Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/**
Utility and ancillary artifacts of `std.experimental.allocator`. This module
shouldn't be used directly; its functionality will be migrated into more
appropriate parts of `std`.

Authors: $(HTTP erdani.com, Andrei Alexandrescu), Timon Gehr (`Ternary`)
*/
module std.experimental.allocator.common;
import std.algorithm.comparison, std.traits;

/**
Returns the size in bytes of the state that needs to be allocated to hold an
object of type $(D T). $(D stateSize!T) is zero for $(D struct)s that are not
nested and have no nonstatic member variables.
 */
template stateSize(T)
{
    static if (is(T == class) || is(T == interface))
        enum stateSize = __traits(classInstanceSize, T);
    else static if (is(T == struct) || is(T == union))
        enum stateSize = Fields!T.length || isNested!T ? T.sizeof : 0;
    else static if (is(T == void))
        enum size_t stateSize = 0;
    else
        enum stateSize = T.sizeof;
}

@safe @nogc nothrow pure
unittest
{
    static assert(stateSize!void == 0);
    struct A {}
    static assert(stateSize!A == 0);
    struct B { int x; }
    static assert(stateSize!B == 4);
    interface I1 {}
    //static assert(stateSize!I1 == 2 * size_t.sizeof);
    class C1 {}
    static assert(stateSize!C1 == 3 * size_t.sizeof);
    class C2 { char c; }
    static assert(stateSize!C2 == 4 * size_t.sizeof);
    static class C3 { char c; }
    static assert(stateSize!C3 == 2 * size_t.sizeof + char.sizeof);
}

/**
Returns `true` if the `Allocator` has the alignment known at compile time;
otherwise it returns `false`.
 */
template hasStaticallyKnownAlignment(Allocator)
{
    enum hasStaticallyKnownAlignment = __traits(compiles,
                                                {enum x = Allocator.alignment;});
}

/**
$(D chooseAtRuntime) is a compile-time constant of type $(D size_t) that several
parameterized structures in this module recognize to mean deferral to runtime of
the exact value. For example, $(D BitmappedBlock!(Allocator, 4096)) (described in
detail below) defines a block allocator with block size of 4096 bytes, whereas
$(D BitmappedBlock!(Allocator, chooseAtRuntime)) defines a block allocator that has a
field storing the block size, initialized by the user.
*/
enum chooseAtRuntime = size_t.max - 1;

/**
$(D unbounded) is a compile-time constant of type $(D size_t) that several
parameterized structures in this module recognize to mean "infinite" bounds for
the parameter. For example, $(D Freelist) (described in detail below) accepts a
$(D maxNodes) parameter limiting the number of freelist items. If $(D unbounded)
is passed for $(D maxNodes), then there is no limit and no checking for the
number of nodes.
*/
enum unbounded = size_t.max;

/**
The alignment that is guaranteed to accommodate any D object allocation on the
current platform.
*/
enum uint platformAlignment = std.algorithm.comparison.max(double.alignof, real.alignof);

/**
The default good size allocation is deduced as $(D n) rounded up to the
allocator's alignment.
*/
size_t goodAllocSize(A)(auto ref A a, size_t n)
{
    return n.roundUpToMultipleOf(a.alignment);
}

/**
Returns s rounded up to a multiple of base.
*/
@safe @nogc nothrow pure
package size_t roundUpToMultipleOf(size_t s, uint base)
{
    assert(base);
    auto rem = s % base;
    return rem ? s + base - rem : s;
}

@safe @nogc nothrow pure
unittest
{
    assert(10.roundUpToMultipleOf(11) == 11);
    assert(11.roundUpToMultipleOf(11) == 11);
    assert(12.roundUpToMultipleOf(11) == 22);
    assert(118.roundUpToMultipleOf(11) == 121);
}

/**
Returns `n` rounded up to a multiple of alignment, which must be a power of 2.
*/
@safe @nogc nothrow pure
package size_t roundUpToAlignment(size_t n, uint alignment)
{
    import std.math : isPowerOf2;
    assert(alignment.isPowerOf2);
    immutable uint slack = cast(uint) n & (alignment - 1);
    const result = slack
        ? n + alignment - slack
        : n;
    assert(result >= n);
    return result;
}

@safe @nogc nothrow pure
unittest
{
    assert(10.roundUpToAlignment(4) == 12);
    assert(11.roundUpToAlignment(2) == 12);
    assert(12.roundUpToAlignment(8) == 16);
    assert(118.roundUpToAlignment(64) == 128);
}

/**
Returns `n` rounded down to a multiple of alignment, which must be a power of 2.
*/
@safe @nogc nothrow pure
package size_t roundDownToAlignment(size_t n, uint alignment)
{
    import std.math : isPowerOf2;
    assert(alignment.isPowerOf2);
    return n & ~size_t(alignment - 1);
}

@safe @nogc nothrow pure
unittest
{
    assert(10.roundDownToAlignment(4) == 8);
    assert(11.roundDownToAlignment(2) == 10);
    assert(12.roundDownToAlignment(8) == 8);
    assert(63.roundDownToAlignment(64) == 0);
}

/**
Advances the beginning of `b` to start at alignment `a`. The resulting buffer
may therefore be shorter. Returns the adjusted buffer, or null if obtaining a
non-empty buffer is impossible.
*/
@nogc nothrow pure
package void[] roundUpToAlignment(void[] b, uint a)
{
    auto e = b.ptr + b.length;
    auto p = cast(void*) roundUpToAlignment(cast(size_t) b.ptr, a);
    if (e <= p) return null;
    return p[0 .. e - p];
}

@nogc nothrow pure
@system unittest
{
    void[] empty;
    assert(roundUpToAlignment(empty, 4) == null);
    char[128] buf;
    // At least one pointer inside buf is 128-aligned
    assert(roundUpToAlignment(buf, 128) !is null);
}

/**
Like `a / b` but rounds the result up, not down.
*/
@safe @nogc nothrow pure
package size_t divideRoundUp(size_t a, size_t b)
{
    assert(b);
    return (a + b - 1) / b;
}

/**
Returns `s` rounded up to a multiple of `base`.
*/
@nogc nothrow pure
package void[] roundStartToMultipleOf(void[] s, uint base)
{
    assert(base);
    auto p = cast(void*) roundUpToMultipleOf(
        cast(size_t) s.ptr, base);
    auto end = s.ptr + s.length;
    return p[0 .. end - p];
}

nothrow pure
@system unittest
{
    void[] p;
    assert(roundStartToMultipleOf(p, 16) is null);
    p = new ulong[10];
    assert(roundStartToMultipleOf(p, 16) is p);
}

/**
Returns $(D s) rounded up to the nearest power of 2.
*/
@safe @nogc nothrow pure
package size_t roundUpToPowerOf2(size_t s)
{
    import std.meta : AliasSeq;
    assert(s <= (size_t.max >> 1) + 1);
    --s;
    static if (size_t.sizeof == 4)
        alias Shifts = AliasSeq!(1, 2, 4, 8, 16);
    else
        alias Shifts = AliasSeq!(1, 2, 4, 8, 16, 32);
    foreach (i; Shifts)
    {
        s |= s >> i;
    }
    return s + 1;
}

@safe @nogc nothrow pure
unittest
{
    assert(0.roundUpToPowerOf2 == 0);
    assert(1.roundUpToPowerOf2 == 1);
    assert(2.roundUpToPowerOf2 == 2);
    assert(3.roundUpToPowerOf2 == 4);
    assert(7.roundUpToPowerOf2 == 8);
    assert(8.roundUpToPowerOf2 == 8);
    assert(10.roundUpToPowerOf2 == 16);
    assert(11.roundUpToPowerOf2 == 16);
    assert(12.roundUpToPowerOf2 == 16);
    assert(118.roundUpToPowerOf2 == 128);
    assert((size_t.max >> 1).roundUpToPowerOf2 == (size_t.max >> 1) + 1);
    assert(((size_t.max >> 1) + 1).roundUpToPowerOf2 == (size_t.max >> 1) + 1);
}

/**
Returns the number of trailing zeros of $(D x).
*/
@safe @nogc nothrow pure
package uint trailingZeros(ulong x)
{
    uint result;
    while (result < 64 && !(x & (1UL << result)))
    {
        ++result;
    }
    return result;
}

@safe @nogc nothrow pure
unittest
{
    assert(trailingZeros(0) == 64);
    assert(trailingZeros(1) == 0);
    assert(trailingZeros(2) == 1);
    assert(trailingZeros(3) == 0);
    assert(trailingZeros(4) == 2);
}

/**
Returns `true` if `ptr` is aligned at `alignment`.
*/
@nogc nothrow pure
package bool alignedAt(T)(T* ptr, uint alignment)
{
    return cast(size_t) ptr % alignment == 0;
}

/**
Returns the effective alignment of `ptr`, i.e. the largest power of two that is
a divisor of `ptr`.
*/
@nogc nothrow pure
package uint effectiveAlignment(void* ptr)
{
    return 1U << trailingZeros(cast(size_t) ptr);
}

@nogc nothrow pure
@system unittest
{
    int x;
    assert(effectiveAlignment(&x) >= int.alignof);
}

/**
Aligns a pointer down to a specified alignment. The resulting pointer is less
than or equal to the given pointer.
*/
@nogc nothrow pure
package void* alignDownTo(void* ptr, uint alignment)
{
    import std.math : isPowerOf2;
    assert(alignment.isPowerOf2);
    return cast(void*) (cast(size_t) ptr & ~(alignment - 1UL));
}

/**
Aligns a pointer up to a specified alignment. The resulting pointer is greater
than or equal to the given pointer.
*/
@nogc nothrow pure
package void* alignUpTo(void* ptr, uint alignment)
{
    import std.math : isPowerOf2;
    assert(alignment.isPowerOf2);
    immutable uint slack = cast(size_t) ptr & (alignment - 1U);
    return slack ? ptr + alignment - slack : ptr;
}

@safe @nogc nothrow pure
package bool isGoodStaticAlignment(uint x)
{
    import std.math : isPowerOf2;
    return x.isPowerOf2;
}

@safe @nogc nothrow pure
package bool isGoodDynamicAlignment(uint x)
{
    import std.math : isPowerOf2;
    return x.isPowerOf2 && x >= (void*).sizeof;
}

/**
The default $(D reallocate) function first attempts to use $(D expand). If $(D
Allocator.expand) is not defined or returns $(D false), $(D reallocate)
allocates a new block of memory of appropriate size and copies data from the old
block to the new block. Finally, if $(D Allocator) defines $(D deallocate), $(D
reallocate) uses it to free the old memory block.

$(D reallocate) does not attempt to use $(D Allocator.reallocate) even if
defined. This is deliberate so allocators may use it internally within their own
implementation of $(D reallocate).

*/
bool reallocate(Allocator)(ref Allocator a, ref void[] b, size_t s)
{
    if (b.length == s) return true;
    static if (hasMember!(Allocator, "expand"))
    {
        if (b.length <= s && a.expand(b, s - b.length)) return true;
    }
    auto newB = a.allocate(s);
    if (newB.length != s) return false;
    if (newB.length <= b.length) newB[] = b[0 .. newB.length];
    else newB[0 .. b.length] = b[];
    static if (hasMember!(Allocator, "deallocate"))
        a.deallocate(b);
    b = newB;
    return true;
}

/**

The default $(D alignedReallocate) function first attempts to use $(D expand).
If $(D Allocator.expand) is not defined or returns $(D false),  $(D
alignedReallocate) allocates a new block of memory of appropriate size and
copies data from the old block to the new block. Finally, if $(D Allocator)
defines $(D deallocate), $(D alignedReallocate) uses it to free the old memory
block.

$(D alignedReallocate) does not attempt to use $(D Allocator.reallocate) even if
defined. This is deliberate so allocators may use it internally within their own
implementation of $(D reallocate).

*/
bool alignedReallocate(Allocator)(ref Allocator alloc,
        ref void[] b, size_t s, uint a)
{
    static if (hasMember!(Allocator, "expand"))
    {
        if (b.length <= s && b.ptr.alignedAt(a)
            && alloc.expand(b, s - b.length)) return true;
    }
    else
    {
        if (b.length == s) return true;
    }
    auto newB = alloc.alignedAllocate(s, a);
    if (newB.length <= b.length) newB[] = b[0 .. newB.length];
    else newB[0 .. b.length] = b[];
    static if (hasMember!(Allocator, "deallocate"))
        alloc.deallocate(b);
    b = newB;
    return true;
}

/**
Forwards each of the methods in `funs` (if defined) to `member`.
*/
/*package*/ string forwardToMember(string member, string[] funs...)
{
    string result = "    import std.traits : hasMember, Parameters;\n";
    foreach (fun; funs)
    {
        result ~= "
    static if (hasMember!(typeof("~member~"), `"~fun~"`))
    auto ref "~fun~"(Parameters!(typeof("~member~"."~fun~")) args)
    {
        return "~member~"."~fun~"(args);
    }\n";
    }
    return result;
}

version (unittest)
{
    import std.experimental.allocator : IAllocator, ISharedAllocator;

    package void testAllocator(alias make)()
    {
        import std.conv : text;
        import std.math : isPowerOf2;
        import std.stdio : writeln, stderr;
        import std.typecons : Ternary;
        alias A = typeof(make());
        scope(failure) stderr.writeln("testAllocator failed for ", A.stringof);

        auto a = make();

        // Test alignment
        static assert(A.alignment.isPowerOf2);

        // Test goodAllocSize
        assert(a.goodAllocSize(1) >= A.alignment,
                text(a.goodAllocSize(1), " < ", A.alignment));
        assert(a.goodAllocSize(11) >= 11.roundUpToMultipleOf(A.alignment));
        assert(a.goodAllocSize(111) >= 111.roundUpToMultipleOf(A.alignment));

        // Test allocate
        assert(a.allocate(0) is null);

        auto b1 = a.allocate(1);
        assert(b1.length == 1);
        auto b2 = a.allocate(2);
        assert(b2.length == 2);
        assert(b2.ptr + b2.length <= b1.ptr || b1.ptr + b1.length <= b2.ptr);

        // Test alignedAllocate
        static if (hasMember!(A, "alignedAllocate"))
        {{
             auto b3 = a.alignedAllocate(1, 256);
             assert(b3.length <= 1);
             assert(b3.ptr.alignedAt(256));
             assert(a.alignedReallocate(b3, 2, 512));
             assert(b3.ptr.alignedAt(512));
             static if (hasMember!(A, "alignedDeallocate"))
             {
                 a.alignedDeallocate(b3);
             }
         }}
        else
        {
            static assert(!hasMember!(A, "alignedDeallocate"));
            // This seems to be a bug in the compiler:
            //static assert(!hasMember!(A, "alignedReallocate"), A.stringof);
        }

        static if (hasMember!(A, "allocateAll"))
        {{
             auto aa = make();
             if (aa.allocateAll().ptr)
             {
                 // Can't get any more memory
                 assert(!aa.allocate(1).ptr);
             }
             auto ab = make();
             const b4 = ab.allocateAll();
             assert(b4.length);
             // Can't get any more memory
             assert(!ab.allocate(1).ptr);
         }}

        static if (hasMember!(A, "expand"))
        {{
             assert(a.expand(b1, 0));
             auto len = b1.length;
             if (a.expand(b1, 102))
             {
                 assert(b1.length == len + 102, text(b1.length, " != ", len + 102));
             }
             auto aa = make();
             void[] b5 = null;
             assert(aa.expand(b5, 0));
             assert(b5 is null);
             assert(!aa.expand(b5, 1));
             assert(b5.length == 0);
         }}

        void[] b6 = null;
        assert(a.reallocate(b6, 0));
        assert(b6.length == 0);
        assert(a.reallocate(b6, 1));
        assert(b6.length == 1, text(b6.length));
        assert(a.reallocate(b6, 2));
        assert(b6.length == 2);

        // Test owns
        static if (hasMember!(A, "owns"))
        {{
             assert(a.owns(null) == Ternary.no);
             assert(a.owns(b1) == Ternary.yes);
             assert(a.owns(b2) == Ternary.yes);
             assert(a.owns(b6) == Ternary.yes);
         }}

        static if (hasMember!(A, "resolveInternalPointer"))
        {{
             void[] p;
             assert(a.resolveInternalPointer(null, p) == Ternary.no);
             Ternary r = a.resolveInternalPointer(b1.ptr, p);
             assert(p.ptr is b1.ptr && p.length >= b1.length);
             r = a.resolveInternalPointer(b1.ptr + b1.length / 2, p);
             assert(p.ptr is b1.ptr && p.length >= b1.length);
             r = a.resolveInternalPointer(b2.ptr, p);
             assert(p.ptr is b2.ptr && p.length >= b2.length);
             r = a.resolveInternalPointer(b2.ptr + b2.length / 2, p);
             assert(p.ptr is b2.ptr && p.length >= b2.length);
             r = a.resolveInternalPointer(b6.ptr, p);
             assert(p.ptr is b6.ptr && p.length >= b6.length);
             r = a.resolveInternalPointer(b6.ptr + b6.length / 2, p);
             assert(p.ptr is b6.ptr && p.length >= b6.length);
             static int[10] b7 = [ 1, 2, 3 ];
             assert(a.resolveInternalPointer(b7.ptr, p) == Ternary.no);
             assert(a.resolveInternalPointer(b7.ptr + b7.length / 2, p) == Ternary.no);
             assert(a.resolveInternalPointer(b7.ptr + b7.length, p) == Ternary.no);
             int[3] b8 = [ 1, 2, 3 ];
             assert(a.resolveInternalPointer(b8.ptr, p) == Ternary.no);
             assert(a.resolveInternalPointer(b8.ptr + b8.length / 2, p) == Ternary.no);
             assert(a.resolveInternalPointer(b8.ptr + b8.length, p) == Ternary.no);
         }}
    }

    package void testAllocatorObject(AllocInterface)(AllocInterface a)
        if (is(AllocInterface : IAllocator)
            || is (AllocInterface : shared ISharedAllocator))
    {
        import std.conv : text;
        import std.math : isPowerOf2;
        import std.stdio : writeln, stderr;
        import std.typecons : Ternary;
        scope(failure) stderr.writeln("testAllocatorObject failed for ",
                AllocInterface.stringof);

        assert(a);

        // Test alignment
        assert(a.alignment.isPowerOf2);

        // Test goodAllocSize
        assert(a.goodAllocSize(1) >= a.alignment,
                text(a.goodAllocSize(1), " < ", a.alignment));
        assert(a.goodAllocSize(11) >= 11.roundUpToMultipleOf(a.alignment));
        assert(a.goodAllocSize(111) >= 111.roundUpToMultipleOf(a.alignment));

        // Test empty
        assert(a.empty != Ternary.no);

        // Test allocate
        assert(a.allocate(0) is null);

        auto b1 = a.allocate(1);
        assert(b1.length == 1);
        auto b2 = a.allocate(2);
        assert(b2.length == 2);
        assert(b2.ptr + b2.length <= b1.ptr || b1.ptr + b1.length <= b2.ptr);

        // Test alignedAllocate
        {
            // If not implemented it will return null, so those should pass
            auto b3 = a.alignedAllocate(1, 256);
            assert(b3.length <= 1);
            assert(b3.ptr.alignedAt(256));
            if (a.alignedReallocate(b3, 1, 256))
            {
                // If it is false, then the wrapped allocator did not implement
                // this
                assert(a.alignedReallocate(b3, 2, 512));
                assert(b3.ptr.alignedAt(512));
            }
        }

        // Test allocateAll
        {
            auto aa = a.allocateAll();
            if (aa.ptr)
            {
                // Can't get any more memory
                assert(!a.allocate(1).ptr);
                a.deallocate(aa);
            }
            const b4 = a.allocateAll();
            if (b4.ptr)
            {
                // Can't get any more memory
                assert(!a.allocate(1).ptr);
            }
        }

        // Test expand
        {
            assert(a.expand(b1, 0));
            auto len = b1.length;
            if (a.expand(b1, 102))
            {
                assert(b1.length == len + 102, text(b1.length, " != ", len + 102));
            }
        }

        void[] b6 = null;
        assert(a.reallocate(b6, 0));
        assert(b6.length == 0);
        assert(a.reallocate(b6, 1));
        assert(b6.length == 1, text(b6.length));
        assert(a.reallocate(b6, 2));
        assert(b6.length == 2);

        // Test owns
        {
            if (a.owns(null) != Ternary.unknown)
            {
                assert(a.owns(null) == Ternary.no);
                assert(a.owns(b1) == Ternary.yes);
                assert(a.owns(b2) == Ternary.yes);
                assert(a.owns(b6) == Ternary.yes);
            }
        }

        // Test resolveInternalPointer
        {
            void[] p;
            if (a.resolveInternalPointer(null, p) != Ternary.unknown)
            {
                assert(a.resolveInternalPointer(null, p) == Ternary.no);
                Ternary r = a.resolveInternalPointer(b1.ptr, p);
                assert(p.ptr is b1.ptr && p.length >= b1.length);
                r = a.resolveInternalPointer(b1.ptr + b1.length / 2, p);
                assert(p.ptr is b1.ptr && p.length >= b1.length);
                r = a.resolveInternalPointer(b2.ptr, p);
                assert(p.ptr is b2.ptr && p.length >= b2.length);
                r = a.resolveInternalPointer(b2.ptr + b2.length / 2, p);
                assert(p.ptr is b2.ptr && p.length >= b2.length);
                r = a.resolveInternalPointer(b6.ptr, p);
                assert(p.ptr is b6.ptr && p.length >= b6.length);
                r = a.resolveInternalPointer(b6.ptr + b6.length / 2, p);
                assert(p.ptr is b6.ptr && p.length >= b6.length);
                static int[10] b7 = [ 1, 2, 3 ];
                assert(a.resolveInternalPointer(b7.ptr, p) == Ternary.no);
                assert(a.resolveInternalPointer(b7.ptr + b7.length / 2, p) == Ternary.no);
                assert(a.resolveInternalPointer(b7.ptr + b7.length, p) == Ternary.no);
                int[3] b8 = [ 1, 2, 3 ];
                assert(a.resolveInternalPointer(b8.ptr, p) == Ternary.no);
                assert(a.resolveInternalPointer(b8.ptr + b8.length / 2, p) == Ternary.no);
                assert(a.resolveInternalPointer(b8.ptr + b8.length, p) == Ternary.no);
            }
        }

        // Test deallocateAll
        {
            if (a.deallocateAll())
            {
                if (a.empty != Ternary.unknown)
                {
                    assert(a.empty == Ternary.yes);
                }
            }
        }
    }
}