Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/* IPA predicates.
   Copyright (C) 2003-2020 Free Software Foundation, Inc.
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "cgraph.h"
#include "tree-vrp.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "real.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "gimple.h"
#include "gimplify.h"
#include "data-streamer.h"


/* Check whether two set of operations have same effects.  */
static bool
expr_eval_ops_equal_p (expr_eval_ops ops1, expr_eval_ops ops2)
{
  if (ops1)
    {
      if (!ops2 || ops1->length () != ops2->length ())
	return false;

      for (unsigned i = 0; i < ops1->length (); i++)
	{
	  expr_eval_op &op1 = (*ops1)[i];
	  expr_eval_op &op2 = (*ops2)[i];

	  if (op1.code != op2.code
	      || op1.index != op2.index
	      || !vrp_operand_equal_p (op1.val[0], op2.val[0])
	      || !vrp_operand_equal_p (op1.val[1], op2.val[1])
	      || !types_compatible_p (op1.type, op2.type))
	    return false;
	}
      return true;
    }
  return !ops2;
}

/* Add clause CLAUSE into the predicate P.
   When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
   is obviously true.  This is useful only when NEW_CLAUSE is known to be
   sane.  */

void
predicate::add_clause (conditions conditions, clause_t new_clause)
{
  int i;
  int i2;
  int insert_here = -1;
  int c1, c2;

  /* True clause.  */
  if (!new_clause)
    return;

  /* False clause makes the whole predicate false.  Kill the other variants.  */
  if (new_clause == (1 << predicate::false_condition))
    {
      *this = false;
      return;
    }
  if (*this == false)
    return;

  /* No one should be silly enough to add false into nontrivial clauses.  */
  gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));

  /* Look where to insert the new_clause.  At the same time prune out
     new_clauses of P that are implied by the new new_clause and thus
     redundant.  */
  for (i = 0, i2 = 0; i <= max_clauses; i++)
    {
      m_clause[i2] = m_clause[i];

      if (!m_clause[i])
	break;

      /* If m_clause[i] implies new_clause, there is nothing to add.  */
      if ((m_clause[i] & new_clause) == m_clause[i])
	{
	  /* We had nothing to add, none of clauses should've become
	     redundant.  */
	  gcc_checking_assert (i == i2);
	  return;
	}

      if (m_clause[i] < new_clause && insert_here < 0)
	insert_here = i2;

      /* If new_clause implies clause[i], then clause[i] becomes redundant.
         Otherwise the clause[i] has to stay.  */
      if ((m_clause[i] & new_clause) != new_clause)
	i2++;
    }

  /* Look for clauses that are obviously true.  I.e.
     op0 == 5 || op0 != 5.  */
  if (conditions)
    for (c1 = predicate::first_dynamic_condition;
	 c1 < num_conditions; c1++)
      {
	condition *cc1;
	if (!(new_clause & (1 << c1)))
	  continue;
	cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
	/* We have no way to represent !changed and !is_not_constant
	   and thus there is no point for looking for them.  */
	if (cc1->code == changed || cc1->code == is_not_constant)
	  continue;
	for (c2 = c1 + 1; c2 < num_conditions; c2++)
	  if (new_clause & (1 << c2))
	    {
	      condition *cc2 =
		&(*conditions)[c2 - predicate::first_dynamic_condition];
	      if (cc1->operand_num == cc2->operand_num
		  && vrp_operand_equal_p (cc1->val, cc2->val)
		  && cc2->code != is_not_constant
		  && cc2->code != changed
		  && expr_eval_ops_equal_p (cc1->param_ops, cc2->param_ops)
		  && cc2->agg_contents == cc1->agg_contents
		  && cc2->by_ref == cc1->by_ref
		  && types_compatible_p (cc2->type, cc1->type)
		  && cc1->code == invert_tree_comparison (cc2->code,
							  HONOR_NANS (cc1->val)))
		return;
	    }
      }


  /* We run out of variants.  Be conservative in positive direction.  */
  if (i2 == max_clauses)
    return;
  /* Keep clauses in decreasing order. This makes equivalence testing easy.  */
  m_clause[i2 + 1] = 0;
  if (insert_here >= 0)
    for (; i2 > insert_here; i2--)
      m_clause[i2] = m_clause[i2 - 1];
  else
    insert_here = i2;
  m_clause[insert_here] = new_clause;
}


/* Do THIS &= P.  */

predicate &
predicate::operator &= (const predicate &p)
{
  /* Avoid busy work.  */
  if (p == false || *this == true)
    {
      *this = p;
      return *this;
    }
  if (*this == false || p == true || this == &p)
    return *this;

  int i;

  /* See how far predicates match.  */
  for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
    {
      gcc_checking_assert (i < max_clauses);
    }

  /* Combine the predicates rest.  */
  for (; p.m_clause[i]; i++)
    {
      gcc_checking_assert (i < max_clauses);
      add_clause (NULL, p.m_clause[i]);
    }
  return *this;
}



/* Return THIS | P2.  */

predicate
predicate::or_with (conditions conditions,
	            const predicate &p) const
{
  /* Avoid busy work.  */
  if (p == false || *this == true || *this == p)
    return *this;
  if (*this == false || p == true)
    return p;

  /* OK, combine the predicates.  */
  predicate out = true;

  for (int i = 0; m_clause[i]; i++)
    for (int j = 0; p.m_clause[j]; j++)
      {
	gcc_checking_assert (i < max_clauses && j < max_clauses);
	out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
      }
  return out;
}


/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
   if predicate P is known to be false.  */

bool
predicate::evaluate (clause_t possible_truths) const
{
  int i;

  /* True remains true.  */
  if (*this == true)
    return true;

  gcc_assert (!(possible_truths & (1 << predicate::false_condition)));

  /* See if we can find clause we can disprove.  */
  for (i = 0; m_clause[i]; i++)
    {
      gcc_checking_assert (i < max_clauses);
      if (!(m_clause[i] & possible_truths))
	return false;
    }
  return true;
}

/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
   instruction will be recomputed per invocation of the inlined call.  */

int
predicate::probability (conditions conds,
	                clause_t possible_truths,
	                vec<inline_param_summary> inline_param_summary) const
{
  int i;
  int combined_prob = REG_BR_PROB_BASE;

  /* True remains true.  */
  if (*this == true)
    return REG_BR_PROB_BASE;

  if (*this == false)
    return 0;

  gcc_assert (!(possible_truths & (1 << predicate::false_condition)));

  /* See if we can find clause we can disprove.  */
  for (i = 0; m_clause[i]; i++)
    {
      gcc_checking_assert (i < max_clauses);
      if (!(m_clause[i] & possible_truths))
	return 0;
      else
	{
	  int this_prob = 0;
	  int i2;
	  if (!inline_param_summary.exists ())
	    return REG_BR_PROB_BASE;
	  for (i2 = 0; i2 < num_conditions; i2++)
	    if ((m_clause[i] & possible_truths) & (1 << i2))
	      {
		if (i2 >= predicate::first_dynamic_condition)
		  {
		    condition *c =
		      &(*conds)[i2 - predicate::first_dynamic_condition];
		    if (c->code == predicate::changed
			&& (c->operand_num <
			    (int) inline_param_summary.length ()))
		      {
			int iprob =
			  inline_param_summary[c->operand_num].change_prob;
			this_prob = MAX (this_prob, iprob);
		      }
		    else
		      this_prob = REG_BR_PROB_BASE;
		  }
		else
		  this_prob = REG_BR_PROB_BASE;
	      }
	  combined_prob = MIN (this_prob, combined_prob);
	  if (!combined_prob)
	    return 0;
	}
    }
  return combined_prob;
}


/* Dump conditional COND.  */

void
dump_condition (FILE *f, conditions conditions, int cond)
{
  condition *c;
  if (cond == predicate::false_condition)
    fprintf (f, "false");
  else if (cond == predicate::not_inlined_condition)
    fprintf (f, "not inlined");
  else
    {
      c = &(*conditions)[cond - predicate::first_dynamic_condition];
      fprintf (f, "op%i", c->operand_num);
      if (c->agg_contents)
	fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
		 c->by_ref ? "ref " : "", c->offset);

      for (unsigned i = 0; i < vec_safe_length (c->param_ops); i++)
	{
	  expr_eval_op &op = (*(c->param_ops))[i];
	  const char *op_name = op_symbol_code (op.code);

	  if (op_name == op_symbol_code (ERROR_MARK))
	    op_name = get_tree_code_name (op.code);

	  fprintf (f, ",(");

	  if (!op.val[0])
	    {
	      switch (op.code)
		{
		case FLOAT_EXPR:
		case FIX_TRUNC_EXPR:
		case FIXED_CONVERT_EXPR:
		case VIEW_CONVERT_EXPR:
		CASE_CONVERT:
		  if (op.code == VIEW_CONVERT_EXPR)
		    fprintf (f, "VCE");
		  fprintf (f, "(");
		  print_generic_expr (f, op.type);
		  fprintf (f, ")" );
		  break;

		default:
		  fprintf (f, "%s", op_name);
		}
	      fprintf (f, " #");
	    }
	  else if (!op.val[1])
	    {
	      if (op.index)
		{
		  print_generic_expr (f, op.val[0]);
		  fprintf (f, " %s #", op_name);
		}
	      else
		{
		  fprintf (f, "# %s ", op_name);
		  print_generic_expr (f, op.val[0]);
		}
	    }
	  else
	    {
	      fprintf (f, "%s ", op_name);
	      switch (op.index)
		{
		case 0:
		  fprintf (f, "#, ");
		  print_generic_expr (f, op.val[0]);
		  fprintf (f, ", ");
		  print_generic_expr (f, op.val[1]);
		  break;

		case 1:
		  print_generic_expr (f, op.val[0]);
		  fprintf (f, ", #, ");
		  print_generic_expr (f, op.val[1]);
		  break;

		case 2:
		  print_generic_expr (f, op.val[0]);
		  fprintf (f, ", ");
		  print_generic_expr (f, op.val[1]);
		  fprintf (f, ", #");
		  break;

		default:
		  fprintf (f, "*, *, *");
		}
	    }
	  fprintf (f, ")");
	}

      if (c->code == predicate::is_not_constant)
	{
	  fprintf (f, " not constant");
	  return;
	}
      if (c->code == predicate::changed)
	{
	  fprintf (f, " changed");
	  return;
	}
      fprintf (f, " %s ", op_symbol_code (c->code));
      print_generic_expr (f, c->val);
    }
}


/* Dump clause CLAUSE.  */

static void
dump_clause (FILE *f, conditions conds, clause_t clause)
{
  int i;
  bool found = false;
  fprintf (f, "(");
  if (!clause)
    fprintf (f, "true");
  for (i = 0; i < predicate::num_conditions; i++)
    if (clause & (1 << i))
      {
	if (found)
	  fprintf (f, " || ");
	found = true;
	dump_condition (f, conds, i);
      }
  fprintf (f, ")");
}


/* Dump THIS to F.  CONDS a vector of conditions used when evaluating
   predicates.  When NL is true new line is output at the end of dump.  */

void
predicate::dump (FILE *f, conditions conds, bool nl) const
{
  int i;
  if (*this == true)
    dump_clause (f, conds, 0);
  else
    for (i = 0; m_clause[i]; i++)
      {
	if (i)
	  fprintf (f, " && ");
	dump_clause (f, conds, m_clause[i]);
      }
  if (nl)
    fprintf (f, "\n");
}


void
predicate::debug (conditions conds) const
{
  dump (stderr, conds);
}


/* Remap predicate THIS of former function to be predicate of duplicated function.
   POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
   INFO is inline summary of the duplicated node.  */

predicate
predicate::remap_after_duplication (clause_t possible_truths)
{
  int j;
  predicate out = true;
  for (j = 0; m_clause[j]; j++)
    if (!(possible_truths & m_clause[j]))
      return false;
    else
      out.add_clause (NULL, possible_truths & m_clause[j]);
  return out;
}


/* Translate all conditions from callee representation into caller
   representation and symbolically evaluate predicate THIS into new predicate.

   INFO is ipa_fn_summary of function we are adding predicate into, CALLEE_INFO
   is summary of function predicate P is from. OPERAND_MAP is array giving
   callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clause of all
   callee conditions that may be true in caller context.  TOPLEV_PREDICATE is
   predicate under which callee is executed.  OFFSET_MAP is an array of
   offsets that need to be added to conditions, negative offset means that
   conditions relying on values passed by reference have to be discarded
   because they might not be preserved (and should be considered offset zero
   for other purposes).  */

predicate
predicate::remap_after_inlining (class ipa_fn_summary *info,
				 class ipa_node_params *params_summary,
				 class ipa_fn_summary *callee_info,
				 vec<int> operand_map,
				 vec<int> offset_map,
				 clause_t possible_truths,
				 const predicate &toplev_predicate)
{
  int i;
  predicate out = true;

  /* True predicate is easy.  */
  if (*this == true)
    return toplev_predicate;
  for (i = 0; m_clause[i]; i++)
    {
      clause_t clause = m_clause[i];
      int cond;
      predicate clause_predicate = false;

      gcc_assert (i < max_clauses);

      for (cond = 0; cond < num_conditions; cond++)
	/* Do we have condition we can't disprove?   */
	if (clause & possible_truths & (1 << cond))
	  {
	    predicate cond_predicate;
	    /* Work out if the condition can translate to predicate in the
	       inlined function.  */
	    if (cond >= predicate::first_dynamic_condition)
	      {
		struct condition *c;

		c = &(*callee_info->conds)[cond
					   -
					   predicate::first_dynamic_condition];
		/* See if we can remap condition operand to caller's operand.
		   Otherwise give up.  */
		if (!operand_map.exists ()
		    || (int) operand_map.length () <= c->operand_num
		    || operand_map[c->operand_num] == -1
		    /* TODO: For non-aggregate conditions, adding an offset is
		       basically an arithmetic jump function processing which
		       we should support in future.  */
		    || ((!c->agg_contents || !c->by_ref)
			&& offset_map[c->operand_num] > 0)
		    || (c->agg_contents && c->by_ref
			&& offset_map[c->operand_num] < 0))
		  cond_predicate = true;
		else
		  {
		    struct agg_position_info ap;
		    HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
		    if (offset_delta < 0)
		      {
			gcc_checking_assert (!c->agg_contents || !c->by_ref);
			offset_delta = 0;
		      }
		    gcc_assert (!c->agg_contents
				|| c->by_ref || offset_delta == 0);
		    ap.offset = c->offset + offset_delta;
		    ap.agg_contents = c->agg_contents;
		    ap.by_ref = c->by_ref;
		    cond_predicate = add_condition (info, params_summary,
						    operand_map[c->operand_num],
						    c->type, &ap, c->code,
						    c->val, c->param_ops);
		  }
	      }
	    /* Fixed conditions remains same, construct single
	       condition predicate.  */
	    else
	      cond_predicate = predicate::predicate_testing_cond (cond);
	    clause_predicate = clause_predicate.or_with (info->conds,
					                 cond_predicate);
	  }
      out &= clause_predicate;
    }
  out &= toplev_predicate;
  return out;
}


/* Read predicate from IB.  */

void
predicate::stream_in (class lto_input_block *ib)
{
  clause_t clause;
  int k = 0;

  do
    {
      gcc_assert (k <= max_clauses);
      clause = m_clause[k++] = streamer_read_uhwi (ib);
    }
  while (clause);

  /* Zero-initialize the remaining clauses in OUT.  */
  while (k <= max_clauses)
    m_clause[k++] = 0;
}


/* Write predicate P to OB.  */

void
predicate::stream_out (struct output_block *ob)
{
  int j;
  for (j = 0; m_clause[j]; j++)
    {
      gcc_assert (j < max_clauses);
      streamer_write_uhwi (ob, m_clause[j]);
    }
  streamer_write_uhwi (ob, 0);
}


/* Add condition to condition list SUMMARY.  OPERAND_NUM, TYPE, CODE, VAL and
   PARAM_OPS correspond to fields of condition structure.  AGGPOS describes
   whether the used operand is loaded from an aggregate and where in the
   aggregate it is.  It can be NULL, which means this not a load from an
   aggregate.  */

predicate
add_condition (class ipa_fn_summary *summary,
	       class ipa_node_params *params_summary,
	       int operand_num,
	       tree type, struct agg_position_info *aggpos,
	       enum tree_code code, tree val, expr_eval_ops param_ops)
{
  int i, j;
  struct condition *c;
  struct condition new_cond;
  HOST_WIDE_INT offset;
  bool agg_contents, by_ref;
  expr_eval_op *op;

  if (params_summary)
    ipa_set_param_used_by_ipa_predicates (params_summary, operand_num, true);

  if (aggpos)
    {
      offset = aggpos->offset;
      agg_contents = aggpos->agg_contents;
      by_ref = aggpos->by_ref;
    }
  else
    {
      offset = 0;
      agg_contents = false;
      by_ref = false;
    }

  gcc_checking_assert (operand_num >= 0);
  for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
    {
      if (c->operand_num == operand_num
	  && c->code == code
	  && types_compatible_p (c->type, type)
	  && vrp_operand_equal_p (c->val, val)
	  && c->agg_contents == agg_contents
	  && expr_eval_ops_equal_p (c->param_ops, param_ops)
	  && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
	return predicate::predicate_testing_cond (i);
    }
  /* Too many conditions.  Give up and return constant true.  */
  if (i == predicate::num_conditions - predicate::first_dynamic_condition)
    return true;

  new_cond.operand_num = operand_num;
  new_cond.code = code;
  new_cond.type = unshare_expr_without_location (type);
  new_cond.val = val ? unshare_expr_without_location (val) : val;
  new_cond.agg_contents = agg_contents;
  new_cond.by_ref = by_ref;
  new_cond.offset = offset;
  new_cond.param_ops = vec_safe_copy (param_ops);

  for (j = 0; vec_safe_iterate (new_cond.param_ops, j, &op); j++)
    {
      if (op->val[0])
	op->val[0] = unshare_expr_without_location (op->val[0]);
      if (op->val[1])
	op->val[1] = unshare_expr_without_location (op->val[1]);
    }

  vec_safe_push (summary->conds, new_cond);

  return predicate::predicate_testing_cond (i);
}