Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/* Copyright (C) 2007-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "bid_internal.h"

/*****************************************************************************
 *  BID64 nextup
 ****************************************************************************/

#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextup (UINT64 * pres,
	      UINT64 *
	      px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  UINT64 x = *px;
#else
UINT64
bid64_nextup (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
	      _EXC_INFO_PARAM) {
#endif

  UINT64 res;
  UINT64 x_sign;
  UINT64 x_exp;
  BID_UI64DOUBLE tmp1;
  int x_nr_bits;
  int q1, ind;
  UINT64 C1;			// C1 represents x_signif (UINT64)

  // check for NaNs and infinities
  if ((x & MASK_NAN) == MASK_NAN) {	// check for NaN
    if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
      x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
    else
      x = x & 0xfe03ffffffffffffull;	// clear G6-G12
    if ((x & MASK_SNAN) == MASK_SNAN) {	// SNaN
      // set invalid flag
      *pfpsf |= INVALID_EXCEPTION;
      // return quiet (SNaN)
      res = x & 0xfdffffffffffffffull;
    } else {	// QNaN
      res = x;
    }
    BID_RETURN (res);
  } else if ((x & MASK_INF) == MASK_INF) {	// check for Infinity
    if (!(x & 0x8000000000000000ull)) {	// x is +inf
      res = 0x7800000000000000ull;
    } else {	// x is -inf
      res = 0xf7fb86f26fc0ffffull;	// -MAXFP = -999...99 * 10^emax
    }
    BID_RETURN (res);
  }
  // unpack the argument
  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
    if (C1 > 9999999999999999ull) {	// non-canonical
      x_exp = 0;
      C1 = 0;
    }
  } else {
    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
    C1 = x & MASK_BINARY_SIG1;
  }

  // check for zeros (possibly from non-canonical values)
  if (C1 == 0x0ull) {
    // x is 0
    res = 0x0000000000000001ull;	// MINFP = 1 * 10^emin
  } else {	// x is not special and is not zero
    if (x == 0x77fb86f26fc0ffffull) {
      // x = +MAXFP = 999...99 * 10^emax
      res = 0x7800000000000000ull;	// +inf
    } else if (x == 0x8000000000000001ull) {
      // x = -MINFP = 1...99 * 10^emin
      res = 0x8000000000000000ull;	// -0
    } else {	// -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
      // can add/subtract 1 ulp to the significand

      // Note: we could check here if x >= 10^16 to speed up the case q1 =16 
      // q1 = nr. of decimal digits in x (1 <= q1 <= 54)
      //  determine first the nr. of bits in x
      if (C1 >= MASK_BINARY_OR2) {	// x >= 2^53
	// split the 64-bit value in two 32-bit halves to avoid rounding errors
	if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
	  tmp1.d = (double) (C1 >> 32);	// exact conversion
	  x_nr_bits =
	    33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
	} else {	// x < 2^32
	  tmp1.d = (double) C1;	// exact conversion
	  x_nr_bits =
	    1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
	}
      } else {	// if x < 2^53
	tmp1.d = (double) C1;	// exact conversion
	x_nr_bits =
	  1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
      }
      q1 = nr_digits[x_nr_bits - 1].digits;
      if (q1 == 0) {
	q1 = nr_digits[x_nr_bits - 1].digits1;
	if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
	  q1++;
      }
      // if q1 < P16 then pad the significand with zeros
      if (q1 < P16) {
	if (x_exp > (UINT64) (P16 - q1)) {
	  ind = P16 - q1;	// 1 <= ind <= P16 - 1
	  // pad with P16 - q1 zeros, until exponent = emin
	  // C1 = C1 * 10^ind
	  C1 = C1 * ten2k64[ind];
	  x_exp = x_exp - ind;
	} else {	// pad with zeros until the exponent reaches emin
	  ind = x_exp;
	  C1 = C1 * ten2k64[ind];
	  x_exp = EXP_MIN;
	}
      }
      if (!x_sign) {	// x > 0
	// add 1 ulp (add 1 to the significand)
	C1++;
	if (C1 == 0x002386f26fc10000ull) {	// if  C1 = 10^16
	  C1 = 0x00038d7ea4c68000ull;	// C1 = 10^15
	  x_exp++;
	}
	// Ok, because MAXFP = 999...99 * 10^emax was caught already
      } else {	// x < 0
	// subtract 1 ulp (subtract 1 from the significand)
	C1--;
	if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) {	// if  C1 = 10^15 - 1
	  C1 = 0x002386f26fc0ffffull;	// C1 = 10^16 - 1
	  x_exp--;
	}
      }
      // assemble the result
      // if significand has 54 bits
      if (C1 & MASK_BINARY_OR2) {
	res =
	  x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
							 MASK_BINARY_SIG2);
      } else {	// significand fits in 53 bits
	res = x_sign | (x_exp << 53) | C1;
      }
    }	// end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
  }	// end x is not special and is not zero
  BID_RETURN (res);
}

/*****************************************************************************
 *  BID64 nextdown
 ****************************************************************************/

#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextdown (UINT64 * pres,
		UINT64 *
		px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  UINT64 x = *px;
#else
UINT64
bid64_nextdown (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		_EXC_INFO_PARAM) {
#endif

  UINT64 res;
  UINT64 x_sign;
  UINT64 x_exp;
  BID_UI64DOUBLE tmp1;
  int x_nr_bits;
  int q1, ind;
  UINT64 C1;			// C1 represents x_signif (UINT64)

  // check for NaNs and infinities
  if ((x & MASK_NAN) == MASK_NAN) {	// check for NaN 
    if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
      x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits 
    else
      x = x & 0xfe03ffffffffffffull;	// clear G6-G12 
    if ((x & MASK_SNAN) == MASK_SNAN) {	// SNaN 
      // set invalid flag
      *pfpsf |= INVALID_EXCEPTION;
      // return quiet (SNaN)
      res = x & 0xfdffffffffffffffull;
    } else {	// QNaN 
      res = x;
    }
    BID_RETURN (res);
  } else if ((x & MASK_INF) == MASK_INF) {	// check for Infinity
    if (x & 0x8000000000000000ull) {	// x is -inf
      res = 0xf800000000000000ull;
    } else {	// x is +inf
      res = 0x77fb86f26fc0ffffull;	// +MAXFP = +999...99 * 10^emax
    }
    BID_RETURN (res);
  }
  // unpack the argument
  x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
  // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
  if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
    x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
    C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
    if (C1 > 9999999999999999ull) {	// non-canonical
      x_exp = 0;
      C1 = 0;
    }
  } else {
    x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
    C1 = x & MASK_BINARY_SIG1;
  }

  // check for zeros (possibly from non-canonical values)
  if (C1 == 0x0ull) {
    // x is 0
    res = 0x8000000000000001ull;	// -MINFP = -1 * 10^emin
  } else {	// x is not special and is not zero
    if (x == 0xf7fb86f26fc0ffffull) {
      // x = -MAXFP = -999...99 * 10^emax
      res = 0xf800000000000000ull;	// -inf
    } else if (x == 0x0000000000000001ull) {
      // x = +MINFP = 1...99 * 10^emin
      res = 0x0000000000000000ull;	// -0
    } else {	// -MAXFP + 1ulp <= x <= -MINFP OR MINFP + 1 ulp <= x <= MAXFP
      // can add/subtract 1 ulp to the significand

      // Note: we could check here if x >= 10^16 to speed up the case q1 =16 
      // q1 = nr. of decimal digits in x (1 <= q1 <= 16)
      //  determine first the nr. of bits in x
      if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
	// split the 64-bit value in two 32-bit halves to avoid 
	// rounding errors
	if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
	  tmp1.d = (double) (C1 >> 32);	// exact conversion
	  x_nr_bits =
	    33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
	} else {	// x < 2^32
	  tmp1.d = (double) C1;	// exact conversion
	  x_nr_bits =
	    1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
	}
      } else {	// if x < 2^53
	tmp1.d = (double) C1;	// exact conversion
	x_nr_bits =
	  1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
      }
      q1 = nr_digits[x_nr_bits - 1].digits;
      if (q1 == 0) {
	q1 = nr_digits[x_nr_bits - 1].digits1;
	if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
	  q1++;
      }
      // if q1 < P16 then pad the significand with zeros
      if (q1 < P16) {
	if (x_exp > (UINT64) (P16 - q1)) {
	  ind = P16 - q1;	// 1 <= ind <= P16 - 1
	  // pad with P16 - q1 zeros, until exponent = emin
	  // C1 = C1 * 10^ind
	  C1 = C1 * ten2k64[ind];
	  x_exp = x_exp - ind;
	} else {	// pad with zeros until the exponent reaches emin
	  ind = x_exp;
	  C1 = C1 * ten2k64[ind];
	  x_exp = EXP_MIN;
	}
      }
      if (x_sign) {	// x < 0
	// add 1 ulp (add 1 to the significand)
	C1++;
	if (C1 == 0x002386f26fc10000ull) {	// if  C1 = 10^16
	  C1 = 0x00038d7ea4c68000ull;	// C1 = 10^15
	  x_exp++;
	  // Ok, because -MAXFP = -999...99 * 10^emax was caught already
	}
      } else {	// x > 0
	// subtract 1 ulp (subtract 1 from the significand)
	C1--;
	if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) {	// if  C1 = 10^15 - 1
	  C1 = 0x002386f26fc0ffffull;	// C1 = 10^16 - 1
	  x_exp--;
	}
      }
      // assemble the result
      // if significand has 54 bits
      if (C1 & MASK_BINARY_OR2) {
	res =
	  x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
							 MASK_BINARY_SIG2);
      } else {	// significand fits in 53 bits
	res = x_sign | (x_exp << 53) | C1;
      }
    }	// end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
  }	// end x is not special and is not zero
  BID_RETURN (res);
}

/*****************************************************************************
 *  BID64 nextafter
 ****************************************************************************/

#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextafter (UINT64 * pres, UINT64 * px,
		 UINT64 *
		 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  UINT64 x = *px;
  UINT64 y = *py;
#else
UINT64
bid64_nextafter (UINT64 x,
		 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		 _EXC_INFO_PARAM) {
#endif

  UINT64 res;
  UINT64 tmp1, tmp2;
  FPSC tmp_fpsf = 0;		// dummy fpsf for calls to comparison functions
  int res1, res2;

  // check for NaNs or infinities
  if (((x & MASK_SPECIAL) == MASK_SPECIAL) ||
      ((y & MASK_SPECIAL) == MASK_SPECIAL)) {
    // x is NaN or infinity or y is NaN or infinity

    if ((x & MASK_NAN) == MASK_NAN) {	// x is NAN
      if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
	x = x & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
      else
	x = x & 0xfe03ffffffffffffull;	// clear G6-G12
      if ((x & MASK_SNAN) == MASK_SNAN) {	// x is SNAN
	// set invalid flag
	*pfpsf |= INVALID_EXCEPTION;
	// return quiet (x)
	res = x & 0xfdffffffffffffffull;
      } else {	// x is QNaN
	if ((y & MASK_SNAN) == MASK_SNAN) {	// y is SNAN
	  // set invalid flag
	  *pfpsf |= INVALID_EXCEPTION;
	}
	// return x
	res = x;
      }
      BID_RETURN (res);
    } else if ((y & MASK_NAN) == MASK_NAN) {	// y is NAN
      if ((y & 0x0003ffffffffffffull) > 999999999999999ull)
	y = y & 0xfe00000000000000ull;	// clear G6-G12 and the payload bits
      else
	y = y & 0xfe03ffffffffffffull;	// clear G6-G12
      if ((y & MASK_SNAN) == MASK_SNAN) {	// y is SNAN
	// set invalid flag
	*pfpsf |= INVALID_EXCEPTION;
	// return quiet (y)
	res = y & 0xfdffffffffffffffull;
      } else {	// y is QNaN
	// return y
	res = y;
      }
      BID_RETURN (res);
    } else {	// at least one is infinity
      if ((x & MASK_ANY_INF) == MASK_INF) {	// x = inf
	x = x & (MASK_SIGN | MASK_INF);
      }
      if ((y & MASK_ANY_INF) == MASK_INF) {	// y = inf
	y = y & (MASK_SIGN | MASK_INF);
      }
    }
  }
  // neither x nor y is NaN

  // if not infinity, check for non-canonical values x (treated as zero)
  if ((x & MASK_ANY_INF) != MASK_INF) {	// x != inf
    // unpack x
    if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
      // if the steering bits are 11 (condition will be 0), then
      // the exponent is G[0:w+1]
      if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
	  9999999999999999ull) {
	// non-canonical
	x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
      }
    } else {	// if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS) x is unch.
      ;	// canonical
    }
  }
  // no need to check for non-canonical y

  // neither x nor y is NaN
  tmp_fpsf = *pfpsf;	// save fpsf
#if DECIMAL_CALL_BY_REFERENCE
  bid64_quiet_equal (&res1, px,
		     py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
  bid64_quiet_greater (&res2, px,
		       py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
  res1 =
    bid64_quiet_equal (x,
		       y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
  res2 =
    bid64_quiet_greater (x,
			 y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
  *pfpsf = tmp_fpsf;	// restore fpsf
  if (res1) {	// x = y
    // return x with the sign of y
    res = (y & 0x8000000000000000ull) | (x & 0x7fffffffffffffffull);
  } else if (res2) {	// x > y
#if DECIMAL_CALL_BY_REFERENCE
    bid64_nextdown (&res,
		    px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
    res =
      bid64_nextdown (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
  } else {	// x < y
#if DECIMAL_CALL_BY_REFERENCE
    bid64_nextup (&res, px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
    res = bid64_nextup (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
  }
  // if the operand x is finite but the result is infinite, signal
  // overflow and inexact
  if (((x & MASK_INF) != MASK_INF) && ((res & MASK_INF) == MASK_INF)) {
    // set the inexact flag
    *pfpsf |= INEXACT_EXCEPTION;
    // set the overflow flag
    *pfpsf |= OVERFLOW_EXCEPTION;
  }
  // if the result is in (-10^emin, 10^emin), and is different from the
  // operand x, signal underflow and inexact 
  tmp1 = 0x00038d7ea4c68000ull;	// +100...0[16] * 10^emin
  tmp2 = res & 0x7fffffffffffffffull;
  tmp_fpsf = *pfpsf;	// save fpsf
#if DECIMAL_CALL_BY_REFERENCE
  bid64_quiet_greater (&res1, &tmp1,
		       &tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
		       _EXC_INFO_ARG);
  bid64_quiet_not_equal (&res2, &x,
			 &res _EXC_FLAGS_ARG _EXC_MASKS_ARG
			 _EXC_INFO_ARG);
#else
  res1 =
    bid64_quiet_greater (tmp1,
			 tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
			 _EXC_INFO_ARG);
  res2 =
    bid64_quiet_not_equal (x,
			   res _EXC_FLAGS_ARG _EXC_MASKS_ARG
			   _EXC_INFO_ARG);
#endif
  *pfpsf = tmp_fpsf;	// restore fpsf
  if (res1 && res2) {
    // if (bid64_quiet_greater (tmp1, tmp2, &tmp_fpsf) &&
    // bid64_quiet_not_equal (x, res, &tmp_fpsf)) {
    // set the inexact flag
    *pfpsf |= INEXACT_EXCEPTION;
    // set the underflow flag
    *pfpsf |= UNDERFLOW_EXCEPTION;
  }
  BID_RETURN (res);
}