P (y)
	      && ! (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))))
	    return false;
	  y = XEXP (x, 1);
	  if (! REG_P (y)
	      && ! (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))
	      && ! CONST_INT_P (y))
	    return false;
	}

      /* LRA will try to satisfy the constraints for the memory displacements
	 and thus we must not reject invalid displacements in the predicate,
	 or else LRA will bail out.
	 FIXME: maybe remove this check completely?  */
      if (!lra_in_progress && (mode == QImode || mode == HImode)
	  && GET_CODE (x) == PLUS
	  && REG_P (XEXP (x, 0))
	  && CONST_INT_P (XEXP (x, 1)))
	return sh_legitimate_index_p (mode, XEXP (x, 1), TARGET_SH2A, false);

      /* Allow reg+reg addressing here without validating the register
	 numbers.  Usually one of the regs must be R0 or a pseudo reg.
	 In some cases it can happen that arguments from hard regs are
	 propagated directly into address expressions.  In this cases reload
	 will have to fix it up later.  However, allow this only for native
	 1, 2 or 4 byte addresses.  */
      if (can_create_pseudo_p () && GET_CODE (x) == PLUS
	  && GET_MODE_SIZE (mode) <= 4
	  && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)))
	return true;

      /* 'general_operand' does not allow volatile mems during RTL expansion to
	 avoid matching arithmetic that operates on mems, it seems.
	 On SH this leads to redundant sign extensions for QImode or HImode
	 loads.  Thus we mimic the behavior but allow volatile mems.  */
        if (memory_address_addr_space_p (GET_MODE (mem_rtx), x,
					 MEM_ADDR_SPACE (mem_rtx)))
	  return true;
    }

  return general_operand (op, mode);
})

;; Returns true if OP is a MEM that does not use displacement addressing.
(define_predicate "movsrc_no_disp_mem_operand"
  (and (match_code "mem")
       (match_operand 0 "general_movsrc_operand")
       (match_test "satisfies_constraint_Snd (op)")))

;; Returns 1 if OP can be a destination of a move. Same as
;; general_operand, but no preinc allowed.
(define_predicate "general_movdst_operand"
  (match_code "subreg,reg,mem")
{
  if (t_reg_operand (op, mode))
    return 0;

  if (fpscr_operand (op, mode))
    return false;

  if (MEM_P (op))
    {
      rtx inside = XEXP (op, 0);
      /* Disallow mems with GBR address here.  They have to go through
	 separate special patterns.  */
      if ((REG_P (inside) && REGNO (inside) == GBR_REG)
	  || (GET_CODE (inside) == PLUS && REG_P (XEXP (inside, 0))
	      && REGNO (XEXP (inside, 0)) == GBR_REG))
	return 0;
    }

  /* Only pre dec allowed.  */
  if (MEM_P (op) && GET_CODE (XEXP (op, 0)) == POST_INC)
    return 0;

  if (mode == GET_MODE (op)
      && (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))))
    {
      rtx mem_rtx = MEM_P (op) ? op : SUBREG_REG (op);
      rtx x = XEXP (mem_rtx, 0);

      if (GET_CODE (x) == PLUS)
	{
	  rtx y = XEXP (x, 0);

	  if (! REG_P (y)
	      && ! (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))))
	    return false;
	  y = XEXP (x, 1);
	  if (! REG_P (y)
	      && ! (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))
	      && ! CONST_INT_P (y))
	    return false;
	}

      /* LRA will try to satisfy the constraints for the memory displacements
	 and thus we must not reject invalid displacements in the predicate,
	 or else LRA will bail out.
	 FIXME: maybe remove this check completely?  */
      if (!lra_in_progress && (mode == QImode || mode == HImode)
	  && GET_CODE (x) == PLUS
	  && REG_P (XEXP (x, 0))
	  && CONST_INT_P (XEXP (x, 1)))
	return sh_legitimate_index_p (mode, XEXP (x, 1), TARGET_SH2A, false);

      /* Allow reg+reg addressing here without validating the register
	 numbers.  Usually one of the regs must be R0 or a pseudo reg.
	 In some cases it can happen that arguments from hard regs are
	 propagated directly into address expressions.  In this cases reload
	 will have to fix it up later.  However, allow this only for native
	 1, 2 or 4 byte addresses.  */
      if (can_create_pseudo_p () && GET_CODE (x) == PLUS
	  && GET_MODE_SIZE (mode) <= 4
	  && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)))
	return true;

      /* 'general_operand' does not allow volatile mems during RTL expansion to
	 avoid matching arithmetic that operates on mems, it seems.
	 On SH this leads to redundant sign extensions for QImode or HImode
	 stores.  Thus we mimic the behavior but allow volatile mems.  */
        if (memory_address_addr_space_p (GET_MODE (mem_rtx), x,
					 MEM_ADDR_SPACE (mem_rtx)))
	  return true;
    }

  return general_operand (op, mode);
})

;; Returns 1 if OP is a MEM that can be source of a simple move operation.
(define_predicate "unaligned_load_operand"
  (match_code "mem")
{
  rtx inside;

  if (!MEM_P (op) || GET_MODE (op) != mode)
    return 0;

  inside = XEXP (op, 0);

  if (GET_CODE (inside) == POST_INC)
    inside = XEXP (inside, 0);

  if (REG_P (inside))
    return 1;

  return 0;
})

;; Returns 1 if OP is a MEM that can be used in "index_disp" combiner
;; patterns.
(define_predicate "mem_index_disp_operand"
  (match_code "mem")
{
  rtx plus0_rtx, plus1_rtx, mult_rtx;

  plus0_rtx = XEXP (op, 0);
  if (GET_CODE (plus0_rtx) != PLUS)
    return 0;

  plus1_rtx = XEXP (plus0_rtx, 0);
  if (GET_CODE (plus1_rtx) != PLUS)
    return 0;
  if (! arith_reg_operand (XEXP (plus1_rtx, 1), GET_MODE (XEXP (plus1_rtx, 1))))
    return 0;

  mult_rtx = XEXP (plus1_rtx, 0);
  if (GET_CODE (mult_rtx) != MULT)
    return 0;
  if (! arith_reg_operand (XEXP (mult_rtx, 0), GET_MODE (XEXP (mult_rtx, 0)))
      || ! CONST_INT_P (XEXP (mult_rtx, 1)))
    return 0;

  return exact_log2 (INTVAL (XEXP (mult_rtx, 1))) > 0
	 && sh_legitimate_index_p (mode, XEXP (plus0_rtx, 1), TARGET_SH2A, true);
})

;; Returns true if OP is a valid source operand for a logical operation.
(define_predicate "logical_operand"
  (and (match_code "subreg,reg,const_int")
       (ior (match_operand 0 "arith_reg_operand")
	    (match_test "satisfies_constraint_K08 (op)"))))

;; Returns true if OP is a valid constant source operand for a logical
;; operations tst/and/or/xor #imm,r0.
(define_predicate "const_logical_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_K08 (op)")))

;; Like logical_operand but allows additional constant values which can be
;; done with zero extensions.  Used for the second operand of and insns.
(define_predicate "logical_and_operand"
  (and (match_code "subreg,reg,const_int")
       (ior (match_operand 0 "logical_operand")
	    (match_test "satisfies_constraint_Jmb (op)")
	    (match_test "satisfies_constraint_Jmw (op)"))))

;; Returns true if OP is a logical operator.
(define_predicate "logical_operator"
  (match_code "and,ior,xor"))

;; Returns true if OP is a constant vector.
(define_predicate "sh_const_vec"
  (match_code "const_vector")
{
  for (int i = XVECLEN (op, 0) - 1; i >= 0; i--)
    if (!CONST_INT_P (XVECEXP (op, 0, i)))
      return false;
  return true;
})

;; Determine if OP is a constant vector matching MODE with only one
;; element that is not a sign extension.  Two byte-sized elements
;; count as one.
(define_predicate "sh_1el_vec"
  (match_code "const_vector")
{
  /* Determine numbers of last and of least significant elements.  */
  int last = XVECLEN (op, 0) - 1;
  int least = TARGET_LITTLE_ENDIAN ? 0 : last;
  if (!CONST_INT_P (XVECEXP (op, 0, least)))
    return false;
  int sign_ix = least;
  if (GET_MODE_UNIT_SIZE (mode) == 1)
    sign_ix = TARGET_LITTLE_ENDIAN ? 1 : last - 1;
  if (!CONST_INT_P (XVECEXP (op, 0, sign_ix)))
    return false;
  int unit_size = GET_MODE_UNIT_SIZE (GET_MODE (op));
  rtx sign = INTVAL (XVECEXP (op, 0, sign_ix)) >> (unit_size * BITS_PER_UNIT - 1)
	     ? constm1_rtx : const0_rtx;
  int i = XVECLEN (op, 0) - 1;
  do
    if (i != least && i != sign_ix && XVECEXP (op, 0, i) != sign)
      return 0;
  while (--i);
  return true;
})

;; Returns true if OP is a vector which is composed of one element that is
;; repeated.
(define_predicate "sh_rep_vec"
  (match_code "const_vector,parallel")
{
  int i = XVECLEN (op, 0) - 2;
  rtx x = XVECEXP (op, 0, i + 1);
  if (GET_MODE_UNIT_SIZE (mode) == 1)
    {
      rtx y = XVECEXP (op, 0, i);
      for (i -= 2; i >= 0; i -= 2)
	if (! rtx_equal_p (XVECEXP (op, 0, i + 1), x)
	    || ! rtx_equal_p (XVECEXP (op, 0, i), y))
	  return false;
    }
  else
    for (; i >= 0; i--)
      if (XVECEXP (op, 0, i) != x)
	return false;
  return true;
})

;; Returns true if OP is a valid shift count operand for shift operations.
(define_predicate "shift_count_operand"
  (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,
	       zero_extend,sign_extend")
{
  /* Allow T_REG as shift count for dynamic shifts, although it is not
     really possible.  It will then be copied to a general purpose reg.  */
  return const_int_operand (op, mode) || arith_reg_operand (op, mode)
	 || (TARGET_DYNSHIFT && t_reg_operand (op, mode));
})

;; Predicates for matching operands that are constant shift
;; amounts 1, 2, 8, 16.
(define_predicate "p27_shift_count_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_P27 (op)")))

(define_predicate "not_p27_shift_count_operand"
  (and (match_code "const_int")
       (match_test "! satisfies_constraint_P27 (op)")))

;; For right shifts the constant 1 is a special case because the shlr insn
;; clobbers the T_REG and is handled by the T_REG clobbering version of the
;; insn, which is also used for non-P27 shift sequences.
(define_predicate "p27_rshift_count_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_P27 (op)")
       (match_test "! satisfies_constraint_M (op)")))

(define_predicate "not_p27_rshift_count_operand"
  (and (match_code "const_int")
       (ior (match_test "! satisfies_constraint_P27 (op)")
	    (match_test "satisfies_constraint_M (op)"))))

;; Returns true if OP is a symbol reference.
(define_predicate "symbol_ref_operand"
  (match_code "symbol_ref"))

(define_predicate "bitwise_memory_operand"
  (match_code "mem")
{
  if (MEM_P (op))
    {
      if (REG_P (XEXP (op, 0)))
	return 1;

      if (GET_CODE (XEXP (op, 0)) == PLUS
	  && REG_P (XEXP (XEXP (op, 0), 0))
	  && satisfies_constraint_K12 (XEXP (XEXP (op, 0), 1)))
        return 1;
    }
  return 0;
})

;; A predicate that matches any expression for which there is an
;; insn pattern that sets the T bit.
(define_predicate "treg_set_expr"
  (match_test "sh_recog_treg_set_expr (op, mode)"))

;; Same as treg_set_expr but disallow constants 0 and 1 which can be loaded
;; into the T bit.
(define_predicate "treg_set_expr_not_const01"
  (and (match_test "op != const0_rtx")
       (match_test "op != const1_rtx")
       (match_operand 0 "treg_set_expr")))

;; A predicate describing the T bit register in any form.
(define_predicate "t_reg_operand"
  (match_code "reg,subreg,sign_extend,zero_extend,ne,eq")
{
  switch (GET_CODE (op))
    {
      case EQ:
	return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
	       && XEXP (op, 1) == const1_rtx;

      case NE:
	return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
	       && XEXP (op, 1) == const0_rtx;

      case REG:
	return REGNO (op) == T_REG;

      case SUBREG:
	return REG_P (SUBREG_REG (op)) && REGNO (SUBREG_REG (op)) == T_REG;

      case ZERO_EXTEND:
      case SIGN_EXTEND:
        if (REG_P (XEXP (op, 0)) && REGNO (XEXP (op, 0)) == T_REG)
	  return true;
	return GET_CODE (XEXP (op, 0)) == SUBREG
	       && REG_P (SUBREG_REG (XEXP (op, 0)))
	       && REGNO (SUBREG_REG (XEXP (op, 0))) == T_REG;

      default:
	return 0;
    }
})

;; A predicate describing a negated T bit register.
(define_predicate "negt_reg_operand"
  (match_code "subreg,xor,ne,eq")
{
  switch (GET_CODE (op))
    {
      case EQ:
	return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
	       && XEXP (op, 1) == const0_rtx;

      case NE:
	return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
	       && XEXP (op, 1) == const1_rtx;

      case XOR:
	return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
	       && XEXP (op, 1) == const1_rtx;

      case SUBREG:
	return negt_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)));

      default:
	return 0;
    }
})

;; Returns true if OP is an operand that can be used as the first operand in
;; the cstoresi4 expander pattern.
(define_predicate "cmpsi_operand"
  (and (match_code "subreg,reg,const_int")
       (ior (match_operand:SI 0 "t_reg_operand")
	    (match_operand 0 "arith_operand"))))

;; A predicate that returns true if OP is a valid construct around the T bit
;; that can be used as an operand for conditional branches.
(define_predicate "cbranch_treg_value"
  (and (match_code "eq,ne,reg,subreg,xor,sign_extend,zero_extend")
       (match_test "sh_eval_treg_value (op) >= 0")))

;; Returns true if OP is arith_reg_operand or t_reg_operand.
(define_predicate "arith_reg_or_t_reg_operand"
  (ior (match_operand 0 "arith_reg_operand")
       (match_operand 0 "t_reg_operand")))

(define_predicate "arith_reg_or_treg_set_expr"
  (ior (match_operand 0 "arith_reg_operand")
       (match_operand 0 "treg_set_expr")))

;; A predicate describing the negated value of the T bit register shifted
;; left by 31.
(define_predicate "negt_reg_shl31_operand"
  (match_code "plus,minus,if_then_else")
{
  /* (minus:SI (const_int -2147483648)  ;; 0xffffffff80000000
	       (ashift:SI (match_operand:SI 1 "t_reg_operand")
			  (const_int 31)))
  */
  if (GET_CODE (op) == MINUS && satisfies_constraint_Jhb (XEXP (op, 0))
      && GET_CODE (XEXP (op, 1)) == ASHIFT
      && t_reg_operand (XEXP (XEXP (op, 1), 0), SImode)
      && CONST_INT_P (XEXP (XEXP (op, 1), 1))
      && INTVAL (XEXP (XEXP (op, 1), 1)) == 31)
    return true;

  /* (plus:SI (ashift:SI (match_operand:SI 1 "t_reg_operand")
			 (const_int 31))
	      (const_int -2147483648))  ;; 0xffffffff80000000
  */
  if (GET_CODE (op) == PLUS && satisfies_constraint_Jhb (XEXP (op, 1))
      && GET_CODE (XEXP (op, 0)) == ASHIFT
      && t_reg_operand (XEXP (XEXP (op, 0), 0), SImode)
      && CONST_INT_P (XEXP (XEXP (op, 0), 1))
      && INTVAL (XEXP (XEXP (op, 0), 1)) == 31)
    return true;

  /* (plus:SI (mult:SI (match_operand:SI 1 "t_reg_operand")
		       (const_int -2147483648))  ;; 0xffffffff80000000
	      (const_int -2147483648))
  */
  if (GET_CODE (op) == PLUS && satisfies_constraint_Jhb (XEXP (op, 1))
      && GET_CODE (XEXP (op, 0)) == MULT
      && t_reg_operand (XEXP (XEXP (op, 0), 0), SImode)
      && satisfies_constraint_Jhb (XEXP (XEXP (op, 0), 1)))
    return true;

  /* (minus:SI (const_int -2147483648)  ;; 0xffffffff80000000
	       (mult:SI (match_operand:SI 1 "t_reg_operand")
			(const_int -2147483648)))
  */
  if (GET_CODE (op) == MINUS
      && satisfies_constraint_Jhb (XEXP (op, 0))
      && GET_CODE (XEXP (op, 1)) == MULT
      && t_reg_operand (XEXP (XEXP (op, 1), 0), SImode)
      && satisfies_constraint_Jhb (XEXP (XEXP (op, 1), 1)))
    return true;

  /*  (if_then_else:SI (match_operand:SI 1 "t_reg_operand")
		       (const_int 0)
		       (const_int -2147483648))  ;; 0xffffffff80000000
  */
  if (GET_CODE (op) == IF_THEN_ELSE && t_reg_operand (XEXP (op, 0), SImode)
      && satisfies_constraint_Z (XEXP (op, 1))
      && satisfies_constraint_Jhb (XEXP (op, 2)))
    return true;

  return false;
})

;; A predicate that determines whether a given constant is a valid
;; displacement for a GBR load/store of the specified mode.
(define_predicate "gbr_displacement"
  (match_code "const_int")
{
  const int mode_sz = GET_MODE_SIZE (mode);
  const int move_sz = mode_sz > GET_MODE_SIZE (SImode)
				? GET_MODE_SIZE (SImode)
				: mode_sz;
  int max_disp = 255 * move_sz;
  if (mode_sz > move_sz)
    max_disp -= mode_sz - move_sz;

  return INTVAL (op) >= 0 && INTVAL (op) <= max_disp;
})

;; A predicate that determines whether OP is a valid GBR addressing mode
;; memory reference.
(define_predicate "gbr_address_mem"
  (match_code "mem")
{
  rtx addr = XEXP (op, 0);

  if (REG_P (addr) && REGNO (addr) == GBR_REG)
    return true;
  if (GET_CODE (addr) == PLUS
      && REG_P (XEXP (addr, 0)) && REGNO (XEXP (addr, 0)) == GBR_REG
      && gbr_displacement (XEXP (addr, 1), mode))
    return true;

  return false;
})