Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/**
 * Implementation of associative arrays.
 *
 * Copyright: Copyright Digital Mars 2000 - 2015.
 * License:   $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
 * Authors:   Martin Nowak
 */
module rt.aaA;

/// AA version for debuggers, bump whenever changing the layout
extern (C) immutable int _aaVersion = 1;

import core.memory : GC;

// grow threshold
private enum GROW_NUM = 4;
private enum GROW_DEN = 5;
// shrink threshold
private enum SHRINK_NUM = 1;
private enum SHRINK_DEN = 8;
// grow factor
private enum GROW_FAC = 4;
// growing the AA doubles it's size, so the shrink threshold must be
// smaller than half the grow threshold to have a hysteresis
static assert(GROW_FAC * SHRINK_NUM * GROW_DEN < GROW_NUM * SHRINK_DEN);
// initial load factor (for literals), mean of both thresholds
private enum INIT_NUM = (GROW_DEN * SHRINK_NUM + GROW_NUM * SHRINK_DEN) / 2;
private enum INIT_DEN = SHRINK_DEN * GROW_DEN;

private enum INIT_NUM_BUCKETS = 8;
// magic hash constants to distinguish empty, deleted, and filled buckets
private enum HASH_EMPTY = 0;
private enum HASH_DELETED = 0x1;
private enum HASH_FILLED_MARK = size_t(1) << 8 * size_t.sizeof - 1;

/// Opaque AA wrapper
struct AA
{
    Impl* impl;
    alias impl this;

    private @property bool empty() const pure nothrow @nogc
    {
        return impl is null || !impl.length;
    }
}

private struct Impl
{
private:
    this(in TypeInfo_AssociativeArray ti, size_t sz = INIT_NUM_BUCKETS)
    {
        keysz = cast(uint) ti.key.tsize;
        valsz = cast(uint) ti.value.tsize;
        buckets = allocBuckets(sz);
        firstUsed = cast(uint) buckets.length;
        entryTI = fakeEntryTI(ti.key, ti.value);
        valoff = cast(uint) talign(keysz, ti.value.talign);

        import rt.lifetime : hasPostblit, unqualify;

        if (hasPostblit(unqualify(ti.key)))
            flags |= Flags.keyHasPostblit;
        if ((ti.key.flags | ti.value.flags) & 1)
            flags |= Flags.hasPointers;
    }

    Bucket[] buckets;
    uint used;
    uint deleted;
    TypeInfo_Struct entryTI;
    uint firstUsed;
    immutable uint keysz;
    immutable uint valsz;
    immutable uint valoff;
    Flags flags;

    enum Flags : ubyte
    {
        none = 0x0,
        keyHasPostblit = 0x1,
        hasPointers = 0x2,
    }

    @property size_t length() const pure nothrow @nogc
    {
        assert(used >= deleted);
        return used - deleted;
    }

    @property size_t dim() const pure nothrow @nogc @safe
    {
        return buckets.length;
    }

    @property size_t mask() const pure nothrow @nogc
    {
        return dim - 1;
    }

    // find the first slot to insert a value with hash
    inout(Bucket)* findSlotInsert(size_t hash) inout pure nothrow @nogc
    {
        for (size_t i = hash & mask, j = 1;; ++j)
        {
            if (!buckets[i].filled)
                return &buckets[i];
            i = (i + j) & mask;
        }
    }

    // lookup a key
    inout(Bucket)* findSlotLookup(size_t hash, in void* pkey, in TypeInfo keyti) inout
    {
        for (size_t i = hash & mask, j = 1;; ++j)
        {
            if (buckets[i].hash == hash && keyti.equals(pkey, buckets[i].entry))
                return &buckets[i];
            else if (buckets[i].empty)
                return null;
            i = (i + j) & mask;
        }
    }

    void grow(in TypeInfo keyti)
    {
        // If there are so many deleted entries, that growing would push us
        // below the shrink threshold, we just purge deleted entries instead.
        if (length * SHRINK_DEN < GROW_FAC * dim * SHRINK_NUM)
            resize(dim);
        else
            resize(GROW_FAC * dim);
    }

    void shrink(in TypeInfo keyti)
    {
        if (dim > INIT_NUM_BUCKETS)
            resize(dim / GROW_FAC);
    }

    void resize(size_t ndim) pure nothrow
    {
        auto obuckets = buckets;
        buckets = allocBuckets(ndim);

        foreach (ref b; obuckets[firstUsed .. $])
            if (b.filled)
                *findSlotInsert(b.hash) = b;

        firstUsed = 0;
        used -= deleted;
        deleted = 0;
        GC.free(obuckets.ptr); // safe to free b/c impossible to reference
    }

    void clear() pure nothrow
    {
        import core.stdc.string : memset;
        // clear all data, but don't change bucket array length
        memset(&buckets[firstUsed], 0, (buckets.length - firstUsed) * Bucket.sizeof);
        deleted = used = 0;
        firstUsed = cast(uint) dim;
    }
}

//==============================================================================
// Bucket
//------------------------------------------------------------------------------

private struct Bucket
{
private pure nothrow @nogc:
    size_t hash;
    void* entry;

    @property bool empty() const
    {
        return hash == HASH_EMPTY;
    }

    @property bool deleted() const
    {
        return hash == HASH_DELETED;
    }

    @property bool filled() const @safe
    {
        return cast(ptrdiff_t) hash < 0;
    }
}

Bucket[] allocBuckets(size_t dim) @trusted pure nothrow
{
    enum attr = GC.BlkAttr.NO_INTERIOR;
    immutable sz = dim * Bucket.sizeof;
    return (cast(Bucket*) GC.calloc(sz, attr))[0 .. dim];
}

//==============================================================================
// Entry
//------------------------------------------------------------------------------

private void* allocEntry(in Impl* aa, in void* pkey)
{
    import rt.lifetime : _d_newitemU;
    import core.stdc.string : memcpy, memset;

    immutable akeysz = aa.valoff;
    void* res = void;
    if (aa.entryTI)
        res = _d_newitemU(aa.entryTI);
    else
    {
        auto flags = (aa.flags & Impl.Flags.hasPointers) ? 0 : GC.BlkAttr.NO_SCAN;
        res = GC.malloc(akeysz + aa.valsz, flags);
    }

    memcpy(res, pkey, aa.keysz); // copy key
    memset(res + akeysz, 0, aa.valsz); // zero value

    return res;
}

package void entryDtor(void* p, const TypeInfo_Struct sti)
{
    // key and value type info stored after the TypeInfo_Struct by tiEntry()
    auto sizeti = __traits(classInstanceSize, TypeInfo_Struct);
    auto extra = cast(const(TypeInfo)*)(cast(void*) sti + sizeti);
    extra[0].destroy(p);
    extra[1].destroy(p + talign(extra[0].tsize, extra[1].talign));
}

private bool hasDtor(const TypeInfo ti)
{
    import rt.lifetime : unqualify;

    if (typeid(ti) is typeid(TypeInfo_Struct))
        if ((cast(TypeInfo_Struct) cast(void*) ti).xdtor)
            return true;
    if (typeid(ti) is typeid(TypeInfo_StaticArray))
        return hasDtor(unqualify(ti.next));

    return false;
}

// build type info for Entry with additional key and value fields
TypeInfo_Struct fakeEntryTI(const TypeInfo keyti, const TypeInfo valti)
{
    import rt.lifetime : unqualify;

    auto kti = unqualify(keyti);
    auto vti = unqualify(valti);
    if (!hasDtor(kti) && !hasDtor(vti))
        return null;

    // save kti and vti after type info for struct
    enum sizeti = __traits(classInstanceSize, TypeInfo_Struct);
    void* p = GC.malloc(sizeti + 2 * (void*).sizeof);
    import core.stdc.string : memcpy;

    memcpy(p, typeid(TypeInfo_Struct).initializer().ptr, sizeti);

    auto ti = cast(TypeInfo_Struct) p;
    auto extra = cast(TypeInfo*)(p + sizeti);
    extra[0] = cast() kti;
    extra[1] = cast() vti;

    static immutable tiName = __MODULE__ ~ ".Entry!(...)";
    ti.name = tiName;

    // we don't expect the Entry objects to be used outside of this module, so we have control
    // over the non-usage of the callback methods and other entries and can keep these null
    // xtoHash, xopEquals, xopCmp, xtoString and xpostblit
    ti.m_RTInfo = null;
    immutable entrySize = talign(kti.tsize, vti.talign) + vti.tsize;
    ti.m_init = (cast(ubyte*) null)[0 .. entrySize]; // init length, but not ptr

    // xdtor needs to be built from the dtors of key and value for the GC
    ti.xdtorti = &entryDtor;

    ti.m_flags = TypeInfo_Struct.StructFlags.isDynamicType;
    ti.m_flags |= (keyti.flags | valti.flags) & TypeInfo_Struct.StructFlags.hasPointers;
    ti.m_align = cast(uint) max(kti.talign, vti.talign);

    return ti;
}

//==============================================================================
// Helper functions
//------------------------------------------------------------------------------

private size_t talign(size_t tsize, size_t algn) @safe pure nothrow @nogc
{
    immutable mask = algn - 1;
    assert(!(mask & algn));
    return (tsize + mask) & ~mask;
}

// mix hash to "fix" bad hash functions
private size_t mix(size_t h) @safe pure nothrow @nogc
{
    // final mix function of MurmurHash2
    enum m = 0x5bd1e995;
    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;
    return h;
}

private size_t calcHash(in void* pkey, in TypeInfo keyti)
{
    immutable hash = keyti.getHash(pkey);
    // highest bit is set to distinguish empty/deleted from filled buckets
    return mix(hash) | HASH_FILLED_MARK;
}

private size_t nextpow2(in size_t n) pure nothrow @nogc
{
    import core.bitop : bsr;

    if (!n)
        return 1;

    const isPowerOf2 = !((n - 1) & n);
    return 1 << (bsr(n) + !isPowerOf2);
}

pure nothrow @nogc unittest
{
    //                            0, 1, 2, 3, 4, 5, 6, 7, 8,  9
    foreach (const n, const pow2; [1, 1, 2, 4, 4, 8, 8, 8, 8, 16])
        assert(nextpow2(n) == pow2);
}

private T min(T)(T a, T b) pure nothrow @nogc
{
    return a < b ? a : b;
}

private T max(T)(T a, T b) pure nothrow @nogc
{
    return b < a ? a : b;
}

//==============================================================================
// API Implementation
//------------------------------------------------------------------------------

/// Determine number of entries in associative array.
extern (C) size_t _aaLen(in AA aa) pure nothrow @nogc
{
    return aa ? aa.length : 0;
}

/******************************
 * Lookup *pkey in aa.
 * Called only from implementation of (aa[key]) expressions when value is mutable.
 * Params:
 *      aa = associative array opaque pointer
 *      ti = TypeInfo for the associative array
 *      valsz = ignored
 *      pkey = pointer to the key value
 * Returns:
 *      if key was in the aa, a mutable pointer to the existing value.
 *      If key was not in the aa, a mutable pointer to newly inserted value which
 *      is set to all zeros
 */
extern (C) void* _aaGetY(AA* aa, const TypeInfo_AssociativeArray ti,
    in size_t valsz, in void* pkey)
{
    bool found;
    return _aaGetX(aa, ti, valsz, pkey, found);
}

/******************************
 * Lookup *pkey in aa.
 * Called only from implementation of require
 * Params:
 *      aa = associative array opaque pointer
 *      ti = TypeInfo for the associative array
 *      valsz = ignored
 *      pkey = pointer to the key value
 *      found = true if the value was found
 * Returns:
 *      if key was in the aa, a mutable pointer to the existing value.
 *      If key was not in the aa, a mutable pointer to newly inserted value which
 *      is set to all zeros
 */
extern (C) void* _aaGetX(AA* aa, const TypeInfo_AssociativeArray ti,
    in size_t valsz, in void* pkey, out bool found)
{
    // lazily alloc implementation
    if (aa.impl is null)
        aa.impl = new Impl(ti);

    // get hash and bucket for key
    immutable hash = calcHash(pkey, ti.key);

    // found a value => return it
    if (auto p = aa.findSlotLookup(hash, pkey, ti.key))
    {
        found = true;
        return p.entry + aa.valoff;
    }

    auto p = aa.findSlotInsert(hash);
    if (p.deleted)
        --aa.deleted;
    // check load factor and possibly grow
    else if (++aa.used * GROW_DEN > aa.dim * GROW_NUM)
    {
        aa.grow(ti.key);
        p = aa.findSlotInsert(hash);
        assert(p.empty);
    }

    // update search cache and allocate entry
    aa.firstUsed = min(aa.firstUsed, cast(uint)(p - aa.buckets.ptr));
    p.hash = hash;
    p.entry = allocEntry(aa.impl, pkey);
    // postblit for key
    if (aa.flags & Impl.Flags.keyHasPostblit)
    {
        import rt.lifetime : __doPostblit, unqualify;

        __doPostblit(p.entry, aa.keysz, unqualify(ti.key));
    }
    // return pointer to value
    return p.entry + aa.valoff;
}

/******************************
 * Lookup *pkey in aa.
 * Called only from implementation of (aa[key]) expressions when value is not mutable.
 * Params:
 *      aa = associative array opaque pointer
 *      keyti = TypeInfo for the key
 *      valsz = ignored
 *      pkey = pointer to the key value
 * Returns:
 *      pointer to value if present, null otherwise
 */
extern (C) inout(void)* _aaGetRvalueX(inout AA aa, in TypeInfo keyti, in size_t valsz,
    in void* pkey)
{
    return _aaInX(aa, keyti, pkey);
}

/******************************
 * Lookup *pkey in aa.
 * Called only from implementation of (key in aa) expressions.
 * Params:
 *      aa = associative array opaque pointer
 *      keyti = TypeInfo for the key
 *      pkey = pointer to the key value
 * Returns:
 *      pointer to value if present, null otherwise
 */
extern (C) inout(void)* _aaInX(inout AA aa, in TypeInfo keyti, in void* pkey)
{
    if (aa.empty)
        return null;

    immutable hash = calcHash(pkey, keyti);
    if (auto p = aa.findSlotLookup(hash, pkey, keyti))
        return p.entry + aa.valoff;
    return null;
}

/// Delete entry in AA, return true if it was present
extern (C) bool _aaDelX(AA aa, in TypeInfo keyti, in void* pkey)
{
    if (aa.empty)
        return false;

    immutable hash = calcHash(pkey, keyti);
    if (auto p = aa.findSlotLookup(hash, pkey, keyti))
    {
        // clear entry
        p.hash = HASH_DELETED;
        p.entry = null;

        ++aa.deleted;
        if (aa.length * SHRINK_DEN < aa.dim * SHRINK_NUM)
            aa.shrink(keyti);

        return true;
    }
    return false;
}

/// Remove all elements from AA.
extern (C) void _aaClear(AA aa) pure nothrow
{
    if (!aa.empty)
    {
        aa.impl.clear();
    }
}

/// Rehash AA
extern (C) void* _aaRehash(AA* paa, in TypeInfo keyti) pure nothrow
{
    if (!paa.empty)
        paa.resize(nextpow2(INIT_DEN * paa.length / INIT_NUM));
    return *paa;
}

/// Return a GC allocated array of all values
extern (C) inout(void[]) _aaValues(inout AA aa, in size_t keysz, in size_t valsz,
    const TypeInfo tiValueArray) pure nothrow
{
    if (aa.empty)
        return null;

    import rt.lifetime : _d_newarrayU;

    auto res = _d_newarrayU(tiValueArray, aa.length).ptr;
    auto pval = res;

    immutable off = aa.valoff;
    foreach (b; aa.buckets[aa.firstUsed .. $])
    {
        if (!b.filled)
            continue;
        pval[0 .. valsz] = b.entry[off .. valsz + off];
        pval += valsz;
    }
    // postblit is done in object.values
    return (cast(inout(void)*) res)[0 .. aa.length]; // fake length, return number of elements
}

/// Return a GC allocated array of all keys
extern (C) inout(void[]) _aaKeys(inout AA aa, in size_t keysz, const TypeInfo tiKeyArray) pure nothrow
{
    if (aa.empty)
        return null;

    import rt.lifetime : _d_newarrayU;

    auto res = _d_newarrayU(tiKeyArray, aa.length).ptr;
    auto pkey = res;

    foreach (b; aa.buckets[aa.firstUsed .. $])
    {
        if (!b.filled)
            continue;
        pkey[0 .. keysz] = b.entry[0 .. keysz];
        pkey += keysz;
    }
    // postblit is done in object.keys
    return (cast(inout(void)*) res)[0 .. aa.length]; // fake length, return number of elements
}

// opApply callbacks are extern(D)
extern (D) alias dg_t = int delegate(void*);
extern (D) alias dg2_t = int delegate(void*, void*);

/// foreach opApply over all values
extern (C) int _aaApply(AA aa, in size_t keysz, dg_t dg)
{
    if (aa.empty)
        return 0;

    immutable off = aa.valoff;
    foreach (b; aa.buckets)
    {
        if (!b.filled)
            continue;
        if (auto res = dg(b.entry + off))
            return res;
    }
    return 0;
}

/// foreach opApply over all key/value pairs
extern (C) int _aaApply2(AA aa, in size_t keysz, dg2_t dg)
{
    if (aa.empty)
        return 0;

    immutable off = aa.valoff;
    foreach (b; aa.buckets)
    {
        if (!b.filled)
            continue;
        if (auto res = dg(b.entry, b.entry + off))
            return res;
    }
    return 0;
}

/// Construct an associative array of type ti from keys and value
extern (C) Impl* _d_assocarrayliteralTX(const TypeInfo_AssociativeArray ti, void[] keys,
    void[] vals)
{
    assert(keys.length == vals.length);

    immutable keysz = ti.key.tsize;
    immutable valsz = ti.value.tsize;
    immutable length = keys.length;

    if (!length)
        return null;

    auto aa = new Impl(ti, nextpow2(INIT_DEN * length / INIT_NUM));

    void* pkey = keys.ptr;
    void* pval = vals.ptr;
    immutable off = aa.valoff;
    uint actualLength = 0;
    foreach (_; 0 .. length)
    {
        immutable hash = calcHash(pkey, ti.key);

        auto p = aa.findSlotLookup(hash, pkey, ti.key);
        if (p is null)
        {
            p = aa.findSlotInsert(hash);
            p.hash = hash;
            p.entry = allocEntry(aa, pkey); // move key, no postblit
            aa.firstUsed = min(aa.firstUsed, cast(uint)(p - aa.buckets.ptr));
            actualLength++;
        }
        else if (aa.entryTI && hasDtor(ti.value))
        {
            // destroy existing value before overwriting it
            ti.value.destroy(p.entry + off);
        }
        // set hash and blit value
        auto pdst = p.entry + off;
        pdst[0 .. valsz] = pval[0 .. valsz]; // move value, no postblit

        pkey += keysz;
        pval += valsz;
    }
    aa.used = actualLength;
    return aa;
}

/// compares 2 AAs for equality
extern (C) int _aaEqual(in TypeInfo tiRaw, in AA aa1, in AA aa2)
{
    if (aa1.impl is aa2.impl)
        return true;

    immutable len = _aaLen(aa1);
    if (len != _aaLen(aa2))
        return false;

    if (!len) // both empty
        return true;

    import rt.lifetime : unqualify;

    auto uti = unqualify(tiRaw);
    auto ti = *cast(TypeInfo_AssociativeArray*)&uti;
    // compare the entries
    immutable off = aa1.valoff;
    foreach (b1; aa1.buckets)
    {
        if (!b1.filled)
            continue;
        auto pb2 = aa2.findSlotLookup(b1.hash, b1.entry, ti.key);
        if (pb2 is null || !ti.value.equals(b1.entry + off, pb2.entry + off))
            return false;
    }
    return true;
}

/// compute a hash
extern (C) hash_t _aaGetHash(in AA* aa, in TypeInfo tiRaw) nothrow
{
    if (aa.empty)
        return 0;

    import rt.lifetime : unqualify;

    auto uti = unqualify(tiRaw);
    auto ti = *cast(TypeInfo_AssociativeArray*)&uti;
    immutable off = aa.valoff;
    auto keyHash = &ti.key.getHash;
    auto valHash = &ti.value.getHash;

    size_t h;
    foreach (b; aa.buckets)
    {
        if (!b.filled)
            continue;
        size_t[2] h2 = [keyHash(b.entry), valHash(b.entry + off)];
        // use addition here, so that hash is independent of element order
        h += hashOf(h2);
    }

    return h;
}

/**
 * _aaRange implements a ForwardRange
 */
struct Range
{
    Impl* impl;
    size_t idx;
    alias impl this;
}

extern (C) pure nothrow @nogc @safe
{
    Range _aaRange(AA aa)
    {
        if (!aa)
            return Range();

        foreach (i; aa.firstUsed .. aa.dim)
        {
            if (aa.buckets[i].filled)
                return Range(aa.impl, i);
        }
        return Range(aa, aa.dim);
    }

    bool _aaRangeEmpty(Range r)
    {
        return r.impl is null || r.idx >= r.dim;
    }

    void* _aaRangeFrontKey(Range r)
    {
        assert(!_aaRangeEmpty(r));
        if (r.idx >= r.dim)
            return null;
        return r.buckets[r.idx].entry;
    }

    void* _aaRangeFrontValue(Range r)
    {
        assert(!_aaRangeEmpty(r));
        if (r.idx >= r.dim)
            return null;

        auto entry = r.buckets[r.idx].entry;
        return entry is null ?
            null :
            (() @trusted { return entry + r.valoff; } ());
    }

    void _aaRangePopFront(ref Range r)
    {
        if (r.idx >= r.dim) return;
        for (++r.idx; r.idx < r.dim; ++r.idx)
        {
            if (r.buckets[r.idx].filled)
                break;
        }
    }
}

// Most tests are now in in test_aa.d

// test postblit for AA literals
unittest
{
    static struct T
    {
        ubyte field;
        static size_t postblit, dtor;
        this(this)
        {
            ++postblit;
        }

        ~this()
        {
            ++dtor;
        }
    }

    T t;
    auto aa1 = [0 : t, 1 : t];
    assert(T.dtor == 0 && T.postblit == 2);
    aa1[0] = t;
    assert(T.dtor == 1 && T.postblit == 3);

    T.dtor = 0;
    T.postblit = 0;

    auto aa2 = [0 : t, 1 : t, 0 : t]; // literal with duplicate key => value overwritten
    assert(T.dtor == 1 && T.postblit == 3);

    T.dtor = 0;
    T.postblit = 0;

    auto aa3 = [t : 0];
    assert(T.dtor == 0 && T.postblit == 1);
    aa3[t] = 1;
    assert(T.dtor == 0 && T.postblit == 1);
    aa3.remove(t);
    assert(T.dtor == 0 && T.postblit == 1);
    aa3[t] = 2;
    assert(T.dtor == 0 && T.postblit == 2);

    // dtor will be called by GC finalizers
    aa1 = null;
    aa2 = null;
    aa3 = null;
    GC.runFinalizers((cast(char*)(&entryDtor))[0 .. 1]);
    assert(T.dtor == 6 && T.postblit == 2);
}