Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
.. Copyright (C) 2014-2020 Free Software Foundation, Inc.
   Originally contributed by David Malcolm <dmalcolm@redhat.com>

   This is free software: you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see
   <http://www.gnu.org/licenses/>.

.. default-domain:: c

Expressions
===========

Rvalues
-------
.. type:: gcc_jit_rvalue

A :c:type:`gcc_jit_rvalue *` is an expression that can be computed.

It can be simple, e.g.:

  * an integer value e.g. `0` or `42`
  * a string literal e.g. `"Hello world"`
  * a variable e.g. `i`.  These are also lvalues (see below).

or compound e.g.:

  * a unary expression e.g. `!cond`
  * a binary expression e.g. `(a + b)`
  * a function call e.g. `get_distance (&player_ship, &target)`
  * etc.

Every rvalue has an associated type, and the API will check to ensure
that types match up correctly (otherwise the context will emit an error).

.. function:: gcc_jit_type *gcc_jit_rvalue_get_type (gcc_jit_rvalue *rvalue)

  Get the type of this rvalue.

.. function:: gcc_jit_object *gcc_jit_rvalue_as_object (gcc_jit_rvalue *rvalue)

  Upcast the given rvalue to be an object.


Simple expressions
******************

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_rvalue_from_int (gcc_jit_context *ctxt, \
                                                   gcc_jit_type *numeric_type, \
                                                   int value)

   Given a numeric type (integer or floating point), build an rvalue for
   the given constant :c:type:`int` value.

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_rvalue_from_long (gcc_jit_context *ctxt, \
                                                    gcc_jit_type *numeric_type, \
                                                    long value)

   Given a numeric type (integer or floating point), build an rvalue for
   the given constant :c:type:`long` value.

.. function::  gcc_jit_rvalue *gcc_jit_context_zero (gcc_jit_context *ctxt, \
                                                     gcc_jit_type *numeric_type)

   Given a numeric type (integer or floating point), get the rvalue for
   zero.  Essentially this is just a shortcut for:

   .. code-block:: c

      gcc_jit_context_new_rvalue_from_int (ctxt, numeric_type, 0)

.. function::  gcc_jit_rvalue *gcc_jit_context_one (gcc_jit_context *ctxt, \
                                                    gcc_jit_type *numeric_type)

   Given a numeric type (integer or floating point), get the rvalue for
   one.  Essentially this is just a shortcut for:

   .. code-block:: c

      gcc_jit_context_new_rvalue_from_int (ctxt, numeric_type, 1)

.. function::  gcc_jit_rvalue *\
               gcc_jit_context_new_rvalue_from_double (gcc_jit_context *ctxt, \
                                                       gcc_jit_type *numeric_type, \
                                                       double value)

   Given a numeric type (integer or floating point), build an rvalue for
   the given constant :c:type:`double` value.

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_rvalue_from_ptr (gcc_jit_context *ctxt, \
                                                   gcc_jit_type *pointer_type, \
                                                   void *value)

   Given a pointer type, build an rvalue for the given address.

.. function:: gcc_jit_rvalue *gcc_jit_context_null (gcc_jit_context *ctxt, \
                                                    gcc_jit_type *pointer_type)

   Given a pointer type, build an rvalue for ``NULL``.  Essentially this
   is just a shortcut for:

   .. code-block:: c

      gcc_jit_context_new_rvalue_from_ptr (ctxt, pointer_type, NULL)

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_string_literal (gcc_jit_context *ctxt, \
                                                  const char *value)

   Generate an rvalue for the given NIL-terminated string, of type
   :c:data:`GCC_JIT_TYPE_CONST_CHAR_PTR`.

   The parameter ``value`` must be non-NULL.  The call takes a copy of the
   underlying string, so it is valid to pass in a pointer to an on-stack
   buffer.

Vector expressions
******************

.. function:: gcc_jit_rvalue * \
              gcc_jit_context_new_rvalue_from_vector (gcc_jit_context *ctxt, \
                                                      gcc_jit_location *loc, \
                                                      gcc_jit_type *vec_type, \
                                                      size_t num_elements, \
                                                      gcc_jit_rvalue **elements)

   Build a vector rvalue from an array of elements.

   "vec_type" should be a vector type, created using
   :func:`gcc_jit_type_get_vector`.

   "num_elements" should match that of the vector type.

   This entrypoint was added in :ref:`LIBGCCJIT_ABI_10`; you can test for
   its presence using

   .. code-block:: c

      #ifdef LIBGCCJIT_HAVE_gcc_jit_context_new_rvalue_from_vector

Unary Operations
****************

.. function:: gcc_jit_rvalue * \
              gcc_jit_context_new_unary_op (gcc_jit_context *ctxt, \
                                            gcc_jit_location *loc, \
                                            enum gcc_jit_unary_op op, \
                                            gcc_jit_type *result_type, \
                                            gcc_jit_rvalue *rvalue)

   Build a unary operation out of an input rvalue.

.. type:: enum gcc_jit_unary_op

The available unary operations are:

==========================================  ============
Unary Operation                             C equivalent
==========================================  ============
:c:macro:`GCC_JIT_UNARY_OP_MINUS`           `-(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_BITWISE_NEGATE`  `~(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_LOGICAL_NEGATE`  `!(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_ABS`             `abs (EXPR)`
==========================================  ============

.. c:macro:: GCC_JIT_UNARY_OP_MINUS

    Negate an arithmetic value; analogous to:

    .. code-block:: c

       -(EXPR)

    in C.

.. c:macro:: GCC_JIT_UNARY_OP_BITWISE_NEGATE

    Bitwise negation of an integer value (one's complement); analogous
    to:

    .. code-block:: c

       ~(EXPR)

    in C.

.. c:macro:: GCC_JIT_UNARY_OP_LOGICAL_NEGATE

    Logical negation of an arithmetic or pointer value; analogous to:

    .. code-block:: c

       !(EXPR)

    in C.

.. c:macro:: GCC_JIT_UNARY_OP_ABS

    Absolute value of an arithmetic expression; analogous to:

    .. code-block:: c

        abs (EXPR)

    in C.

Binary Operations
*****************

.. function:: gcc_jit_rvalue *gcc_jit_context_new_binary_op (gcc_jit_context *ctxt, \
                                                             gcc_jit_location *loc, \
                                                             enum gcc_jit_binary_op op, \
                                                             gcc_jit_type *result_type, \
                                                             gcc_jit_rvalue *a, gcc_jit_rvalue *b)

   Build a binary operation out of two constituent rvalues.

.. type:: enum gcc_jit_binary_op

The available binary operations are:

========================================  ============
Binary Operation                          C equivalent
========================================  ============
:c:macro:`GCC_JIT_BINARY_OP_PLUS`         `x + y`
:c:macro:`GCC_JIT_BINARY_OP_MINUS`        `x - y`
:c:macro:`GCC_JIT_BINARY_OP_MULT`         `x * y`
:c:macro:`GCC_JIT_BINARY_OP_DIVIDE`       `x / y`
:c:macro:`GCC_JIT_BINARY_OP_MODULO`       `x % y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_AND`  `x & y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_XOR`  `x ^ y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_OR`   `x | y`
:c:macro:`GCC_JIT_BINARY_OP_LOGICAL_AND`  `x && y`
:c:macro:`GCC_JIT_BINARY_OP_LOGICAL_OR`   `x || y`
:c:macro:`GCC_JIT_BINARY_OP_LSHIFT`       `x << y`
:c:macro:`GCC_JIT_BINARY_OP_RSHIFT`       `x >> y`
========================================  ============

.. c:macro:: GCC_JIT_BINARY_OP_PLUS

   Addition of arithmetic values; analogous to:

   .. code-block:: c

     (EXPR_A) + (EXPR_B)

   in C.

   For pointer addition, use :c:func:`gcc_jit_context_new_array_access`.

.. c:macro:: GCC_JIT_BINARY_OP_MINUS

   Subtraction of arithmetic values; analogous to:

   .. code-block:: c

     (EXPR_A) - (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_MULT

   Multiplication of a pair of arithmetic values; analogous to:

   .. code-block:: c

     (EXPR_A) * (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_DIVIDE

   Quotient of division of arithmetic values; analogous to:

   .. code-block:: c

     (EXPR_A) / (EXPR_B)

   in C.

   The result type affects the kind of division: if the result type is
   integer-based, then the result is truncated towards zero, whereas
   a floating-point result type indicates floating-point division.

.. c:macro:: GCC_JIT_BINARY_OP_MODULO

   Remainder of division of arithmetic values; analogous to:

   .. code-block:: c

     (EXPR_A) % (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_AND

   Bitwise AND; analogous to:

   .. code-block:: c

     (EXPR_A) & (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_XOR

   Bitwise exclusive OR; analogous to:

   .. code-block:: c

      (EXPR_A) ^ (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_OR

   Bitwise inclusive OR; analogous to:

   .. code-block:: c

     (EXPR_A) | (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_LOGICAL_AND

   Logical AND; analogous to:

   .. code-block:: c

     (EXPR_A) && (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_LOGICAL_OR

   Logical OR; analogous to:

   .. code-block:: c

     (EXPR_A) || (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_LSHIFT

   Left shift; analogous to:

   .. code-block:: c

     (EXPR_A) << (EXPR_B)

   in C.

.. c:macro:: GCC_JIT_BINARY_OP_RSHIFT

   Right shift; analogous to:

   .. code-block:: c

     (EXPR_A) >> (EXPR_B)

   in C.

Comparisons
***********

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_comparison (gcc_jit_context *ctxt,\
                                              gcc_jit_location *loc,\
                                              enum gcc_jit_comparison op,\
                                              gcc_jit_rvalue *a, gcc_jit_rvalue *b)

   Build a boolean rvalue out of the comparison of two other rvalues.

.. type:: enum gcc_jit_comparison

=======================================  ============
Comparison                               C equivalent
=======================================  ============
:c:macro:`GCC_JIT_COMPARISON_EQ`         `x == y`
:c:macro:`GCC_JIT_COMPARISON_NE`         `x != y`
:c:macro:`GCC_JIT_COMPARISON_LT`         `x < y`
:c:macro:`GCC_JIT_COMPARISON_LE`         `x <= y`
:c:macro:`GCC_JIT_COMPARISON_GT`         `x > y`
:c:macro:`GCC_JIT_COMPARISON_GE`         `x >= y`
=======================================  ============


Function calls
**************
.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_call (gcc_jit_context *ctxt,\
                                        gcc_jit_location *loc,\
                                        gcc_jit_function *func,\
                                        int numargs , gcc_jit_rvalue **args)

   Given a function and the given table of argument rvalues, construct a
   call to the function, with the result as an rvalue.

   .. note::

      :c:func:`gcc_jit_context_new_call` merely builds a
      :c:type:`gcc_jit_rvalue` i.e. an expression that can be evaluated,
      perhaps as part of a more complicated expression.
      The call *won't* happen unless you add a statement to a function
      that evaluates the expression.

      For example, if you want to call a function and discard the result
      (or to call a function with ``void`` return type), use
      :c:func:`gcc_jit_block_add_eval`:

      .. code-block:: c

         /* Add "(void)printf (arg0, arg1);".  */
         gcc_jit_block_add_eval (
           block, NULL,
           gcc_jit_context_new_call (
             ctxt,
             NULL,
             printf_func,
             2, args));

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_call_through_ptr (gcc_jit_context *ctxt,\
                                                    gcc_jit_location *loc,\
                                                    gcc_jit_rvalue *fn_ptr,\
                                                    int numargs, \
                                                    gcc_jit_rvalue **args)

   Given an rvalue of function pointer type (e.g. from
   :c:func:`gcc_jit_context_new_function_ptr_type`), and the given table of
   argument rvalues, construct a call to the function pointer, with the
   result as an rvalue.

   .. note::

      The same caveat as for :c:func:`gcc_jit_context_new_call` applies.

.. function:: void\
              gcc_jit_rvalue_set_bool_require_tail_call (gcc_jit_rvalue *call,\
                                                         int require_tail_call)

   Given an :c:type:`gcc_jit_rvalue *` for a call created through
   :c:func:`gcc_jit_context_new_call` or
   :c:func:`gcc_jit_context_new_call_through_ptr`, mark/clear the
   call as needing tail-call optimization.  The optimizer will
   attempt to optimize the call into a jump instruction; if it is
   unable to do do, an error will be emitted.

   This may be useful when implementing functions that use the
   continuation-passing style (e.g. for functional programming
   languages), in which every function "returns" by calling a
   "continuation" function pointer.  This call must be
   guaranteed to be implemented as a jump, otherwise the program
   could consume an arbitrary amount of stack space as it executed.

   This entrypoint was added in :ref:`LIBGCCJIT_ABI_6`; you can test for
   its presence using

   .. code-block:: c

      #ifdef LIBGCCJIT_HAVE_gcc_jit_rvalue_set_bool_require_tail_call

Function pointers
*****************

Function pointers can be obtained:

  * from a :c:type:`gcc_jit_function` using
    :c:func:`gcc_jit_function_get_address`, or

  * from an existing function using
    :c:func:`gcc_jit_context_new_rvalue_from_ptr`,
    using a function pointer type obtained using
    :c:func:`gcc_jit_context_new_function_ptr_type`.

Type-coercion
*************

.. function:: gcc_jit_rvalue *\
              gcc_jit_context_new_cast (gcc_jit_context *ctxt,\
                                        gcc_jit_location *loc,\
                                        gcc_jit_rvalue *rvalue,\
                                        gcc_jit_type *type)

   Given an rvalue of T, construct another rvalue of another type.

   Currently only a limited set of conversions are possible:

     * int <-> float
     * int <-> bool
     * P*  <-> Q*, for pointer types P and Q

Lvalues
-------

.. type:: gcc_jit_lvalue

An lvalue is something that can of the *left*-hand side of an assignment:
a storage area (such as a variable).  It is also usable as an rvalue,
where the rvalue is computed by reading from the storage area.

.. function:: gcc_jit_object *\
              gcc_jit_lvalue_as_object (gcc_jit_lvalue *lvalue)

   Upcast an lvalue to be an object.

.. function:: gcc_jit_rvalue *\
              gcc_jit_lvalue_as_rvalue (gcc_jit_lvalue *lvalue)

   Upcast an lvalue to be an rvalue.

.. function:: gcc_jit_rvalue *\
              gcc_jit_lvalue_get_address (gcc_jit_lvalue *lvalue,\
                                          gcc_jit_location *loc)

   Take the address of an lvalue; analogous to:

   .. code-block:: c

     &(EXPR)

   in C.

Global variables
****************

.. function:: gcc_jit_lvalue *\
              gcc_jit_context_new_global (gcc_jit_context *ctxt,\
                                          gcc_jit_location *loc,\
                                          enum gcc_jit_global_kind kind,\
                                          gcc_jit_type *type,\
                                          const char *name)

   Add a new global variable of the given type and name to the context.

   The parameter ``name`` must be non-NULL.  The call takes a copy of the
   underlying string, so it is valid to pass in a pointer to an on-stack
   buffer.

   The "kind" parameter determines the visibility of the "global" outside
   of the :c:type:`gcc_jit_result`:

   .. type:: enum gcc_jit_global_kind

   .. c:macro:: GCC_JIT_GLOBAL_EXPORTED

      Global is defined by the client code and is visible
      by name outside of this JIT context via
      :c:func:`gcc_jit_result_get_global` (and this value is required for
      the global to be accessible via that entrypoint).

   .. c:macro:: GCC_JIT_GLOBAL_INTERNAL

      Global is defined by the client code, but is invisible
      outside of it.  Analogous to a "static" global within a .c file.
      Specifically, the variable will only be visible within this
      context and within child contexts.

   .. c:macro:: GCC_JIT_GLOBAL_IMPORTED

      Global is not defined by the client code; we're merely
      referring to it.  Analogous to using an "extern" global from a
      header file.

Working with pointers, structs and unions
-----------------------------------------

.. function:: gcc_jit_lvalue *\
              gcc_jit_rvalue_dereference (gcc_jit_rvalue *rvalue,\
                                          gcc_jit_location *loc)

   Given an rvalue of pointer type ``T *``, dereferencing the pointer,
   getting an lvalue of type ``T``.  Analogous to:

   .. code-block:: c

     *(EXPR)

   in C.

Field access is provided separately for both lvalues and rvalues.

.. function:: gcc_jit_lvalue *\
              gcc_jit_lvalue_access_field (gcc_jit_lvalue *struct_,\
                                           gcc_jit_location *loc,\
                                           gcc_jit_field *field)

   Given an lvalue of struct or union type, access the given field,
   getting an lvalue of the field's type.  Analogous to:

   .. code-block:: c

      (EXPR).field = ...;

   in C.

.. function:: gcc_jit_rvalue *\
              gcc_jit_rvalue_access_field (gcc_jit_rvalue *struct_,\
                                           gcc_jit_location *loc,\
                                           gcc_jit_field *field)

   Given an rvalue of struct or union type, access the given field
   as an rvalue.  Analogous to:

   .. code-block:: c

      (EXPR).field

   in C.

.. function:: gcc_jit_lvalue *\
              gcc_jit_rvalue_dereference_field (gcc_jit_rvalue *ptr,\
                                                gcc_jit_location *loc,\
                                                gcc_jit_field *field)

   Given an rvalue of pointer type ``T *`` where T is of struct or union
   type, access the given field as an lvalue.  Analogous to:

   .. code-block:: c

      (EXPR)->field

   in C, itself equivalent to ``(*EXPR).FIELD``.

.. function:: gcc_jit_lvalue *\
              gcc_jit_context_new_array_access (gcc_jit_context *ctxt,\
                                                gcc_jit_location *loc,\
                                                gcc_jit_rvalue *ptr,\
                                                gcc_jit_rvalue *index)

   Given an rvalue of pointer type ``T *``, get at the element `T` at
   the given index, using standard C array indexing rules i.e. each
   increment of ``index`` corresponds to ``sizeof(T)`` bytes.
   Analogous to:

   .. code-block:: c

      PTR[INDEX]

   in C (or, indeed, to ``PTR + INDEX``).