Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
/* Coalesce SSA_NAMES together for the out-of-ssa pass.
   Copyright (C) 2004-2020 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "tree-ssa.h"
#include "tree-pretty-print.h"
#include "diagnostic-core.h"
#include "dumpfile.h"
#include "gimple-iterator.h"
#include "tree-ssa-live.h"
#include "tree-ssa-coalesce.h"
#include "explow.h"
#include "tree-dfa.h"
#include "stor-layout.h"

/* This set of routines implements a coalesce_list.  This is an object which
   is used to track pairs of ssa_names which are desirable to coalesce
   together to avoid copies.  Costs are associated with each pair, and when
   all desired information has been collected, the object can be used to
   order the pairs for processing.  */

/* This structure defines a pair entry.  */

struct coalesce_pair
{
  int first_element;
  int second_element;
  int cost;

  /* A count of the number of unique partitions this pair would conflict
     with if coalescing was successful.  This is the secondary sort key,
     given two pairs with equal costs, we will prefer the pair with a smaller
     conflict set.

     This is lazily initialized when we discover two coalescing pairs have
     the same primary cost.

     Note this is not updated and propagated as pairs are coalesced.  */
  int conflict_count;

  /* The order in which coalescing pairs are discovered is recorded in this
     field, which is used as the final tie breaker when sorting coalesce
     pairs.  */
  int index;
};

/* This represents a conflict graph.  Implemented as an array of bitmaps.
   A full matrix is used for conflicts rather than just upper triangular form.
   this makes it much simpler and faster to perform conflict merges.  */

struct ssa_conflicts
{
  bitmap_obstack obstack;	/* A place to allocate our bitmaps.  */
  vec<bitmap> conflicts;
};

/* The narrow API of the qsort comparison function doesn't allow easy
   access to additional arguments.  So we have two globals (ick) to hold
   the data we need.  They're initialized before the call to qsort and
   wiped immediately after.  */
static ssa_conflicts *conflicts_;
static var_map map_;

/* Coalesce pair hashtable helpers.  */

struct coalesce_pair_hasher : nofree_ptr_hash <coalesce_pair>
{
  static inline hashval_t hash (const coalesce_pair *);
  static inline bool equal (const coalesce_pair *, const coalesce_pair *);
};

/* Hash function for coalesce list.  Calculate hash for PAIR.   */

inline hashval_t
coalesce_pair_hasher::hash (const coalesce_pair *pair)
{
  hashval_t a = (hashval_t)(pair->first_element);
  hashval_t b = (hashval_t)(pair->second_element);

  return b * (b - 1) / 2 + a;
}

/* Equality function for coalesce list hash table.  Compare PAIR1 and PAIR2,
   returning TRUE if the two pairs are equivalent.  */

inline bool
coalesce_pair_hasher::equal (const coalesce_pair *p1, const coalesce_pair *p2)
{
  return (p1->first_element == p2->first_element
	  && p1->second_element == p2->second_element);
}

typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
typedef coalesce_table_type::iterator coalesce_iterator_type;


struct cost_one_pair
{
  int first_element;
  int second_element;
  cost_one_pair *next;
};

/* This structure maintains the list of coalesce pairs.  */

struct coalesce_list
{
  coalesce_table_type *list;	/* Hash table.  */
  coalesce_pair **sorted;	/* List when sorted.  */
  int num_sorted;		/* Number in the sorted list.  */
  cost_one_pair *cost_one_list;/* Single use coalesces with cost 1.  */
  obstack ob;
};

#define NO_BEST_COALESCE	-1
#define MUST_COALESCE_COST	INT_MAX


/* Return cost of execution of copy instruction with FREQUENCY.  */

static inline int
coalesce_cost (int frequency, bool optimize_for_size)
{
  /* Base costs on BB frequencies bounded by 1.  */
  int cost = frequency;

  if (!cost)
    cost = 1;

  if (optimize_for_size)
    cost = 1;

  return cost;
}


/* Return the cost of executing a copy instruction in basic block BB.  */

static inline int
coalesce_cost_bb (basic_block bb)
{
  return coalesce_cost (bb->count.to_frequency (cfun),
			optimize_bb_for_size_p (bb));
}


/* Return the cost of executing a copy instruction on edge E.  */

static inline int
coalesce_cost_edge (edge e)
{
  int mult = 1;

  /* Inserting copy on critical edge costs more than inserting it elsewhere.  */
  if (EDGE_CRITICAL_P (e))
    mult = 2;
  if (e->flags & EDGE_ABNORMAL)
    return MUST_COALESCE_COST;
  if (e->flags & EDGE_EH)
    {
      edge e2;
      edge_iterator ei;
      FOR_EACH_EDGE (e2, ei, e->dest->preds)
	if (e2 != e)
	  {
	    /* Putting code on EH edge that leads to BB
	       with multiple predecestors imply splitting of
	       edge too.  */
	    if (mult < 2)
	      mult = 2;
	    /* If there are multiple EH predecestors, we
	       also copy EH regions and produce separate
	       landing pad.  This is expensive.  */
	    if (e2->flags & EDGE_EH)
	      {
	        mult = 5;
	        break;
	      }
	  }
    }

  return coalesce_cost (EDGE_FREQUENCY (e),
			optimize_edge_for_size_p (e)) * mult;
}


/* Retrieve a pair to coalesce from the cost_one_list in CL.  Returns the
   2 elements via P1 and P2.  1 is returned by the function if there is a pair,
   NO_BEST_COALESCE is returned if there aren't any.  */

static inline int
pop_cost_one_pair (coalesce_list *cl, int *p1, int *p2)
{
  cost_one_pair *ptr;

  ptr = cl->cost_one_list;
  if (!ptr)
    return NO_BEST_COALESCE;

  *p1 = ptr->first_element;
  *p2 = ptr->second_element;
  cl->cost_one_list = ptr->next;

  return 1;
}

/* Retrieve the most expensive remaining pair to coalesce from CL.  Returns the
   2 elements via P1 and P2.  Their calculated cost is returned by the function.
   NO_BEST_COALESCE is returned if the coalesce list is empty.  */

static inline int
pop_best_coalesce (coalesce_list *cl, int *p1, int *p2)
{
  coalesce_pair *node;
  int ret;

  if (cl->sorted == NULL)
    return pop_cost_one_pair (cl, p1, p2);

  if (cl->num_sorted == 0)
    return pop_cost_one_pair (cl, p1, p2);

  node = cl->sorted[--(cl->num_sorted)];
  *p1 = node->first_element;
  *p2 = node->second_element;
  ret = node->cost;

  return ret;
}


/* Create a new empty coalesce list object and return it.  */

static inline coalesce_list *
create_coalesce_list (void)
{
  coalesce_list *list;
  unsigned size = num_ssa_names * 3;

  if (size < 40)
    size = 40;

  list = (coalesce_list *) xmalloc (sizeof (struct coalesce_list));
  list->list = new coalesce_table_type (size);
  list->sorted = NULL;
  list->num_sorted = 0;
  list->cost_one_list = NULL;
  gcc_obstack_init (&list->ob);
  return list;
}


/* Delete coalesce list CL.  */

static inline void
delete_coalesce_list (coalesce_list *cl)
{
  gcc_assert (cl->cost_one_list == NULL);
  delete cl->list;
  cl->list = NULL;
  free (cl->sorted);
  gcc_assert (cl->num_sorted == 0);
  obstack_free (&cl->ob, NULL);
  free (cl);
}

/* Return the number of unique coalesce pairs in CL.  */

static inline int
num_coalesce_pairs (coalesce_list *cl)
{
  return cl->list->elements ();
}

/* Find a matching coalesce pair object in CL for the pair P1 and P2.  If
   one isn't found, return NULL if CREATE is false, otherwise create a new
   coalesce pair object and return it.  */

static coalesce_pair *
find_coalesce_pair (coalesce_list *cl, int p1, int p2, bool create)
{
  struct coalesce_pair p;
  coalesce_pair **slot;
  unsigned int hash;

  /* Normalize so that p1 is the smaller value.  */
  if (p2 < p1)
    {
      p.first_element = p2;
      p.second_element = p1;
    }
  else
    {
      p.first_element = p1;
      p.second_element = p2;
    }

  hash = coalesce_pair_hasher::hash (&p);
  slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
  if (!slot)
    return NULL;

  if (!*slot)
    {
      struct coalesce_pair * pair = XOBNEW (&cl->ob, struct coalesce_pair);
      gcc_assert (cl->sorted == NULL);
      pair->first_element = p.first_element;
      pair->second_element = p.second_element;
      pair->cost = 0;
      pair->index = num_coalesce_pairs (cl);
      pair->conflict_count = 0;
      *slot = pair;
    }

  return (struct coalesce_pair *) *slot;
}

static inline void
add_cost_one_coalesce (coalesce_list *cl, int p1, int p2)
{
  cost_one_pair *pair;

  pair = XOBNEW (&cl->ob, cost_one_pair);
  pair->first_element = p1;
  pair->second_element = p2;
  pair->next = cl->cost_one_list;
  cl->cost_one_list = pair;
}


/* Add a coalesce between P1 and P2 in list CL with a cost of VALUE.  */

static inline void
add_coalesce (coalesce_list *cl, int p1, int p2, int value)
{
  coalesce_pair *node;

  gcc_assert (cl->sorted == NULL);
  if (p1 == p2)
    return;

  node = find_coalesce_pair (cl, p1, p2, true);

  /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way.  */
  if (node->cost < MUST_COALESCE_COST - 1)
    {
      if (value < MUST_COALESCE_COST - 1)
	node->cost += value;
      else
	node->cost = value;
    }
}

/* Compute and record how many unique conflicts would exist for the
   representative partition for each coalesce pair in CL.

   CONFLICTS is the conflict graph and MAP is the current partition view.  */

static void
initialize_conflict_count (coalesce_pair *p,
			   ssa_conflicts *conflicts,
			   var_map map)
{
  int p1 = var_to_partition (map, ssa_name (p->first_element));
  int p2 = var_to_partition (map, ssa_name (p->second_element));

  /* 4 cases.  If both P1 and P2 have conflicts, then build their
     union and count the members.  Else handle the degenerate cases
     in the obvious ways.  */
  if (conflicts->conflicts[p1] && conflicts->conflicts[p2])
    p->conflict_count = bitmap_count_unique_bits (conflicts->conflicts[p1],
						  conflicts->conflicts[p2]);
  else if (conflicts->conflicts[p1])
    p->conflict_count = bitmap_count_bits (conflicts->conflicts[p1]);
  else if (conflicts->conflicts[p2])
    p->conflict_count = bitmap_count_bits (conflicts->conflicts[p2]);
  else
    p->conflict_count = 0;
}


/* Comparison function to allow qsort to sort P1 and P2 in Ascending order.  */

static int
compare_pairs (const void *p1, const void *p2)
{
  coalesce_pair *const *const pp1 = (coalesce_pair *const *) p1;
  coalesce_pair *const *const pp2 = (coalesce_pair *const *) p2;
  int result;

  result = (* pp1)->cost - (* pp2)->cost;
  /* We use the size of the resulting conflict set as the secondary sort key.
     Given two equal costing coalesce pairs, we want to prefer the pair that
     has the smaller conflict set.  */
  if (result == 0)
    {
      if (flag_expensive_optimizations)
	{
	  /* Lazily initialize the conflict counts as it's fairly expensive
	     to compute.  */
	  if ((*pp2)->conflict_count == 0)
	    initialize_conflict_count (*pp2, conflicts_, map_);
	  if ((*pp1)->conflict_count == 0)
	    initialize_conflict_count (*pp1, conflicts_, map_);

	  result = (*pp2)->conflict_count - (*pp1)->conflict_count;
	}

      /* And if everything else is equal, then sort based on which
	 coalesce pair was found first.  */
      if (result == 0)
	result = (*pp2)->index - (*pp1)->index;
    }

  return result;
}

/* Iterate over CL using ITER, returning values in PAIR.  */

#define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL)		\
  FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))


/* Prepare CL for removal of preferred pairs.  When finished they are sorted
   in order from most important coalesce to least important.  */

static void
sort_coalesce_list (coalesce_list *cl, ssa_conflicts *conflicts, var_map map)
{
  unsigned x, num;
  coalesce_pair *p;
  coalesce_iterator_type ppi;

  gcc_assert (cl->sorted == NULL);

  num = num_coalesce_pairs (cl);
  cl->num_sorted = num;
  if (num == 0)
    return;

  /* Allocate a vector for the pair pointers.  */
  cl->sorted = XNEWVEC (coalesce_pair *, num);

  /* Populate the vector with pointers to the pairs.  */
  x = 0;
  FOR_EACH_PARTITION_PAIR (p, ppi, cl)
    cl->sorted[x++] = p;
  gcc_assert (x == num);

  /* Already sorted.  */
  if (num == 1)
    return;

  /* We don't want to depend on qsort_r, so we have to stuff away
     additional data into globals so it can be referenced in
     compare_pairs.  */
  conflicts_ = conflicts;
  map_ = map;
  qsort (cl->sorted, num, sizeof (coalesce_pair *), compare_pairs);
  conflicts_ = NULL;
  map_ = NULL;
}


/* Send debug info for coalesce list CL to file F.  */

static void
dump_coalesce_list (FILE *f, coalesce_list *cl)
{
  coalesce_pair *node;
  coalesce_iterator_type ppi;

  int x;
  tree var;

  if (cl->sorted == NULL)
    {
      fprintf (f, "Coalesce List:\n");
      FOR_EACH_PARTITION_PAIR (node, ppi, cl)
        {
	  tree var1 = ssa_name (node->first_element);
	  tree var2 = ssa_name (node->second_element);
	  print_generic_expr (f, var1, TDF_SLIM);
	  fprintf (f, " <-> ");
	  print_generic_expr (f, var2, TDF_SLIM);
	  fprintf (f, "  (%1d, %1d), ", node->cost, node->conflict_count);
	  fprintf (f, "\n");
	}
    }
  else
    {
      fprintf (f, "Sorted Coalesce list:\n");
      for (x = cl->num_sorted - 1 ; x >=0; x--)
        {
	  node = cl->sorted[x];
	  fprintf (f, "(%d, %d) ", node->cost, node->conflict_count);
	  var = ssa_name (node->first_element);
	  print_generic_expr (f, var, TDF_SLIM);
	  fprintf (f, " <-> ");
	  var = ssa_name (node->second_element);
	  print_generic_expr (f, var, TDF_SLIM);
	  fprintf (f, "\n");
	}
    }
}


/* Return an empty new conflict graph for SIZE elements.  */

static inline ssa_conflicts *
ssa_conflicts_new (unsigned size)
{
  ssa_conflicts *ptr;

  ptr = XNEW (ssa_conflicts);
  bitmap_obstack_initialize (&ptr->obstack);
  ptr->conflicts.create (size);
  ptr->conflicts.safe_grow_cleared (size);
  return ptr;
}


/* Free storage for conflict graph PTR.  */

static inline void
ssa_conflicts_delete (ssa_conflicts *ptr)
{
  bitmap_obstack_release (&ptr->obstack);
  ptr->conflicts.release ();
  free (ptr);
}


/* Test if elements X and Y conflict in graph PTR.  */

static inline bool
ssa_conflicts_test_p (ssa_conflicts *ptr, unsigned x, unsigned y)
{
  bitmap bx = ptr->conflicts[x];
  bitmap by = ptr->conflicts[y];

  gcc_checking_assert (x != y);

  if (bx)
    /* Avoid the lookup if Y has no conflicts.  */
    return by ? bitmap_bit_p (bx, y) : false;
  else
    return false;
}


/* Add a conflict with Y to the bitmap for X in graph PTR.  */

static inline void
ssa_conflicts_add_one (ssa_conflicts *ptr, unsigned x, unsigned y)
{
  bitmap bx = ptr->conflicts[x];
  /* If there are no conflicts yet, allocate the bitmap and set bit.  */
  if (! bx)
    bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
  bitmap_set_bit (bx, y);
}


/* Add conflicts between X and Y in graph PTR.  */

static inline void
ssa_conflicts_add (ssa_conflicts *ptr, unsigned x, unsigned y)
{
  gcc_checking_assert (x != y);
  ssa_conflicts_add_one (ptr, x, y);
  ssa_conflicts_add_one (ptr, y, x);
}


/* Merge all Y's conflict into X in graph PTR.  */

static inline void
ssa_conflicts_merge (ssa_conflicts *ptr, unsigned x, unsigned y)
{
  unsigned z;
  bitmap_iterator bi;
  bitmap bx = ptr->conflicts[x];
  bitmap by = ptr->conflicts[y];

  gcc_checking_assert (x != y);
  if (! by)
    return;

  /* Add a conflict between X and every one Y has.  If the bitmap doesn't
     exist, then it has already been coalesced, and we don't need to add a
     conflict.  */
  EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
    {
      bitmap bz = ptr->conflicts[z];
      if (bz)
	{
	  bool was_there = bitmap_clear_bit (bz, y);
	  gcc_checking_assert (was_there);
	  bitmap_set_bit (bz, x);
	}
    }

  if (bx)
    {
      /* If X has conflicts, add Y's to X.  */
      bitmap_ior_into (bx, by);
      BITMAP_FREE (by);
      ptr->conflicts[y] = NULL;
    }
  else
    {
      /* If X has no conflicts, simply use Y's.  */
      ptr->conflicts[x] = by;
      ptr->conflicts[y] = NULL;
    }
}


/* Dump a conflicts graph.  */

static void
ssa_conflicts_dump (FILE *file, ssa_conflicts *ptr)
{
  unsigned x;
  bitmap b;

  fprintf (file, "\nConflict graph:\n");

  FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
    if (b)
      {
	fprintf (file, "%d: ", x);
	dump_bitmap (file, b);
      }
}


/* This structure is used to efficiently record the current status of live
   SSA_NAMES when building a conflict graph.
   LIVE_BASE_VAR has a bit set for each base variable which has at least one
   ssa version live.
   LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
   index, and is used to track what partitions of each base variable are
   live.  This makes it easy to add conflicts between just live partitions
   with the same base variable.
   The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
   marked as being live.  This delays clearing of these bitmaps until
   they are actually needed again.  */

class live_track
{
public:
  bitmap_obstack obstack;	/* A place to allocate our bitmaps.  */
  bitmap_head live_base_var;		/* Indicates if a basevar is live.  */
  bitmap_head *live_base_partitions;	/* Live partitions for each basevar.  */
  var_map map;			/* Var_map being used for partition mapping.  */
};


/* This routine will create a new live track structure based on the partitions
   in MAP.  */

static live_track *
new_live_track (var_map map)
{
  live_track *ptr;
  int lim, x;

  /* Make sure there is a partition view in place.  */
  gcc_assert (map->partition_to_base_index != NULL);

  ptr = XNEW (live_track);
  ptr->map = map;
  lim = num_basevars (map);
  bitmap_obstack_initialize (&ptr->obstack);
  ptr->live_base_partitions = XNEWVEC (bitmap_head, lim);
  bitmap_initialize (&ptr->live_base_var, &ptr->obstack);
  for (x = 0; x < lim; x++)
    bitmap_initialize (&ptr->live_base_partitions[x], &ptr->obstack);
  return ptr;
}


/* This routine will free the memory associated with PTR.  */

static void
delete_live_track (live_track *ptr)
{
  bitmap_obstack_release (&ptr->obstack);
  XDELETEVEC (ptr->live_base_partitions);
  XDELETE (ptr);
}


/* This function will remove PARTITION from the live list in PTR.  */

static inline void
live_track_remove_partition (live_track *ptr, int partition)
{
  int root;

  root = basevar_index (ptr->map, partition);
  bitmap_clear_bit (&ptr->live_base_partitions[root], partition);
  /* If the element list is empty, make the base variable not live either.  */
  if (bitmap_empty_p (&ptr->live_base_partitions[root]))
    bitmap_clear_bit (&ptr->live_base_var, root);
}


/* This function will adds PARTITION to the live list in PTR.  */

static inline void
live_track_add_partition (live_track *ptr, int partition)
{
  int root;

  root = basevar_index (ptr->map, partition);
  /* If this base var wasn't live before, it is now.  Clear the element list
     since it was delayed until needed.  */
  if (bitmap_set_bit (&ptr->live_base_var, root))
    bitmap_clear (&ptr->live_base_partitions[root]);
  bitmap_set_bit (&ptr->live_base_partitions[root], partition);

}


/* Clear the live bit for VAR in PTR.  */

static inline void
live_track_clear_var (live_track *ptr, tree var)
{
  int p;

  p = var_to_partition (ptr->map, var);
  if (p != NO_PARTITION)
    live_track_remove_partition (ptr, p);
}


/* Return TRUE if VAR is live in PTR.  */

static inline bool
live_track_live_p (live_track *ptr, tree var)
{
  int p, root;

  p = var_to_partition (ptr->map, var);
  if (p != NO_PARTITION)
    {
      root = basevar_index (ptr->map, p);
      if (bitmap_bit_p (&ptr->live_base_var, root))
	return bitmap_bit_p (&ptr->live_base_partitions[root], p);
    }
  return false;
}


/* This routine will add USE to PTR.  USE will be marked as live in both the
   ssa live map and the live bitmap for the root of USE.  */

static inline void
live_track_process_use (live_track *ptr, tree use)
{
  int p;

  p = var_to_partition (ptr->map, use);
  if (p == NO_PARTITION)
    return;

  /* Mark as live in the appropriate live list.  */
  live_track_add_partition (ptr, p);
}


/* This routine will process a DEF in PTR.  DEF will be removed from the live
   lists, and if there are any other live partitions with the same base
   variable, conflicts will be added to GRAPH.  */

static inline void
live_track_process_def (live_track *ptr, tree def, ssa_conflicts *graph)
{
  int p, root;
  bitmap b;
  unsigned x;
  bitmap_iterator bi;

  p = var_to_partition (ptr->map, def);
  if (p == NO_PARTITION)
    return;

  /* Clear the liveness bit.  */
  live_track_remove_partition (ptr, p);

  /* If the bitmap isn't empty now, conflicts need to be added.  */
  root = basevar_index (ptr->map, p);
  if (bitmap_bit_p (&ptr->live_base_var, root))
    {
      b = &ptr->live_base_partitions[root];
      EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
        ssa_conflicts_add (graph, p, x);
    }
}


/* Initialize PTR with the partitions set in INIT.  */

static inline void
live_track_init (live_track *ptr, bitmap init)
{
  unsigned p;
  bitmap_iterator bi;

  /* Mark all live on exit partitions.  */
  EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
    live_track_add_partition (ptr, p);
}


/* This routine will clear all live partitions in PTR.   */

static inline void
live_track_clear_base_vars (live_track *ptr)
{
  /* Simply clear the live base list.  Anything marked as live in the element
     lists will be cleared later if/when the base variable ever comes alive
     again.  */
  bitmap_clear (&ptr->live_base_var);
}


/* Build a conflict graph based on LIVEINFO.  Any partitions which are in the
   partition view of the var_map liveinfo is based on get entries in the
   conflict graph.  Only conflicts between ssa_name partitions with the same
   base variable are added.  */

static ssa_conflicts *
build_ssa_conflict_graph (tree_live_info_p liveinfo)
{
  ssa_conflicts *graph;
  var_map map;
  basic_block bb;
  ssa_op_iter iter;
  live_track *live;
  basic_block entry;

  /* If inter-variable coalescing is enabled, we may attempt to
     coalesce variables from different base variables, including
     different parameters, so we have to make sure default defs live
     at the entry block conflict with each other.  */
  if (flag_tree_coalesce_vars)
    entry = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
  else
    entry = NULL;

  map = live_var_map (liveinfo);
  graph = ssa_conflicts_new (num_var_partitions (map));

  live = new_live_track (map);

  for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i)
    {
      /* Start with live on exit temporaries.  */
      live_track_init (live, live_on_exit (liveinfo, bb));

      for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
	   gsi_prev (&gsi))
        {
	  tree var;
	  gimple *stmt = gsi_stmt (gsi);

	  /* A copy between 2 partitions does not introduce an interference
	     by itself.  If they did, you would never be able to coalesce
	     two things which are copied.  If the two variables really do
	     conflict, they will conflict elsewhere in the program.

	     This is handled by simply removing the SRC of the copy from the
	     live list, and processing the stmt normally.  */
	  if (is_gimple_assign (stmt))
	    {
	      tree lhs = gimple_assign_lhs (stmt);
	      tree rhs1 = gimple_assign_rhs1 (stmt);
	      if (gimple_assign_copy_p (stmt)
                  && TREE_CODE (lhs) == SSA_NAME
                  && TREE_CODE (rhs1) == SSA_NAME)
		live_track_clear_var (live, rhs1);
	    }
	  else if (is_gimple_debug (stmt))
	    continue;

	  /* For stmts with more than one SSA_NAME definition pretend all the
	     SSA_NAME outputs but the first one are live at this point, so
	     that conflicts are added in between all those even when they are
	     actually not really live after the asm, because expansion might
	     copy those into pseudos after the asm and if multiple outputs
	     share the same partition, it might overwrite those that should
	     be live.  E.g.
	     asm volatile (".." : "=r" (a) : "=r" (b) : "0" (a), "1" (a));
	     return a;
	     See PR70593.  */
	  bool first = true;
	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
	    if (first)
	      first = false;
	    else
	      live_track_process_use (live, var);

	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
	    live_track_process_def (live, var, graph);

	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
	    live_track_process_use (live, var);
	}

      /* If result of a PHI is unused, looping over the statements will not
	 record any conflicts since the def was never live.  Since the PHI node
	 is going to be translated out of SSA form, it will insert a copy.
	 There must be a conflict recorded between the result of the PHI and
	 any variables that are live.  Otherwise the out-of-ssa translation
	 may create incorrect code.  */
      for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  tree result = PHI_RESULT (phi);
	  if (virtual_operand_p (result))
	    continue;
	  if (live_track_live_p (live, result))
	    live_track_process_def (live, result, graph);
	}

      /* Pretend there are defs for params' default defs at the start
	 of the (post-)entry block.  This will prevent PARM_DECLs from
	 coalescing into the same partition.  Although RESULT_DECLs'
	 default defs don't have a useful initial value, we have to
	 prevent them from coalescing with PARM_DECLs' default defs
	 too, otherwise assign_parms would attempt to assign different
	 RTL to the same partition.  */
      if (bb == entry)
	{
	  unsigned i;
	  tree var;

	  FOR_EACH_SSA_NAME (i, var, cfun)
	    {
	      if (!SSA_NAME_IS_DEFAULT_DEF (var)
		  || !SSA_NAME_VAR (var)
		  || VAR_P (SSA_NAME_VAR (var)))
		continue;

	      live_track_process_def (live, var, graph);
	      /* Process a use too, so that it remains live and
		 conflicts with other parms' default defs, even unused
		 ones.  */
	      live_track_process_use (live, var);
	    }
	}

     live_track_clear_base_vars (live);
    }

  delete_live_track (live);
  return graph;
}

/* Print a failure to coalesce a MUST_COALESCE pair X and Y.  */

static inline void
fail_abnormal_edge_coalesce (int x, int y)
{
  fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
  fprintf (stderr, " which are marked as MUST COALESCE.\n");
  print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
  fprintf (stderr, " and  ");
  print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);

  internal_error ("SSA corruption");
}

/* If VAR is an SSA_NAME associated with a PARM_DECL or a RESULT_DECL,
   and the DECL's default def is unused (i.e., it was introduced by
   create_default_def for out-of-ssa), mark VAR and the default def for
   coalescing.  */

static void
coalesce_with_default (tree var, coalesce_list *cl, bitmap used_in_copy)
{
  if (SSA_NAME_IS_DEFAULT_DEF (var)
      || !SSA_NAME_VAR (var)
      || VAR_P (SSA_NAME_VAR (var)))
    return;

  tree ssa = ssa_default_def (cfun, SSA_NAME_VAR (var));
  if (!has_zero_uses (ssa))
    return;

  add_cost_one_coalesce (cl, SSA_NAME_VERSION (ssa), SSA_NAME_VERSION (var));
  bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
  /* Default defs will have their used_in_copy bits set at the beginning of
     populate_coalesce_list_for_outofssa.  */
}


/* Given var_map MAP for a region, this function creates and returns a coalesce
   list as well as recording related ssa names in USED_IN_COPIES for use later
   in the out-of-ssa or live range computation process.  */

static coalesce_list *
create_coalesce_list_for_region (var_map map, bitmap used_in_copy)
{
  gimple_stmt_iterator gsi;
  basic_block bb;
  coalesce_list *cl = create_coalesce_list ();
  gimple *stmt;
  int v1, v2, cost;

  for (unsigned j = 0; map->vec_bbs.iterate (j, &bb); ++j)
    {
      tree arg;

      for (gphi_iterator gpi = gsi_start_phis (bb);
	   !gsi_end_p (gpi);
	   gsi_next (&gpi))
	{
	  gphi *phi = gpi.phi ();
	  size_t i;
	  int ver;
	  tree res;
	  bool saw_copy = false;

	  res = gimple_phi_result (phi);
	  if (virtual_operand_p (res))
	    continue;
	  ver = SSA_NAME_VERSION (res);

	  /* Register ssa_names and coalesces between the args and the result
	     of all PHI.  */
	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    {
	      edge e = gimple_phi_arg_edge (phi, i);
	      arg = PHI_ARG_DEF (phi, i);
	      if (TREE_CODE (arg) != SSA_NAME)
		continue;

	      if (gimple_can_coalesce_p (arg, res)
		  || (e->flags & EDGE_ABNORMAL))
		{
		  saw_copy = true;
		  bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
		  if ((e->flags & EDGE_ABNORMAL) == 0)
		    {
		      int cost = coalesce_cost_edge (e);
		      if (cost == 1 && has_single_use (arg))
			add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
		      else
			add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
		    }
		}
	    }
	  if (saw_copy)
	    bitmap_set_bit (used_in_copy, ver);
	}

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
	  stmt = gsi_stmt (gsi);

	  if (is_gimple_debug (stmt))
	    continue;

	  /* Check for copy coalesces.  */
	  switch (gimple_code (stmt))
	    {
	    case GIMPLE_ASSIGN:
	      {
		tree lhs = gimple_assign_lhs (stmt);
		tree rhs1 = gimple_assign_rhs1 (stmt);
		if (gimple_assign_ssa_name_copy_p (stmt)
		    && gimple_can_coalesce_p (lhs, rhs1))
		  {
		    v1 = SSA_NAME_VERSION (lhs);
		    v2 = SSA_NAME_VERSION (rhs1);
		    cost = coalesce_cost_bb (bb);
		    add_coalesce (cl, v1, v2, cost);
		    bitmap_set_bit (used_in_copy, v1);
		    bitmap_set_bit (used_in_copy, v2);
		  }
	      }
	      break;

	    case GIMPLE_RETURN:
	      {
		tree res = DECL_RESULT (current_function_decl);
		if (VOID_TYPE_P (TREE_TYPE (res))
		    || !is_gimple_reg (res))
		  break;
		tree rhs1 = gimple_return_retval (as_a <greturn *> (stmt));
		if (!rhs1)
		  break;
		tree lhs = ssa_default_def (cfun, res);
		gcc_assert (lhs);
		if (TREE_CODE (rhs1) == SSA_NAME
		    && gimple_can_coalesce_p (lhs, rhs1))
		  {
		    v1 = SSA_NAME_VERSION (lhs);
		    v2 = SSA_NAME_VERSION (rhs1);
		    cost = coalesce_cost_bb (bb);
		    add_coalesce (cl, v1, v2, cost);
		    bitmap_set_bit (used_in_copy, v1);
		    bitmap_set_bit (used_in_copy, v2);
		  }
		break;
	      }

	    case GIMPLE_ASM:
	      {
		gasm *asm_stmt = as_a <gasm *> (stmt);
		unsigned long noutputs, i;
		unsigned long ninputs;
		tree *outputs, link;
		noutputs = gimple_asm_noutputs (asm_stmt);
		ninputs = gimple_asm_ninputs (asm_stmt);
		outputs = (tree *) alloca (noutputs * sizeof (tree));
		for (i = 0; i < noutputs; ++i)
		  {
		    link = gimple_asm_output_op (asm_stmt, i);
		    outputs[i] = TREE_VALUE (link);
		  }

		for (i = 0; i < ninputs; ++i)
		  {
                    const char *constraint;
                    tree input;
		    char *end;
		    unsigned long match;

		    link = gimple_asm_input_op (asm_stmt, i);
		    constraint
		      = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
		    input = TREE_VALUE (link);

		    if (TREE_CODE (input) != SSA_NAME)
		      continue;

		    match = strtoul (constraint, &end, 10);
		    if (match >= noutputs || end == constraint)
		      continue;

		    if (TREE_CODE (outputs[match]) != SSA_NAME)
		      continue;

		    v1 = SSA_NAME_VERSION (outputs[match]);
		    v2 = SSA_NAME_VERSION (input);

		    if (gimple_can_coalesce_p (outputs[match], input))
		      {
			cost = coalesce_cost (REG_BR_PROB_BASE,
					      optimize_bb_for_size_p (bb));
			add_coalesce (cl, v1, v2, cost);
			bitmap_set_bit (used_in_copy, v1);
			bitmap_set_bit (used_in_copy, v2);
		      }
		  }
		break;
	      }

	    default:
	      break;
	    }
	}
    }

  return cl;
}


/* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR.  */

struct ssa_name_var_hash : nofree_ptr_hash <tree_node>
{
  static inline hashval_t hash (const tree_node *);
  static inline int equal (const tree_node *, const tree_node *);
};

inline hashval_t
ssa_name_var_hash::hash (const_tree n)
{
  return DECL_UID (SSA_NAME_VAR (n));
}

inline int
ssa_name_var_hash::equal (const tree_node *n1, const tree_node *n2)
{
  return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
}


/* This function populates coalesce list CL as well as recording related ssa
   names in USED_IN_COPIES for use later in the out-of-ssa process.  */

static void
populate_coalesce_list_for_outofssa (coalesce_list *cl, bitmap used_in_copy)
{
  tree var;
  tree first;
  int v1, v2, cost;
  unsigned i;

  /* Process result decls and live on entry variables for entry into the
     coalesce list.  */
  first = NULL_TREE;
  FOR_EACH_SSA_NAME (i, var, cfun)
    {
      if (!virtual_operand_p (var))
        {
	  coalesce_with_default (var, cl, used_in_copy);

	  /* Add coalesces between all the result decls.  */
	  if (SSA_NAME_VAR (var)
	      && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
	    {
	      bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
	      if (first == NULL_TREE)
		first = var;
	      else
		{
		  gcc_assert (gimple_can_coalesce_p (var, first));
		  v1 = SSA_NAME_VERSION (first);
		  v2 = SSA_NAME_VERSION (var);
		  cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
		  add_coalesce (cl, v1, v2, cost);
		}
	    }
	  /* Mark any default_def variables as being in the coalesce list
	     since they will have to be coalesced with the base variable.  If
	     not marked as present, they won't be in the coalesce view. */
	  if (SSA_NAME_IS_DEFAULT_DEF (var)
	      && (!has_zero_uses (var)
		  || (SSA_NAME_VAR (var)
		      && !VAR_P (SSA_NAME_VAR (var)))))
	    bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
	}
    }

  /* If this optimization is disabled, we need to coalesce all the
     names originating from the same SSA_NAME_VAR so debug info
     remains undisturbed.  */
  if (!flag_tree_coalesce_vars)
    {
      tree a;
      hash_table<ssa_name_var_hash> ssa_name_hash (10);

      FOR_EACH_SSA_NAME (i, a, cfun)
	{
	  if (SSA_NAME_VAR (a)
	      && !DECL_IGNORED_P (SSA_NAME_VAR (a))
	      && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)
		  || !VAR_P (SSA_NAME_VAR (a))))
	    {
	      tree *slot = ssa_name_hash.find_slot (a, INSERT);

	      if (!*slot)
		*slot = a;
	      else
		{
		  /* If the variable is a PARM_DECL or a RESULT_DECL, we
		     _require_ that all the names originating from it be
		     coalesced, because there must be a single partition
		     containing all the names so that it can be assigned
		     the canonical RTL location of the DECL safely.
		     If in_lto_p, a function could have been compiled
		     originally with optimizations and only the link
		     performed at -O0, so we can't actually require it.  */
		  const int cost
		    = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
		      ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
		  add_coalesce (cl, SSA_NAME_VERSION (a),
				SSA_NAME_VERSION (*slot), cost);
		  bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (a));
		  bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (*slot));
		}
	    }
	}
    }
}


/* Attempt to coalesce ssa versions X and Y together using the partition
   mapping in MAP and checking conflicts in GRAPH.  Output any debug info to
   DEBUG, if it is nun-NULL.  */

static inline bool
attempt_coalesce (var_map map, ssa_conflicts *graph, int x, int y,
		  FILE *debug)
{
  int z;
  tree var1, var2;
  int p1, p2;

  p1 = var_to_partition (map, ssa_name (x));
  p2 = var_to_partition (map, ssa_name (y));

  if (debug)
    {
      fprintf (debug, "(%d)", x);
      print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
      fprintf (debug, " & (%d)", y);
      print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
    }

  if (p1 == p2)
    {
      if (debug)
	fprintf (debug, ": Already Coalesced.\n");
      return true;
    }

  if (debug)
    fprintf (debug, " [map: %d, %d] ", p1, p2);


  if (!ssa_conflicts_test_p (graph, p1, p2))
    {
      var1 = partition_to_var (map, p1);
      var2 = partition_to_var (map, p2);

      z = var_union (map, var1, var2);
      if (z == NO_PARTITION)
	{
	  if (debug)
	    fprintf (debug, ": Unable to perform partition union.\n");
	  return false;
	}

      /* z is the new combined partition.  Remove the other partition from
	 the list, and merge the conflicts.  */
      if (z == p1)
	ssa_conflicts_merge (graph, p1, p2);
      else
	ssa_conflicts_merge (graph, p2, p1);

      if (debug)
	fprintf (debug, ": Success -> %d\n", z);

      return true;
    }

  if (debug)
    fprintf (debug, ": Fail due to conflict\n");

  return false;
}


/* Attempt to Coalesce partitions in MAP which occur in the list CL using
   GRAPH.  Debug output is sent to DEBUG if it is non-NULL.  */

static void
coalesce_partitions (var_map map, ssa_conflicts *graph, coalesce_list *cl,
		     FILE *debug)
{
  int x = 0, y = 0;
  tree var1, var2;
  int cost;
  basic_block bb;
  edge e;
  edge_iterator ei;

  /* First, coalesce all the copies across abnormal edges.  These are not placed
     in the coalesce list because they do not need to be sorted, and simply
     consume extra memory/compilation time in large programs.  */

  FOR_EACH_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (e->flags & EDGE_ABNORMAL)
	  {
	    gphi_iterator gsi;
	    for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
		 gsi_next (&gsi))
	      {
		gphi *phi = gsi.phi ();
		tree res = PHI_RESULT (phi);
		if (virtual_operand_p (res))
		  continue;
		tree arg = PHI_ARG_DEF (phi, e->dest_idx);
		if (SSA_NAME_IS_DEFAULT_DEF (arg)
		    && (!SSA_NAME_VAR (arg)
			|| TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
		  continue;

		int v1 = SSA_NAME_VERSION (res);
		int v2 = SSA_NAME_VERSION (arg);

		if (debug)
		  fprintf (debug, "Abnormal coalesce: ");

		if (!attempt_coalesce (map, graph, v1, v2, debug))
		  fail_abnormal_edge_coalesce (v1, v2);
	      }
	  }
    }

  /* Now process the items in the coalesce list.  */

  while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
    {
      var1 = ssa_name (x);
      var2 = ssa_name (y);

      /* Assert the coalesces have the same base variable.  */
      gcc_assert (gimple_can_coalesce_p (var1, var2));

      if (debug)
	fprintf (debug, "Coalesce list: ");
      attempt_coalesce (map, graph, x, y, debug);
    }
}


/* Output partition map MAP with coalescing plan PART to file F.  */

void
dump_part_var_map (FILE *f, partition part, var_map map)
{
  int t;
  unsigned x, y;
  int p;

  fprintf (f, "\nCoalescible Partition map \n\n");

  for (x = 0; x < map->num_partitions; x++)
    {
      if (map->view_to_partition != NULL)
	p = map->view_to_partition[x];
      else
	p = x;

      if (ssa_name (p) == NULL_TREE
	  || virtual_operand_p (ssa_name (p)))
        continue;

      t = 0;
      for (y = 1; y < num_ssa_names; y++)
        {
	  tree var = version_to_var (map, y);
	  if (!var)
	    continue;
	  int q = var_to_partition (map, var);
	  p = partition_find (part, q);
	  gcc_assert (map->partition_to_base_index[q]
		      == map->partition_to_base_index[p]);

	  if (p == (int)x)
	    {
	      if (t++ == 0)
	        {
		  fprintf (f, "Partition %d, base %d (", x,
			   map->partition_to_base_index[q]);
		  print_generic_expr (f, partition_to_var (map, q), TDF_SLIM);
		  fprintf (f, " - ");
		}
	      fprintf (f, "%d ", y);
	    }
	}
      if (t != 0)
	fprintf (f, ")\n");
    }
  fprintf (f, "\n");
}

/* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
   coalescing together, false otherwise.

   This must stay consistent with compute_samebase_partition_bases and 
   compute_optimized_partition_bases.  */

bool
gimple_can_coalesce_p (tree name1, tree name2)
{
  /* First check the SSA_NAME's associated DECL.  Without
     optimization, we only want to coalesce if they have the same DECL
     or both have no associated DECL.  */
  tree var1 = SSA_NAME_VAR (name1);
  tree var2 = SSA_NAME_VAR (name2);
  var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
  var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
  if (var1 != var2 && !flag_tree_coalesce_vars)
    return false;

  /* Now check the types.  If the types are the same, then we should
     try to coalesce V1 and V2.  */
  tree t1 = TREE_TYPE (name1);
  tree t2 = TREE_TYPE (name2);
  if (t1 == t2)
    {
    check_modes:
      /* If the base variables are the same, we're good: none of the
	 other tests below could possibly fail.  */
      var1 = SSA_NAME_VAR (name1);
      var2 = SSA_NAME_VAR (name2);
      if (var1 == var2)
	return true;

      /* We don't want to coalesce two SSA names if one of the base
	 variables is supposed to be a register while the other is
	 supposed to be on the stack.  Anonymous SSA names most often
	 take registers, but when not optimizing, user variables
	 should go on the stack, so coalescing them with the anonymous
	 variable as the partition leader would end up assigning the
	 user variable to a register.  Don't do that!  */
      bool reg1 = use_register_for_decl (name1);
      bool reg2 = use_register_for_decl (name2);
      if (reg1 != reg2)
	return false;

      /* Check that the promoted modes and unsignedness are the same.
	 We don't want to coalesce if the promoted modes would be
	 different, or if they would sign-extend differently.  Only
	 PARM_DECLs and RESULT_DECLs have different promotion rules,
	 so skip the test if both are variables, or both are anonymous
	 SSA_NAMEs.  */
      int unsigned1, unsigned2;
      return ((!var1 || VAR_P (var1)) && (!var2 || VAR_P (var2)))
	|| ((promote_ssa_mode (name1, &unsigned1)
	     == promote_ssa_mode (name2, &unsigned2))
	    && unsigned1 == unsigned2);
    }

  /* If alignment requirements are different, we can't coalesce.  */
  if (MINIMUM_ALIGNMENT (t1,
			 var1 ? DECL_MODE (var1) : TYPE_MODE (t1),
			 var1 ? LOCAL_DECL_ALIGNMENT (var1) : TYPE_ALIGN (t1))
      != MINIMUM_ALIGNMENT (t2,
			    var2 ? DECL_MODE (var2) : TYPE_MODE (t2),
			    var2 ? LOCAL_DECL_ALIGNMENT (var2) : TYPE_ALIGN (t2)))
    return false;

  /* If the types are not the same, see whether they are compatible.  This
     (for example) allows coalescing when the types are fundamentally the
     same, but just have different names.  */
  if (types_compatible_p (t1, t2))
    goto check_modes;

  return false;
}

/* Fill in MAP's partition_to_base_index, with one index for each
   partition of SSA names USED_IN_COPIES and related by CL coalesce
   possibilities.  This must match gimple_can_coalesce_p in the
   optimized case.  */

static void
compute_optimized_partition_bases (var_map map, bitmap used_in_copies,
				   coalesce_list *cl)
{
  int parts = num_var_partitions (map);
  partition tentative = partition_new (parts);

  /* Partition the SSA versions so that, for each coalescible
     pair, both of its members are in the same partition in
     TENTATIVE.  */
  gcc_assert (!cl->sorted);
  coalesce_pair *node;
  coalesce_iterator_type ppi;
  FOR_EACH_PARTITION_PAIR (node, ppi, cl)
    {
      tree v1 = ssa_name (node->first_element);
      int p1 = partition_find (tentative, var_to_partition (map, v1));
      tree v2 = ssa_name (node->second_element);
      int p2 = partition_find (tentative, var_to_partition (map, v2));

      if (p1 == p2)
	continue;

      partition_union (tentative, p1, p2);
    }

  /* We have to deal with cost one pairs too.  */
  for (cost_one_pair *co = cl->cost_one_list; co; co = co->next)
    {
      tree v1 = ssa_name (co->first_element);
      int p1 = partition_find (tentative, var_to_partition (map, v1));
      tree v2 = ssa_name (co->second_element);
      int p2 = partition_find (tentative, var_to_partition (map, v2));

      if (p1 == p2)
	continue;

      partition_union (tentative, p1, p2);
    }

  /* And also with abnormal edges.  */
  basic_block bb;
  edge e;
  unsigned i;
  edge_iterator ei;
  for (i = 0; map->vec_bbs.iterate (i, &bb); ++i)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (e->flags & EDGE_ABNORMAL)
	  {
	    gphi_iterator gsi;
	    for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
		 gsi_next (&gsi))
	      {
		gphi *phi = gsi.phi ();
		tree res = PHI_RESULT (phi);
		if (virtual_operand_p (res))
		  continue;
		tree arg = PHI_ARG_DEF (phi, e->dest_idx);
		if (SSA_NAME_IS_DEFAULT_DEF (arg)
		    && (!SSA_NAME_VAR (arg)
			|| TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
		  continue;

		int p1 = partition_find (tentative, var_to_partition (map, res));
		int p2 = partition_find (tentative, var_to_partition (map, arg));

		if (p1 == p2)
		  continue;

		partition_union (tentative, p1, p2);
	      }
	  }
    }

  map->partition_to_base_index = XCNEWVEC (int, parts);
  auto_vec<unsigned int> index_map (parts);
  if (parts)
    index_map.quick_grow (parts);

  const unsigned no_part = -1;
  unsigned count = parts;
  while (count)
    index_map[--count] = no_part;

  /* Initialize MAP's mapping from partition to base index, using
     as base indices an enumeration of the TENTATIVE partitions in
     which each SSA version ended up, so that we compute conflicts
     between all SSA versions that ended up in the same potential
     coalesce partition.  */
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
    {
      int pidx = var_to_partition (map, ssa_name (i));
      int base = partition_find (tentative, pidx);
      if (index_map[base] != no_part)
	continue;
      index_map[base] = count++;
    }

  map->num_basevars = count;

  EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
    {
      int pidx = var_to_partition (map, ssa_name (i));
      int base = partition_find (tentative, pidx);
      gcc_assert (index_map[base] < count);
      map->partition_to_base_index[pidx] = index_map[base];
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_part_var_map (dump_file, tentative, map);

  partition_delete (tentative);
}

/* Given an initial var_map MAP, coalesce variables and return a partition map
   with the resulting coalesce.  Note that this function is called in either
   live range computation context or out-of-ssa context, indicated by MAP.  */

extern void
coalesce_ssa_name (var_map map)
{
  tree_live_info_p liveinfo;
  ssa_conflicts *graph;
  coalesce_list *cl;
  auto_bitmap used_in_copies;

  bitmap_tree_view (used_in_copies);
  cl = create_coalesce_list_for_region (map, used_in_copies);
  if (map->outofssa_p)
    populate_coalesce_list_for_outofssa (cl, used_in_copies);
  bitmap_list_view (used_in_copies);

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_var_map (dump_file, map);

  partition_view_bitmap (map, used_in_copies);

  compute_optimized_partition_bases (map, used_in_copies, cl);

  if (num_var_partitions (map) < 1)
    {
      delete_coalesce_list (cl);
      return;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_var_map (dump_file, map);

  liveinfo = calculate_live_ranges (map, false);

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);

  /* Build a conflict graph.  */
  graph = build_ssa_conflict_graph (liveinfo);
  delete_tree_live_info (liveinfo);
  if (dump_file && (dump_flags & TDF_DETAILS))
    ssa_conflicts_dump (dump_file, graph);

  sort_coalesce_list (cl, graph, map);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nAfter sorting:\n");
      dump_coalesce_list (dump_file, cl);
    }

  /* First, coalesce all live on entry variables to their base variable.
     This will ensure the first use is coming from the correct location.  */

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_var_map (dump_file, map);

  /* Now coalesce everything in the list.  */
  coalesce_partitions (map, graph, cl,
		       ((dump_flags & TDF_DETAILS) ? dump_file : NULL));

  delete_coalesce_list (cl);
  ssa_conflicts_delete (graph);
}