Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/* mips16 floating point support code
   Copyright (C) 1996-2020 Free Software Foundation, Inc.
   Contributed by Cygnus Support

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* An executable stack is *not* required for these functions.  */
#include "gnustack.h"

#include "auto-host.h"

#if defined(__mips_micromips) || defined(__mips_soft_float) \
    || __mips_isa_rev >= 6
  /* Do nothing because this code is only needed when linking
     against mips16 hard-float objects.  Neither micromips code
     nor soft-float nor MIPS R6 code can be linked against mips16
     hard-float objects so we do not need these routines when
     building libgcc for those cases.  */
#else

#if defined(HAVE_AS_MODULE)
#if __mips_fpr == 32
	.module fp=32
#elif __mips_fpr == 0
	.module fp=xx
#elif __mips_fpr == 64
	.module fp=64
#endif
#endif

/* This file contains mips16 floating point support functions.  These
   functions are called by mips16 code to handle floating point when
   -msoft-float is not used.  They accept the arguments and return
   values using the soft-float calling convention, but do the actual
   operation using the hard floating point instructions.  */

#if defined _MIPS_SIM && (_MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIO64)

/* This file contains 32-bit assembly code.  */
	.set nomips16

/* Start a function.  */

#define STARTFN(NAME) .globl NAME; .ent NAME; NAME:

/* Finish a function.  */

#define ENDFN(NAME) .end NAME

/* ARG1
	The FPR that holds the first floating-point argument.

   ARG2
	The FPR that holds the second floating-point argument.

   RET
	The FPR that holds a floating-point return value.  */

#define RET $f0
#define ARG1 $f12
#ifdef __mips64
#define ARG2 $f13
#else
#define ARG2 $f14
#endif

/* Set 64-bit register GPR so that its high 32 bits contain HIGH_FPR
   and so that its low 32 bits contain LOW_FPR.  */
#define MERGE_GPRf(GPR, HIGH_FPR, LOW_FPR)	\
	.set	noat;				\
	mfc1	$1, LOW_FPR;			\
	mfc1	GPR, HIGH_FPR;			\
	dsll	$1, $1, 32;			\
	dsll	GPR, GPR, 32;			\
	dsrl	$1, $1, 32;			\
	or	GPR, GPR, $1;			\
	.set	at

/* Move the high 32 bits of GPR to HIGH_FPR and the low 32 bits of
   GPR to LOW_FPR.  */
#define MERGE_GPRt(GPR, HIGH_FPR, LOW_FPR)	\
	.set	noat;				\
	dsrl	$1, GPR, 32;			\
	mtc1	GPR, LOW_FPR;			\
	mtc1	$1, HIGH_FPR;			\
	.set	at

/* Jump to T, and use "OPCODE, OP2" to implement a delayed move.  */
#define DELAYt(T, OPCODE, OP2)			\
	.set	noreorder;			\
	jr	T;				\
	OPCODE, OP2;				\
	.set	reorder

#if __mips >= 4
/* Coprocessor moves are interlocked from the MIPS IV ISA up.  */
#define DELAYf(T, OPCODE, OP2) DELAYt (T, OPCODE, OP2)
#else
/* Use "OPCODE. OP2" and jump to T.  */
#define DELAYf(T, OPCODE, OP2) OPCODE, OP2; jr T
#endif

/* MOVE_SF_BYTE0(D)
	Move the first single-precision floating-point argument between
	GPRs and FPRs.

   MOVE_SI_BYTE0(D)
	Likewise the first single-precision integer argument.

   MOVE_SF_BYTE4(D)
	Move the second single-precision floating-point argument between
	GPRs and FPRs, given that the first argument occupies 4 bytes.

   MOVE_SF_BYTE8(D)
	Move the second single-precision floating-point argument between
	GPRs and FPRs, given that the first argument occupies 8 bytes.

   MOVE_DF_BYTE0(D)
	Move the first double-precision floating-point argument between
	GPRs and FPRs.

   MOVE_DF_BYTE8(D)
	Likewise the second double-precision floating-point argument.

   MOVE_SF_RET(D, T)
	Likewise a single-precision floating-point return value,
	then jump to T.

   MOVE_SC_RET(D, T)
	Likewise a complex single-precision floating-point return value.

   MOVE_DF_RET(D, T)
	Likewise a double-precision floating-point return value.

   MOVE_DC_RET(D, T)
	Likewise a complex double-precision floating-point return value.

   MOVE_SI_RET(D, T)
	Likewise a single-precision integer return value.

   The D argument is "t" to move to FPRs and "f" to move from FPRs.
   The return macros may assume that the target of the jump does not
   use a floating-point register.  */

#define MOVE_SF_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
#define MOVE_SI_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)

#if defined(__mips64) && defined(__MIPSEB__)
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f0, $f1); jr T
#elif defined(__mips64)
/* The high 32 bits of $2 correspond to the second word in memory;
   i.e. the imaginary part.  */
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f1, $f0); jr T
#else
#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f2)
#endif

#if defined(__mips64)
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f13
#define MOVE_SF_BYTE8(D) m##D##c1 $5,$f13
#else
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f14
#define MOVE_SF_BYTE8(D) m##D##c1 $6,$f14
#endif
#define MOVE_SI_BYTE0(D) MOVE_SF_BYTE0(D)

#if defined(__mips64)
#define MOVE_DF_BYTE0(D) dm##D##c1 $4,$f12
#define MOVE_DF_BYTE8(D) dm##D##c1 $5,$f13
#define MOVE_DF_RET(D, T) DELAY##D (T, dm##D##c1 $2,$f0)
#define MOVE_DC_RET(D, T) dm##D##c1 $3,$f1; MOVE_DF_RET (D, T)
#elif __mips_fpr != 32 && __mips_isa_rev >= 2 && defined(__MIPSEB__)
#define MOVE_DF_BYTE0(D) m##D##c1 $5,$f12; m##D##hc1 $4,$f12
#define MOVE_DF_BYTE8(D) m##D##c1 $7,$f14; m##D##hc1 $6,$f14
#define MOVE_DF_RET(D, T) m##D##c1 $3,$f0; DELAY##D (T, m##D##hc1 $2,$f0)
#define MOVE_DC_RET(D, T) m##D##c1 $5,$f2; m##D##hc1 $4,$f2; MOVE_DF_RET (D, T)
#elif __mips_fpr != 32 && __mips_isa_rev >= 2
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##hc1 $5,$f12
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##hc1 $7,$f14
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##hc1 $3,$f0)
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##hc1 $5,$f2; MOVE_DF_RET (D, T)
#elif __mips_fpr == 0
#define MOVE_DF_BYTE0t sw $4, 0($29); sw $5, 4($29); ldc1 $f12, 0($29)
#define MOVE_DF_BYTE0f sdc1 $f12, 0($29); lw $4, 0($29); lw $5, 4($29)
#define MOVE_DF_BYTE0(D) MOVE_DF_BYTE0##D
#define MOVE_DF_BYTE8t sw $6, 8($29); sw $7, 12($29); ldc1 $f14, 8($29)
#define MOVE_DF_BYTE8f sdc1 $f14, 8($29); lw $6, 8($29); lw $7, 12($29)
#define MOVE_DF_BYTE8(D) MOVE_DF_BYTE8##D
#define MOVE_DF_RETt(T) sw $2, 0($29); sw $3, 4($29); DELAYt (T, ldc1 $f0, 0($29))
#define MOVE_DF_RETf(T) sdc1 $f0, 0($29); lw $2, 0($29); DELAYf (T, lw $3, 4($29))
#define MOVE_DF_RET(D, T) MOVE_DF_RET##D(T)
#define MOVE_DC_RETt(T) sw $4, 8($29); sw $5, 12($29); ldc1 $f2, 8($29); MOVE_DF_RETt(T)
#define MOVE_DC_RETf(T) sdc1 $f2, 8($29); lw $4, 8($29); lw $5, 12($29); MOVE_DF_RETf(T)
#define MOVE_DC_RET(D, T) MOVE_DF_RET##D(T)
#elif defined(__MIPSEB__)
/* FPRs are little-endian.  */
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f13; m##D##c1 $5,$f12
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f15; m##D##c1 $7,$f14
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f1; DELAY##D (T, m##D##c1 $3,$f0)
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f3; m##D##c1 $5,$f2; MOVE_DF_RET (D, T)
#else
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##c1 $5,$f13
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##c1 $7,$f15
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##c1 $5,$f3; MOVE_DF_RET (D, T)
#endif

/* Single-precision math.  */

/* Define a function NAME that loads two single-precision values,
   performs FPU operation OPCODE on them, and returns the single-
   precision result.  */

#define OPSF3(NAME, OPCODE)	\
STARTFN (NAME);			\
	MOVE_SF_BYTE0 (t);	\
	MOVE_SF_BYTE4 (t);	\
	OPCODE	RET,ARG1,ARG2;	\
	MOVE_SF_RET (f, $31);	\
	ENDFN (NAME)

#ifdef L_m16addsf3
OPSF3 (mips16_addsf3, __add.s)
#endif
#ifdef L_m16subsf3
OPSF3 (mips16_subsf3, __sub.s)
#endif
#ifdef L_m16mulsf3
OPSF3 (mips16_mulsf3, __mul.s)
#endif
#ifdef L_m16divsf3
OPSF3 (mips16_divsf3, __div.s)
#endif

/* Define a function NAME that loads a single-precision value,
   performs FPU operation OPCODE on it, and returns the single-
   precision result.  */

#define OPSF2(NAME, OPCODE)	\
STARTFN (NAME);			\
	MOVE_SF_BYTE0 (t);	\
	OPCODE	RET,ARG1;	\
	MOVE_SF_RET (f, $31);	\
	ENDFN (NAME)

#ifdef L_m16negsf2
OPSF2 (mips16_negsf2, __neg.s)
#endif
#ifdef L_m16abssf2
OPSF2 (mips16_abssf2, __abs.s)
#endif

/* Single-precision comparisons.  */

/* Define a function NAME that loads two single-precision values,
   performs floating point comparison OPCODE, and returns TRUE or
   FALSE depending on the result.  */

#define CMPSF(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	MOVE_SF_BYTE0 (t);			\
	MOVE_SF_BYTE4 (t);			\
	OPCODE	ARG1,ARG2;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

/* Like CMPSF, but reverse the comparison operands.  */

#define REVCMPSF(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	MOVE_SF_BYTE0 (t);			\
	MOVE_SF_BYTE4 (t);			\
	OPCODE	ARG2,ARG1;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

#ifdef L_m16eqsf2
CMPSF (__mips16_eqsf2, c.eq.s, 0, 1)
#endif
#ifdef L_m16nesf2
CMPSF (__mips16_nesf2, c.eq.s, 0, 1)
#endif
#ifdef L_m16gtsf2
REVCMPSF (__mips16_gtsf2, c.lt.s, 1, 0)
#endif
#ifdef L_m16gesf2
REVCMPSF (__mips16_gesf2, c.le.s, 0, -1)
#endif
#ifdef L_m16lesf2
CMPSF (__mips16_lesf2, c.le.s, 0, 1)
#endif
#ifdef L_m16ltsf2
CMPSF (__mips16_ltsf2, c.lt.s, -1, 0)
#endif
#ifdef L_m16unordsf2
CMPSF(__mips16_unordsf2, c.un.s, 1, 0)
#endif


/* Single-precision conversions.  */

#ifdef L_m16fltsisf
STARTFN (__mips16_floatsisf)
	MOVE_SF_BYTE0 (t)
	cvt.s.w	RET,ARG1
	MOVE_SF_RET (f, $31)
	ENDFN (__mips16_floatsisf)
#endif

#ifdef L_m16fltunsisf
STARTFN (__mips16_floatunsisf)
	.set	noreorder
	bltz	$4,1f
	MOVE_SF_BYTE0 (t)
	.set	reorder
	cvt.s.w	RET,ARG1
	MOVE_SF_RET (f, $31)
1:		
	and	$2,$4,1
	srl	$3,$4,1
	or	$2,$2,$3
	mtc1	$2,RET
	cvt.s.w	RET,RET
	add.s	RET,RET,RET
	MOVE_SF_RET (f, $31)
	ENDFN (__mips16_floatunsisf)
#endif
	
#ifdef L_m16fix_truncsfsi
STARTFN (__mips16_fix_truncsfsi)
	MOVE_SF_BYTE0 (t)
	trunc.w.s RET,ARG1,$4
	MOVE_SI_RET (f, $31)
	ENDFN (__mips16_fix_truncsfsi)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)

/* Double-precision math.  */

/* Define a function NAME that loads two double-precision values,
   performs FPU operation OPCODE on them, and returns the double-
   precision result.  */

#define OPDF3(NAME, OPCODE)	\
STARTFN (NAME);			\
	MOVE_DF_BYTE0 (t);	\
	MOVE_DF_BYTE8 (t);	\
	OPCODE RET,ARG1,ARG2;	\
	MOVE_DF_RET (f, $31);	\
	ENDFN (NAME)

#ifdef L_m16adddf3
OPDF3 (mips16_adddf3, __add.d)
#endif
#ifdef L_m16subdf3
OPDF3 (mips16_subdf3, __sub.d)
#endif
#ifdef L_m16muldf3
OPDF3 (mips16_muldf3, __mul.d)
#endif
#ifdef L_m16divdf3
OPDF3 (mips16_divdf3, __div.d)
#endif

/* Define a function NAME that loads a double-precision value,
   performs FPU operation OPCODE on it, and returns the double-
   precision result.  */

#define OPDF2(NAME, OPCODE)	\
STARTFN (NAME);			\
	MOVE_DF_BYTE0 (t);	\
	OPCODE RET,ARG1;	\
	MOVE_DF_RET (f, $31);	\
	ENDFN (NAME)

#ifdef L_m16negdf2
OPDF2 (mips16_negdf2, __neg.d)
#endif
#ifdef L_m16absdf2
OPDF2 (mips16_absdf2, __abs.d)
#endif

/* Conversions between single and double precision.  */

#ifdef L_m16extsfdf2
STARTFN (__mips16_extendsfdf2)
	MOVE_SF_BYTE0 (t)
	cvt.d.s	RET,ARG1
	MOVE_DF_RET (f, $31)
	ENDFN (__mips16_extendsfdf2)
#endif

#ifdef L_m16trdfsf2
STARTFN (__mips16_truncdfsf2)
	MOVE_DF_BYTE0 (t)
	cvt.s.d	RET,ARG1
	MOVE_SF_RET (f, $31)
	ENDFN (__mips16_truncdfsf2)
#endif

/* Double-precision comparisons.  */

/* Define a function NAME that loads two double-precision values,
   performs floating point comparison OPCODE, and returns TRUE or
   FALSE depending on the result.  */

#define CMPDF(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	MOVE_DF_BYTE0 (t);			\
	MOVE_DF_BYTE8 (t);			\
	OPCODE	ARG1,ARG2;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

/* Like CMPDF, but reverse the comparison operands.  */

#define REVCMPDF(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	MOVE_DF_BYTE0 (t);			\
	MOVE_DF_BYTE8 (t);			\
	OPCODE	ARG2,ARG1;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

#ifdef L_m16eqdf2
CMPDF (__mips16_eqdf2, c.eq.d, 0, 1)
#endif
#ifdef L_m16nedf2
CMPDF (__mips16_nedf2, c.eq.d, 0, 1)
#endif
#ifdef L_m16gtdf2
REVCMPDF (__mips16_gtdf2, c.lt.d, 1, 0)
#endif
#ifdef L_m16gedf2
REVCMPDF (__mips16_gedf2, c.le.d, 0, -1)
#endif
#ifdef L_m16ledf2
CMPDF (__mips16_ledf2, c.le.d, 0, 1)
#endif
#ifdef L_m16ltdf2
CMPDF (__mips16_ltdf2, c.lt.d, -1, 0)
#endif
#ifdef L_m16unorddf2
CMPDF(__mips16_unorddf2, c.un.d, 1, 0)
#endif

/* Double-precision conversions.  */

#ifdef L_m16fltsidf
STARTFN (__mips16_floatsidf)
	MOVE_SI_BYTE0 (t)
	cvt.d.w	RET,ARG1
	MOVE_DF_RET (f, $31)
	ENDFN (__mips16_floatsidf)
#endif
	
#ifdef L_m16fltunsidf
STARTFN (__mips16_floatunsidf)
	MOVE_SI_BYTE0 (t)
	cvt.d.w RET,ARG1
	bgez	$4,1f
	li.d	ARG1, 4.294967296e+9
	add.d	RET, RET, ARG1
1:	MOVE_DF_RET (f, $31)
	ENDFN (__mips16_floatunsidf)
#endif
	
#ifdef L_m16fix_truncdfsi
STARTFN (__mips16_fix_truncdfsi)
	MOVE_DF_BYTE0 (t)
	trunc.w.d RET,ARG1,$4
	MOVE_SI_RET (f, $31)
	ENDFN (__mips16_fix_truncdfsi)
#endif
#endif /* !__mips_single_float */

/* We don't export stubs from libgcc_s.so and always require static
   versions to be pulled from libgcc.a as needed because they use $2
   and possibly $3 as arguments, diverging from the standard SysV ABI,
   and as such would require severe pessimisation of MIPS16 PLT entries
   just for this single special case.

   For compatibility with old binaries that used safe standard MIPS PLT
   entries and referred to these functions we still export them at
   version GCC_4.4.0 for run-time loading only.  */

#ifdef SHARED
#define CE_STARTFN(NAME)			\
STARTFN (NAME##_compat);			\
	.symver NAME##_compat, NAME@GCC_4.4.0
#define CE_ENDFN(NAME) ENDFN (NAME##_compat)
#else
#define CE_STARTFN(NAME)			\
STARTFN (NAME);					\
	.hidden NAME
#define CE_ENDFN(NAME) ENDFN (NAME)
#endif

/* Define a function NAME that moves a return value of mode MODE from
   FPRs to GPRs.  */

#define RET_FUNCTION(NAME, MODE)	\
CE_STARTFN (NAME);			\
	MOVE_##MODE##_RET (t, $31);	\
	CE_ENDFN (NAME)

#ifdef L_m16retsf
RET_FUNCTION (mips16_ret_sf, __SF)
#endif

#ifdef L_m16retsc
RET_FUNCTION (mips16_ret_sc, __SC)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16retdf
RET_FUNCTION (mips16_ret_df, __DF)
#endif

#ifdef L_m16retdc
RET_FUNCTION (mips16_ret_dc, __DC)
#endif
#endif /* !__mips_single_float */

/* STUB_ARGS_X copies the arguments from GPRs to FPRs for argument
   code X.  X is calculated as ARG1 + ARG2 * 4, where ARG1 and ARG2
   classify the first and second arguments as follows:

	1: a single-precision argument
	2: a double-precision argument
	0: no argument, or not one of the above.  */

#define STUB_ARGS_0						/* () */
#define STUB_ARGS_1 MOVE_SF_BYTE0 (t)				/* (sf) */
#define STUB_ARGS_5 MOVE_SF_BYTE0 (t); MOVE_SF_BYTE4 (t)	/* (sf, sf) */
#define STUB_ARGS_9 MOVE_SF_BYTE0 (t); MOVE_DF_BYTE8 (t)	/* (sf, df) */
#define STUB_ARGS_2 MOVE_DF_BYTE0 (t)				/* (df) */
#define STUB_ARGS_6 MOVE_DF_BYTE0 (t); MOVE_SF_BYTE8 (t)	/* (df, sf) */
#define STUB_ARGS_10 MOVE_DF_BYTE0 (t); MOVE_DF_BYTE8 (t)	/* (df, df) */

/* These functions are used by 16-bit code when calling via a function
   pointer.  They must copy the floating point arguments from the GPRs
   to FPRs and then call function $2.  */

#define CALL_STUB_NO_RET(NAME, CODE)	\
CE_STARTFN (NAME);			\
	STUB_ARGS_##CODE;		\
	.set	noreorder;		\
	jr	$2;			\
	move	$25,$2;			\
	.set	reorder;		\
	CE_ENDFN (NAME)

#ifdef L_m16stub1
CALL_STUB_NO_RET (__mips16_call_stub_1, 1)
#endif

#ifdef L_m16stub5
CALL_STUB_NO_RET (__mips16_call_stub_5, 5)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)

#ifdef L_m16stub2
CALL_STUB_NO_RET (__mips16_call_stub_2, 2)
#endif

#ifdef L_m16stub6
CALL_STUB_NO_RET (__mips16_call_stub_6, 6)
#endif

#ifdef L_m16stub9
CALL_STUB_NO_RET (__mips16_call_stub_9, 9)
#endif

#ifdef L_m16stub10
CALL_STUB_NO_RET (__mips16_call_stub_10, 10)
#endif
#endif /* !__mips_single_float */

/* Now we have the same set of functions, except that this time the
   function being called returns an SFmode, SCmode, DFmode or DCmode
   value; we need to instantiate a set for each case.  The calling
   function will arrange to preserve $18, so these functions are free
   to use it to hold the return address.

   Note that we do not know whether the function we are calling is 16
   bit or 32 bit.  However, it does not matter, because 16-bit
   functions always return floating point values in both the gp and
   the fp regs.  It would be possible to check whether the function
   being called is 16 bits, in which case the copy is unnecessary;
   however, it's faster to always do the copy.  */

#define CALL_STUB_RET(NAME, CODE, MODE)					\
CE_STARTFN (NAME);							\
	.cfi_startproc;							\
	/* Create a fake CFA 4 bytes below the stack pointer.  */	\
	.cfi_def_cfa 29,-4;						\
	/* "Save" $sp in itself so we don't use the fake CFA.		\
	   This is: DW_CFA_val_expression r29, { DW_OP_reg29 }.  */	\
	.cfi_escape 0x16,29,1,0x6d;					\
	move	$18,$31;						\
	.cfi_register 31,18;						\
	STUB_ARGS_##CODE;						\
	.set	noreorder;						\
	jalr	$2;							\
	move	$25,$2;							\
	.set	reorder;						\
	MOVE_##MODE##_RET (f, $18);					\
	.cfi_endproc;							\
	CE_ENDFN (NAME)

/* First, instantiate the single-float set.  */

#ifdef L_m16stubsf0
CALL_STUB_RET (mips16_call_stub_sf_0, 0, __SF)
#endif

#ifdef L_m16stubsf1
CALL_STUB_RET (mips16_call_stub_sf_1, 1, __SF)
#endif

#ifdef L_m16stubsf5
CALL_STUB_RET (mips16_call_stub_sf_5, 5, __SF)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16stubsf2
CALL_STUB_RET (mips16_call_stub_sf_2, 2, __SF)
#endif

#ifdef L_m16stubsf6
CALL_STUB_RET (mips16_call_stub_sf_6, 6, __SF)
#endif

#ifdef L_m16stubsf9
CALL_STUB_RET (mips16_call_stub_sf_9, 9, __SF)
#endif

#ifdef L_m16stubsf10
CALL_STUB_RET (mips16_call_stub_sf_10, 10, __SF)
#endif
#endif /* !__mips_single_float */


/* Now we have the same set of functions again, except that this time
   the function being called returns an DFmode value.  */

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16stubdf0
CALL_STUB_RET (mips16_call_stub_df_0, 0, __DF)
#endif

#ifdef L_m16stubdf1
CALL_STUB_RET (mips16_call_stub_df_1, 1, __DF)
#endif

#ifdef L_m16stubdf5
CALL_STUB_RET (mips16_call_stub_df_5, 5, __DF)
#endif

#ifdef L_m16stubdf2
CALL_STUB_RET (mips16_call_stub_df_2, 2, __DF)
#endif

#ifdef L_m16stubdf6
CALL_STUB_RET (mips16_call_stub_df_6, 6, __DF)
#endif

#ifdef L_m16stubdf9
CALL_STUB_RET (mips16_call_stub_df_9, 9, __DF)
#endif

#ifdef L_m16stubdf10
CALL_STUB_RET (mips16_call_stub_df_10, 10, __DF)
#endif
#endif /* !__mips_single_float */


/* Ho hum.  Here we have the same set of functions again, this time
   for when the function being called returns an SCmode value.  */

#ifdef L_m16stubsc0
CALL_STUB_RET (mips16_call_stub_sc_0, 0, __SC)
#endif

#ifdef L_m16stubsc1
CALL_STUB_RET (mips16_call_stub_sc_1, 1, __SC)
#endif

#ifdef L_m16stubsc5
CALL_STUB_RET (mips16_call_stub_sc_5, 5, __SC)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16stubsc2
CALL_STUB_RET (mips16_call_stub_sc_2, 2, __SC)
#endif

#ifdef L_m16stubsc6
CALL_STUB_RET (mips16_call_stub_sc_6, 6, __SC)
#endif

#ifdef L_m16stubsc9
CALL_STUB_RET (mips16_call_stub_sc_9, 9, __SC)
#endif

#ifdef L_m16stubsc10
CALL_STUB_RET (mips16_call_stub_sc_10, 10, __SC)
#endif
#endif /* !__mips_single_float */


/* Finally, another set of functions for DCmode.  */

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16stubdc0
CALL_STUB_RET (mips16_call_stub_dc_0, 0, __DC)
#endif

#ifdef L_m16stubdc1
CALL_STUB_RET (mips16_call_stub_dc_1, 1, __DC)
#endif

#ifdef L_m16stubdc5
CALL_STUB_RET (mips16_call_stub_dc_5, 5, __DC)
#endif

#ifdef L_m16stubdc2
CALL_STUB_RET (mips16_call_stub_dc_2, 2, __DC)
#endif

#ifdef L_m16stubdc6
CALL_STUB_RET (mips16_call_stub_dc_6, 6, __DC)
#endif

#ifdef L_m16stubdc9
CALL_STUB_RET (mips16_call_stub_dc_9, 9, __DC)
#endif

#ifdef L_m16stubdc10
CALL_STUB_RET (mips16_call_stub_dc_10, 10, __DC)
#endif
#endif /* !__mips_single_float */

#endif
#endif /* defined(__mips_micromips) || defined(__mips_soft_float) */