Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
dnl Support macro file for intrinsic functions.
dnl Contains the generic sections of the array functions.
dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
dnl Distributed under the GNU GPL with exception.  See COPYING for details.
dnl
dnl Pass the implementation for a single section as the parameter to
dnl {MASK_}ARRAY_FUNCTION.
dnl The variables base, delta, and len describe the input section.
dnl For masked section the mask is described by mbase and mdelta.
dnl These should not be modified. The result should be stored in *dest.
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
dnl retarray, array, pdim and mstride should not be used.
dnl The variable n is declared as index_type and may be used.
dnl Other variable declarations may be placed at the start of the code,
dnl The types of the array parameter and the return value are
dnl atype_name and rtype_name respectively.
dnl Execution should be allowed to continue to the end of the block.
dnl You should not return or break from the inner loop of the implementation.
dnl Care should also be taken to avoid using the names defined in iparm.m4
define(START_ARRAY_FUNCTION,
`#include <string.h>
#include <assert.h>

static inline int
compare_fcn (const atype_name *a, const atype_name *b, gfc_charlen_type n)
{
  if (sizeof ('atype_name`) == 1)
    return memcmp (a, b, n);
  else
    return memcmp_char4 (a, b, n);
}

extern void name`'rtype_qual`_'atype_code (rtype` * const restrict, 
	'atype` * const restrict, const index_type * const restrict 'back_arg`,
	gfc_charlen_type);
export_proto('name`'rtype_qual`_'atype_code`);

void
'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, 
	'atype` * const restrict array, 
	const index_type * const restrict pdim'back_arg`,
	gfc_charlen_type string_len)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  const 'atype_name * restrict base;
  rtype_name * restrict dest;
  index_type rank;
  index_type n;
  index_type len;
  index_type delta;
  index_type dim;
  int continue_loop;

  /* Make dim zero based to avoid confusion.  */
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
  dim = (*pdim) - 1;

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in u_name intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len < 0)
    len = 0;
  delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;

  for (n = 0; n < dim; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);

      if (extent[n] < 0)
	extent[n] = 0;
    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len;
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);

      if (extent[n] < 0)
	extent[n] = 0;
    }

  if (retarray->base_addr == NULL)
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

      retarray->offset = 0;
      retarray->dtype.rank = rank;

      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];

      retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;

	}
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " u_name intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

      if (unlikely (compile_options.bounds_check))
	bounds_ifunction_return ((array_t *) retarray, extent,
				 "return value", "u_name");
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
	return;
    }

  base = array->base_addr;
  dest = retarray->base_addr;

  continue_loop = 1;
  while (continue_loop)
    {
      const atype_name * restrict src;
      rtype_name result;
      src = base;
      {
')dnl
define(START_ARRAY_BLOCK,
`	if (len <= 0)
	  *dest = '$1`;
	else
	  {
	    for (n = 0; n < len; n++, src += delta)
	      {
')dnl
define(FINISH_ARRAY_FUNCTION,
`	      }
	    '$1`
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n >= rank)
	    {
	      /* Break out of the loop.  */
	      continue_loop = 0;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      dest += dstride[n];
	    }
	}
    }
}')dnl
define(START_MASKED_ARRAY_FUNCTION,
`
extern void `m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict, 
	'atype` * const restrict, const index_type * const restrict,
	gfc_array_l1 * const restrict'back_arg`, gfc_charlen_type);
export_proto(m'name`'rtype_qual`_'atype_code`);

void
m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, 
	'atype` * const restrict array, 
	const index_type * const restrict pdim, 
	gfc_array_l1 * const restrict mask'back_arg`,
	gfc_charlen_type string_len)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  'rtype_name * restrict dest;
  const atype_name * restrict base;
  const GFC_LOGICAL_1 * restrict mbase;
  index_type rank;
  index_type dim;
  index_type n;
  index_type len;
  index_type delta;
  index_type mdelta;
  int mask_kind;

  if (mask == NULL)
    {
#ifdef HAVE_BACK_ARG
      name`'rtype_qual`_'atype_code (retarray, array, pdim, back, string_len);
#else
      name`'rtype_qual`_'atype_code (retarray, array, pdim, string_len);
#endif
      return;
    }

  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;


  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in u_name intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len <= 0)
    return;

  mbase = mask->base_addr;

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
    runtime_error ("Funny sized logical array");

  delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);

  for (n = 0; n < dim; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);

      if (extent[n] < 0)
	extent[n] = 0;

    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len;
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);

      if (extent[n] < 0)
	extent[n] = 0;
    }

  if (retarray->base_addr == NULL)
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];

      retarray->offset = 0;
      retarray->dtype.rank = rank;

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;
	}
      else
	retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));

    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in u_name intrinsic");

      if (unlikely (compile_options.bounds_check))
	{
	  bounds_ifunction_return ((array_t *) retarray, extent,
				   "return value", "u_name");
	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
	  			"MASK argument", "u_name");
	}
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
	return;
    }

  dest = retarray->base_addr;
  base = array->base_addr;

  while (base)
    {
      const atype_name * restrict src;
      const GFC_LOGICAL_1 * restrict msrc;
      rtype_name result;
      src = base;
      msrc = mbase;
      {
')dnl
define(START_MASKED_ARRAY_BLOCK,
`	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
	  {
')dnl
define(FINISH_MASKED_ARRAY_FUNCTION,
`	  }
	*dest = result;
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  mbase -= mstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n >= rank)
	    {
	      /* Break out of the loop.  */
	      base = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      mbase += mstride[n];
	      dest += dstride[n];
	    }
	}
    }
}')dnl
define(SCALAR_ARRAY_FUNCTION,
`
extern void `s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict, 
	'atype` * const restrict, const index_type * const restrict,
	GFC_LOGICAL_4 *'back_arg`, gfc_charlen_type);
export_proto(s'name`'rtype_qual`_'atype_code`);

void
s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray, 
	'atype` * const restrict array, 
	const index_type * const restrict pdim, 
	GFC_LOGICAL_4 * mask 'back_arg`, gfc_charlen_type string_len)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  'rtype_name * restrict dest;
  index_type rank;
  index_type n;
  index_type dim;


  if (mask == NULL || *mask)
    {
#ifdef HAVE_BACK_ARG
      name`'rtype_qual`_'atype_code (retarray, array, pdim, back, string_len);
#else
      name`'rtype_qual`_'atype_code (retarray, array, pdim, string_len);
#endif
      return;
    }
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in u_name intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

  for (n = 0; n < dim; n++)
    {
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n) * string_len;

      if (extent[n] <= 0)
	extent[n] = 0;
    }

  for (n = dim; n < rank; n++)
    {
      extent[n] =
	GFC_DESCRIPTOR_EXTENT(array,n + 1) * string_len;

      if (extent[n] <= 0)
	extent[n] = 0;
    }

  if (retarray->base_addr == NULL)
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

      retarray->offset = 0;
      retarray->dtype.rank = rank;

      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;
	}
      else
	retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " u_name intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

      if (unlikely (compile_options.bounds_check))
	{
	  for (n=0; n < rank; n++)
	    {
	      index_type ret_extent;

	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
	      if (extent[n] != ret_extent)
		runtime_error ("Incorrect extent in return value of"
			       " u_name intrinsic in dimension %ld:"
			       " is %ld, should be %ld", (long int) n + 1,
			       (long int) ret_extent, (long int) extent[n]);
	    }
	}
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
    }

  dest = retarray->base_addr;

  while(1)
    {
      *dest = '$1`;
      count[0]++;
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  dest -= dstride[n] * extent[n];
	  n++;
	  if (n >= rank)
	    return;
	  else
	    {
	      count[n]++;
	      dest += dstride[n];
	    }
      	}
    }
}')dnl
define(ARRAY_FUNCTION,
`START_ARRAY_FUNCTION
$2
START_ARRAY_BLOCK($1)
$3
FINISH_ARRAY_FUNCTION($4)')dnl
define(MASKED_ARRAY_FUNCTION,
`START_MASKED_ARRAY_FUNCTION
$2
START_MASKED_ARRAY_BLOCK
$3
FINISH_MASKED_ARRAY_FUNCTION')dnl