Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/* Utility functions for reading gcda files into in-memory
   gcov_info structures and offline profile processing. */
/* Copyright (C) 2014-2020 Free Software Foundation, Inc.
   Contributed by Rong Xu <xur@google.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */


#define IN_GCOV_TOOL 1

#include "libgcov.h"
#include "intl.h"
#include "diagnostic.h"
#include "version.h"
#include "demangle.h"
#include "gcov-io.h"

/* Borrowed from basic-block.h.  */
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

extern gcov_position_t gcov_position();
extern int gcov_is_error();

/* Verbose mode for debug.  */
static int verbose;

/* Set verbose flag.  */
void gcov_set_verbose (void)
{
  verbose = 1;
}

/* The following part is to read Gcda and reconstruct GCOV_INFO.  */

#include "obstack.h"
#include <unistd.h>
#ifdef HAVE_FTW_H
#include <ftw.h>
#endif

static void tag_function (unsigned, unsigned);
static void tag_blocks (unsigned, unsigned);
static void tag_arcs (unsigned, unsigned);
static void tag_lines (unsigned, unsigned);
static void tag_counters (unsigned, unsigned);
static void tag_summary (unsigned, unsigned);

/* The gcov_info for the first module.  */
static struct gcov_info *curr_gcov_info;
/* The gcov_info being processed.  */
static struct gcov_info *gcov_info_head;
/* This variable contains all the functions in current module.  */
static struct obstack fn_info;
/* The function being processed.  */
static struct gcov_fn_info *curr_fn_info;
/* The number of functions seen so far.  */
static unsigned num_fn_info;
/* This variable contains all the counters for current module.  */
static int k_ctrs_mask[GCOV_COUNTERS];
/* The kind of counters that have been seen.  */
static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS];
/* Number of kind of counters that have been seen.  */
static int k_ctrs_types;
/* The object summary being processed.  */
static struct gcov_summary *curr_object_summary;

/* Merge functions for counters.  */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE,
static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER

/* Set the ctrs field in gcov_fn_info object FN_INFO.  */

static void
set_fn_ctrs (struct gcov_fn_info *fn_info)
{
  int j = 0, i;

  for (i = 0; i < GCOV_COUNTERS; i++)
    {
      if (k_ctrs_mask[i] == 0)
        continue;
      fn_info->ctrs[j].num = k_ctrs[i].num;
      fn_info->ctrs[j].values = k_ctrs[i].values;
      j++;
    }
  if (k_ctrs_types == 0)
    k_ctrs_types = j;
  else
    gcc_assert (j == k_ctrs_types);
}

/* For each tag in gcda file, we have an entry here.
   TAG is the tag value; NAME is the tag name; and
   PROC is the handler function.  */

typedef struct tag_format
{
    unsigned tag;
    char const *name;
    void (*proc) (unsigned, unsigned);
} tag_format_t;

/* Handler table for various Tags.  */

static const tag_format_t tag_table[] =
{
  {0, "NOP", NULL},
  {0, "UNKNOWN", NULL},
  {0, "COUNTERS", tag_counters},
  {GCOV_TAG_FUNCTION, "FUNCTION", tag_function},
  {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks},
  {GCOV_TAG_ARCS, "ARCS", tag_arcs},
  {GCOV_TAG_LINES, "LINES", tag_lines},
  {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
  {0, NULL, NULL}
};

/* Handler for reading function tag.  */

static void
tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  int i;

  /* write out previous fn_info.  */
  if (num_fn_info)
    {
      set_fn_ctrs (curr_fn_info);
      obstack_ptr_grow (&fn_info, curr_fn_info);
    }

  /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active
     counter types.  */
  curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info)
                   + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1);

  for (i = 0; i < GCOV_COUNTERS; i++)
     k_ctrs[i].num = 0;
  k_ctrs_types = 0;

  curr_fn_info->key = curr_gcov_info;
  curr_fn_info->ident = gcov_read_unsigned ();
  curr_fn_info->lineno_checksum = gcov_read_unsigned ();
  curr_fn_info->cfg_checksum = gcov_read_unsigned ();
  num_fn_info++;

  if (verbose)
    fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident);
}

/* Handler for reading block tag.  */

static void
tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading flow arc tag.  */

static void
tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading line tag.  */

static void
tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading counters array tag with value as TAG and length of LENGTH.  */

static void
tag_counters (unsigned tag, unsigned length)
{
  unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
  gcov_type *values;
  unsigned ix;
  unsigned tag_ix;

  tag_ix = GCOV_COUNTER_FOR_TAG (tag);
  gcc_assert (tag_ix < GCOV_COUNTERS);
  k_ctrs_mask [tag_ix] = 1;
  gcc_assert (k_ctrs[tag_ix].num == 0);
  k_ctrs[tag_ix].num = n_counts;

  k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type));
  gcc_assert (values);

  for (ix = 0; ix != n_counts; ix++)
    values[ix] = gcov_read_counter ();
}

/* Handler for reading summary tag.  */

static void
tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  curr_object_summary = (gcov_summary *) xcalloc (sizeof (gcov_summary), 1);
  gcov_read_summary (curr_object_summary);
}

/* This function is called at the end of reading a gcda file.
   It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO.  */

static void
read_gcda_finalize (struct gcov_info *obj_info)
{
  int i;

  set_fn_ctrs (curr_fn_info);
  obstack_ptr_grow (&fn_info, curr_fn_info);

  /* We set the following fields: merge, n_functions, functions
     and summary.  */
  obj_info->n_functions = num_fn_info;
  obj_info->functions = (const struct gcov_fn_info**) obstack_finish (&fn_info);

  /* wrap all the counter array.  */
  for (i=0; i< GCOV_COUNTERS; i++)
    {
      if (k_ctrs_mask[i])
        obj_info->merge[i] = ctr_merge_functions[i];
    }
}

/* Read the content of a gcda file FILENAME, and return a gcov_info data structure.
   Program level summary CURRENT_SUMMARY will also be updated.  */

static struct gcov_info *
read_gcda_file (const char *filename)
{
  unsigned tags[4];
  unsigned depth = 0;
  unsigned version;
  struct gcov_info *obj_info;
  int i;

  for (i=0; i< GCOV_COUNTERS; i++)
    k_ctrs_mask[i] = 0;
  k_ctrs_types = 0;

  if (!gcov_open (filename))
    {
      fnotice (stderr, "%s:cannot open\n", filename);
      return NULL;
    }

  /* Read magic.  */
  if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC))
    {
      fnotice (stderr, "%s:not a gcov data file\n", filename);
      gcov_close ();
      return NULL;
    }

  /* Read version.  */
  version = gcov_read_unsigned ();
  if (version != GCOV_VERSION)
    {
      fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION);
      gcov_close ();
      return NULL;
    }

  /* Instantiate a gcov_info object.  */
  curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) +
             sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1);

  obj_info->version = version;
  obstack_init (&fn_info);
  num_fn_info = 0;
  curr_fn_info = 0;
  curr_object_summary = NULL;
  {
    size_t len = strlen (filename) + 1;
    char *str_dup = (char*) xmalloc (len);

    memcpy (str_dup, filename, len);
    obj_info->filename = str_dup;
  }

  /* Read stamp.  */
  obj_info->stamp = gcov_read_unsigned ();

  while (1)
    {
      gcov_position_t base;
      unsigned tag, length;
      tag_format_t const *format;
      unsigned tag_depth;
      int error;
      unsigned mask;

      tag = gcov_read_unsigned ();
      if (!tag)
        break;
      length = gcov_read_unsigned ();
      base = gcov_position ();
      mask = GCOV_TAG_MASK (tag) >> 1;
      for (tag_depth = 4; mask; mask >>= 8)
        {
          if (((mask & 0xff) != 0xff))
            {
	      warning (0, "%s:tag %qx is invalid", filename, tag);
              break;
            }
          tag_depth--;
        }
      for (format = tag_table; format->name; format++)
        if (format->tag == tag)
          goto found;
      format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1];
    found:;
      if (tag)
        {
          if (depth && depth < tag_depth)
            {
              if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag))
	        warning (0, "%s:tag %qx is incorrectly nested",
                         filename, tag);
            }
          depth = tag_depth;
          tags[depth - 1] = tag;
        }

      if (format->proc)
        {
          unsigned long actual_length;

          (*format->proc) (tag, length);

          actual_length = gcov_position () - base;
          if (actual_length > length)
	    warning (0, "%s:record size mismatch %lu bytes overread",
                     filename, actual_length - length);
          else if (length > actual_length)
	    warning (0, "%s:record size mismatch %lu bytes unread",
                     filename, length - actual_length);
       }

      gcov_sync (base, length);
      if ((error = gcov_is_error ()))
        {
	  warning (0, error < 0 ? "%s:counter overflow at %lu" :
	                          "%s:read error at %lu", filename,
                   (long unsigned) gcov_position ());
          break;
        }
    }

  read_gcda_finalize (obj_info);
  gcov_close ();

  return obj_info;
}

#ifdef HAVE_FTW_H
/* This will be called by ftw(). It opens and read a gcda file FILENAME.
   Return a non-zero value to stop the tree walk.  */

static int
ftw_read_file (const char *filename,
               const struct stat *status ATTRIBUTE_UNUSED,
               int type)
{
  int filename_len;
  int suffix_len;
  struct gcov_info *obj_info;

  /* Only read regular files.  */
  if (type != FTW_F)
    return 0;

  filename_len = strlen (filename);
  suffix_len = strlen (GCOV_DATA_SUFFIX);

  if (filename_len <= suffix_len)
    return 0;

  if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX))
    return 0;

  if (verbose)
    fnotice (stderr, "reading file: %s\n", filename);

  obj_info = read_gcda_file (filename);
  if (!obj_info)
    return 0;

  obj_info->next = gcov_info_head;
  gcov_info_head = obj_info;

  return 0;
}
#endif

/* Initializer for reading a profile dir.  */

static inline void
read_profile_dir_init (void)
{
  gcov_info_head = 0;
}

/* Driver for read a profile directory and convert into gcov_info list in memory.
   Return NULL on error,
   Return the head of gcov_info list on success.  */

struct gcov_info *
gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED)
{
  char *pwd;
  int ret;

  read_profile_dir_init ();

  if (access (dir_name, R_OK) != 0)
    {
      fnotice (stderr, "cannot access directory %s\n", dir_name);
      return NULL;
    }
  pwd = getcwd (NULL, 0);
  gcc_assert (pwd);
  ret = chdir (dir_name);
  if (ret !=0)
    {
      fnotice (stderr, "%s is not a directory\n", dir_name);
      return NULL;
    }
#ifdef HAVE_FTW_H
  ftw (".", ftw_read_file, 50);
#endif
  chdir (pwd);
  free (pwd);

  return gcov_info_head;;
}

/* This part of the code is to merge profile counters. These
   variables are set in merge_wrapper and to be used by
   global function gcov_read_counter_mem() and gcov_get_merge_weight.  */

/* We save the counter value address to this variable.  */
static gcov_type *gcov_value_buf;

/* The number of counter values to be read by current merging.  */
static gcov_unsigned_t gcov_value_buf_size;

/* The index of counter values being read.  */
static gcov_unsigned_t gcov_value_buf_pos;

/* The weight of current merging.  */
static unsigned gcov_merge_weight;

/* Read a counter value from gcov_value_buf array.  */

gcov_type
gcov_read_counter_mem (void)
{
  gcov_type ret;
  gcc_assert (gcov_value_buf_pos < gcov_value_buf_size);
  ret = *(gcov_value_buf + gcov_value_buf_pos);
  ++gcov_value_buf_pos;
  return ret;
}

/* Return the recorded merge weight.  */

unsigned
gcov_get_merge_weight (void)
{
  return gcov_merge_weight;
}

/* A wrapper function for merge functions. It sets up the
   value buffer and weights and then calls the merge function.  */

static void
merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n,
               gcov_type *v2, unsigned w)
{
  gcov_value_buf = v2;
  gcov_value_buf_pos = 0;
  gcov_value_buf_size = n;
  gcov_merge_weight = w;
  (*f) (v1, n);
}

/* Offline tool to manipulate profile data.
   This tool targets on matched profiles. But it has some tolerance on
   unmatched profiles.
   When merging p1 to p2 (p2 is the dst),
   * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight;
     emit warning
   * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by
     specified weight; emit warning.
   * m.gcda in both p1 and p2:
   ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge.
   ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep
      p2->m.gcda->f and
      drop p1->m.gcda->f. A warning is emitted.  */

/* Add INFO2's counter to INFO1, multiplying by weight W.  */

static int
gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w)
{
  unsigned f_ix;
  unsigned n_functions = info1->n_functions;
  int has_mismatch = 0;

  gcc_assert (info2->n_functions == n_functions);
  for (f_ix = 0; f_ix < n_functions; f_ix++)
    {
      unsigned t_ix;
      const struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix];
      const struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix];
      const struct gcov_ctr_info *ci_ptr1, *ci_ptr2;

      if (!gfi_ptr1 || gfi_ptr1->key != info1)
        continue;
      if (!gfi_ptr2 || gfi_ptr2->key != info2)
        continue;

      if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum)
        {
          fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n",
                  info1->filename);
          has_mismatch = 1;
          continue;
        }
      ci_ptr1 = gfi_ptr1->ctrs;
      ci_ptr2 = gfi_ptr2->ctrs;
      for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
        {
          gcov_merge_fn merge1 = info1->merge[t_ix];
          gcov_merge_fn merge2 = info2->merge[t_ix];

          gcc_assert (merge1 == merge2);
          if (!merge1)
            continue;
          gcc_assert (ci_ptr1->num == ci_ptr2->num);
          merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, ci_ptr2->values, w);
          ci_ptr1++;
          ci_ptr2++;
        }
    }

  return has_mismatch;
}

/* Find and return the match gcov_info object for INFO from ARRAY.
   SIZE is the length of ARRAY.
   Return NULL if there is no match.  */

static struct gcov_info *
find_match_gcov_info (struct gcov_info **array, int size,
		      struct gcov_info *info)
{
  struct gcov_info *gi_ptr;
  struct gcov_info *ret = NULL;
  int i;

  for (i = 0; i < size; i++)
    {
      gi_ptr = array[i];
      if (gi_ptr == 0)
        continue;
      if (!strcmp (gi_ptr->filename, info->filename))
        {
          ret = gi_ptr;
          array[i] = 0;
          break;
        }
    }

  if (ret && ret->n_functions != info->n_functions)
    {
      fnotice (stderr, "mismatched profiles in %s (%d functions"
                       " vs %d functions)\n",
                       ret->filename,
                       ret->n_functions,
                       info->n_functions);
      ret = NULL;
    }
  return ret;
}

/* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE.
   Return 0 on success: without mismatch.
   Reutrn 1 on error.  */

int
gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile,
                    int w1, int w2)
{
  struct gcov_info *gi_ptr;
  struct gcov_info **tgt_infos;
  struct gcov_info *tgt_tail;
  struct gcov_info **in_src_not_tgt;
  unsigned tgt_cnt = 0, src_cnt = 0;
  unsigned unmatch_info_cnt = 0;
  unsigned int i;

  for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next)
    tgt_cnt++;
  for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
    src_cnt++;
  tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
                 * tgt_cnt);
  gcc_assert (tgt_infos);
  in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
                     * src_cnt);
  gcc_assert (in_src_not_tgt);

  for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++)
    tgt_infos[i] = gi_ptr;

  tgt_tail = tgt_infos[tgt_cnt - 1];

  /* First pass on tgt_profile, we multiply w1 to all counters.  */
  if (w1 > 1)
    {
       for (i = 0; i < tgt_cnt; i++)
         gcov_merge (tgt_infos[i], tgt_infos[i], w1-1);
    }

  /* Second pass, add src_profile to the tgt_profile.  */
  for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
    {
      struct gcov_info *gi_ptr1;

      gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr);
      if (gi_ptr1 == NULL)
        {
          in_src_not_tgt[unmatch_info_cnt++] = gi_ptr;
          continue;
        }
      gcov_merge (gi_ptr1, gi_ptr, w2);
    }

  /* For modules in src but not in tgt. We adjust the counter and append.  */
  for (i = 0; i < unmatch_info_cnt; i++)
    {
      gi_ptr = in_src_not_tgt[i];
      gcov_merge (gi_ptr, gi_ptr, w2 - 1);
      gi_ptr->next = NULL;
      tgt_tail->next = gi_ptr;
      tgt_tail = gi_ptr;
    }

  free (in_src_not_tgt);
  free (tgt_infos);

  return 0;
}

typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*);

/* Performing FN upon arc counters.  */

static void
__gcov_add_counter_op (gcov_type *counters, unsigned n_counters,
                       counter_op_fn fn, void *data1, void *data2)
{
  for (; n_counters; counters++, n_counters--)
    {
      gcov_type val = *counters;
      *counters = fn(val, data1, data2);
    }
}

/* Performing FN upon ior counters.  */

static void
__gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
                       unsigned n_counters ATTRIBUTE_UNUSED,
                       counter_op_fn fn ATTRIBUTE_UNUSED,
                       void *data1 ATTRIBUTE_UNUSED,
                       void *data2 ATTRIBUTE_UNUSED)
{
  /* Do nothing.  */
}

/* Performing FN upon time-profile counters.  */

static void
__gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
                                unsigned n_counters ATTRIBUTE_UNUSED,
                                counter_op_fn fn ATTRIBUTE_UNUSED,
                                void *data1 ATTRIBUTE_UNUSED,
                                void *data2 ATTRIBUTE_UNUSED)
{
  /* Do nothing.  */
}

/* Performing FN upon TOP N counters.  */

static void
__gcov_topn_counter_op (gcov_type *counters, unsigned n_counters,
			counter_op_fn fn, void *data1, void *data2)
{
  unsigned i, n_measures;

  gcc_assert (!(n_counters % 3));
  n_measures = n_counters / 3;
  for (i = 0; i < n_measures; i++, counters += 3)
    {
      counters[1] = fn (counters[1], data1, data2);
      counters[2] = fn (counters[2], data1, data2);
    }
}

/* Scaling the counter value V by multiplying *(float*) DATA1.  */

static gcov_type
fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED)
{
  float f = *(float *) data1;
  return (gcov_type) (v * f);
}

/* Scaling the counter value V by multiplying DATA2/DATA1.  */

static gcov_type
int_scale (gcov_type v, void *data1, void *data2)
{
  int n = *(int *) data1;
  int d = *(int *) data2;
  return (gcov_type) ( RDIV (v,d) * n);
}

/* Type of function used to process counters.  */
typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t,
                          counter_op_fn, void *, void *);

/* Function array to process profile counters.  */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \
  __gcov ## FN_TYPE ## _counter_op,
static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER

/* Driver for scaling profile counters.  */

int
gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d)
{
  struct gcov_info *gi_ptr;
  unsigned f_ix;

  if (verbose)
    fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d);

  /* Scaling the counters.  */
  for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
    for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
      {
        unsigned t_ix;
        const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
        const struct gcov_ctr_info *ci_ptr;

        if (!gfi_ptr || gfi_ptr->key != gi_ptr)
          continue;

        ci_ptr = gfi_ptr->ctrs;
        for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
          {
            gcov_merge_fn merge = gi_ptr->merge[t_ix];

            if (!merge)
              continue;
            if (d == 0)
              (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
                                      fp_scale, &scale_factor, NULL);
            else
              (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
                                      int_scale, &n, &d);
            ci_ptr++;
          }
      }

  return 0;
}

/* Driver to normalize profile counters.  */

int
gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val)
{
  struct gcov_info *gi_ptr;
  gcov_type curr_max_val = 0;
  unsigned f_ix;
  unsigned int i;
  float scale_factor;

  /* Find the largest count value.  */
  for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
    for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
      {
        unsigned t_ix;
        const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
        const struct gcov_ctr_info *ci_ptr;

        if (!gfi_ptr || gfi_ptr->key != gi_ptr)
          continue;

        ci_ptr = gfi_ptr->ctrs;
        for (t_ix = 0; t_ix < 1; t_ix++)
          {
            for (i = 0; i < ci_ptr->num; i++)
              if (ci_ptr->values[i] > curr_max_val)
                curr_max_val = ci_ptr->values[i];
            ci_ptr++;
          }
      }

  scale_factor = (float)max_val / curr_max_val;
  if (verbose)
    fnotice (stdout, "max_val is %" PRId64 "\n", curr_max_val);

  return gcov_profile_scale (profile, scale_factor, 0, 0);
}

/* The following variables are defined in gcc/gcov-tool.c.  */
extern int overlap_func_level;
extern int overlap_obj_level;
extern int overlap_hot_only;
extern int overlap_use_fullname;
extern double overlap_hot_threshold;

/* Compute the overlap score of two values. The score is defined as:
    min (V1/SUM_1, V2/SUM_2)  */

static double
calculate_2_entries (const unsigned long v1, const unsigned long v2,
                     const double sum_1, const double sum_2)
{
  double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1);
  double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2);

  if (val2 < val1)
    val1 = val2;

  return val1;
}

/*  Compute the overlap score between GCOV_INFO1 and GCOV_INFO2.
    This function also updates cumulative score CUM_1_RESULT and
    CUM_2_RESULT.  */

static double
compute_one_gcov (const struct gcov_info *gcov_info1,
                  const struct gcov_info *gcov_info2,
                  const double sum_1, const double sum_2,
                  double *cum_1_result, double *cum_2_result)
{
  unsigned f_ix;
  double ret = 0;
  double cum_1 = 0, cum_2 = 0;
  const struct gcov_info *gcov_info = 0;
  double *cum_p;
  double sum;

  gcc_assert (gcov_info1 || gcov_info2);
  if (!gcov_info1)
    {
      gcov_info = gcov_info2;
      cum_p = cum_2_result;
      sum = sum_2;
      *cum_1_result = 0;
    } else
  if (!gcov_info2)
    {
      gcov_info = gcov_info1;
      cum_p = cum_1_result;
      sum = sum_1;
      *cum_2_result = 0;
    }

  if (gcov_info)
  {
    for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
      {
        const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
        if (!gfi_ptr || gfi_ptr->key != gcov_info)
          continue;
        const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
	unsigned c_num;
	for (c_num = 0; c_num < ci_ptr->num; c_num++)
	  cum_1 += ci_ptr->values[c_num] / sum;
      }
    *cum_p = cum_1;
    return 0.0;
  }

  for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++)
    {
      double func_cum_1 = 0.0;
      double func_cum_2 = 0.0;
      double func_val = 0.0;
      int nonzero = 0;
      int hot = 0;
      const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix];
      const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix];

      if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1)
        continue;
      if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2)
        continue;

      const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs;
      const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs;
      unsigned c_num;
      for (c_num = 0; c_num < ci_ptr1->num; c_num++)
	{
	  if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num])
	    {
	      func_val += calculate_2_entries (ci_ptr1->values[c_num],
					       ci_ptr2->values[c_num],
					       sum_1, sum_2);

	      func_cum_1 += ci_ptr1->values[c_num] / sum_1;
	      func_cum_2 += ci_ptr2->values[c_num] / sum_2;
	      nonzero = 1;
	      if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold
		  || ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold)
		hot = 1;
	    }
	}

      ret += func_val;
      cum_1 += func_cum_1;
      cum_2 += func_cum_2;
      if (overlap_func_level && nonzero && (!overlap_hot_only || hot))
        {
          printf("   \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n",
                 gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100);
        }
    }
  *cum_1_result = cum_1;
  *cum_2_result = cum_2;
  return ret;
}

/* Test if all counter values in this GCOV_INFO are cold.
   "Cold" is defined as the counter value being less than
   or equal to THRESHOLD.  */

static bool
gcov_info_count_all_cold (const struct gcov_info *gcov_info,
                          gcov_type threshold)
{
  unsigned f_ix;

  for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
    {
      const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];

      if (!gfi_ptr || gfi_ptr->key != gcov_info)
        continue;
      const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
      for (unsigned c_num = 0; c_num < ci_ptr->num; c_num++)
	if (ci_ptr->values[c_num] > threshold)
	  return false;
    }

  return true;
}

/* Test if all counter values in this GCOV_INFO are 0.  */

static bool
gcov_info_count_all_zero (const struct gcov_info *gcov_info)
{
  return gcov_info_count_all_cold (gcov_info, 0);
}

/* A pair of matched GCOV_INFO.
   The flag is a bitvector:
     b0: obj1's all counts are 0;
     b1: obj1's all counts are cold (but no 0);
     b2: obj1 is hot;
     b3: no obj1 to match obj2;
     b4: obj2's all counts are 0;
     b5: obj2's all counts are cold (but no 0);
     b6: obj2 is hot;
     b7: no obj2 to match obj1;
 */
struct overlap_t {
   const struct gcov_info *obj1;
   const struct gcov_info *obj2;
   char flag;
};

#define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10))
#define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20))
#define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40))

/* Cumlative overlap dscore for profile1 and profile2.  */
static double overlap_sum_1, overlap_sum_2;

/* The number of gcda files in the profiles.  */
static unsigned gcda_files[2];

/* The number of unique gcda files in the profiles
   (not existing in the other profile).  */
static unsigned unique_gcda_files[2];

/* The number of gcda files that all counter values are 0.  */
static unsigned zero_gcda_files[2];

/* The number of gcda files that all counter values are cold (but not 0).  */
static unsigned cold_gcda_files[2];

/* The number of gcda files that includes hot counter values.  */
static unsigned hot_gcda_files[2];

/* The number of gcda files with hot count value in either profiles.  */
static unsigned both_hot_cnt;

/* The number of gcda files with all counts cold (but not 0) in
   both profiles. */
static unsigned both_cold_cnt;

/* The number of gcda files with all counts 0 in both profiles.  */
static unsigned both_zero_cnt;

/* Extract the basename of the filename NAME.  */

static char *
extract_file_basename (const char *name)
{
  char *str;
  int len = 0;
  char *path = xstrdup (name);
  char sep_str[2];

  sep_str[0] = DIR_SEPARATOR;
  sep_str[1] = 0;
  str = strstr(path, sep_str);
  do{
      len = strlen(str) + 1;
      path = &path[strlen(path) - len + 2];
      str = strstr(path, sep_str);
  } while(str);

  return path;
}

/* Utility function to get the filename.  */

static const char *
get_file_basename (const char *name)
{
  if (overlap_use_fullname)
    return name;
  return extract_file_basename (name);
}

/* A utility function to set the flag for the gcda files.  */

static void
set_flag (struct overlap_t *e)
{
  char flag = 0;

  if (!e->obj1)
    {
      unique_gcda_files[1]++;
      flag = 0x8;
    }
  else
    {
      gcda_files[0]++;
      if (gcov_info_count_all_zero (e->obj1))
        {
          zero_gcda_files[0]++;
          flag = 0x1;
        }
      else
      if (gcov_info_count_all_cold (e->obj1, overlap_sum_1
			      * overlap_hot_threshold))
        {
          cold_gcda_files[0]++;
          flag = 0x2;
        }
      else
        {
          hot_gcda_files[0]++;
          flag = 0x4;
        }
    }

  if (!e->obj2)
    {
      unique_gcda_files[0]++;
      flag |= (0x8 << 4);
    }
  else
    {
      gcda_files[1]++;
      if (gcov_info_count_all_zero (e->obj2))
        {
          zero_gcda_files[1]++;
          flag |= (0x1 << 4);
        }
      else
      if (gcov_info_count_all_cold (e->obj2, overlap_sum_2
			      * overlap_hot_threshold))
        {
          cold_gcda_files[1]++;
          flag |= (0x2 << 4);
        }
      else
        {
          hot_gcda_files[1]++;
          flag |= (0x4 << 4);
        }
    }

  gcc_assert (flag);
  e->flag = flag;
}

/* Test if INFO1 and INFO2 are from the matched source file.
   Return 1 if they match; return 0 otherwise.  */

static int
matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2)
{
  /* For FDO, we have to match the name. This can be expensive.
     Maybe we should use hash here.  */
  if (strcmp (info1->filename, info2->filename))
    return 0;

  if (info1->n_functions != info2->n_functions)
    {
      fnotice (stderr, "mismatched profiles in %s (%d functions"
                       " vs %d functions)\n",
                       info1->filename,
                       info1->n_functions,
                       info2->n_functions);
      return 0;
    }
  return 1;
}

/* Compute the overlap score of two profiles with the head of GCOV_LIST1 and
   GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no
   match and 1.0 meaning a perfect match.  */

static double
calculate_overlap (struct gcov_info *gcov_list1,
                   struct gcov_info *gcov_list2)
{
  unsigned list1_cnt = 0, list2_cnt= 0, all_cnt;
  unsigned int i, j;
  const struct gcov_info *gi_ptr;
  struct overlap_t *all_infos;

  for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next)
    list1_cnt++;
  for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next)
    list2_cnt++;
  all_cnt = list1_cnt + list2_cnt;
  all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t)
               * all_cnt * 2);
  gcc_assert (all_infos);

  i = 0;
  for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++)
    {
      all_infos[i].obj1 = gi_ptr;
      all_infos[i].obj2 = 0;
    }

  for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++)
    {
      all_infos[i].obj1 = 0;
      all_infos[i].obj2 = gi_ptr;
    }

  for (i = list1_cnt; i < all_cnt; i++)
    {
      if (all_infos[i].obj2 == 0)
        continue;
      for (j = 0; j < list1_cnt; j++)
        {
          if (all_infos[j].obj2 != 0)
            continue;
          if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1))
            {
              all_infos[j].obj2 = all_infos[i].obj2;
              all_infos[i].obj2 = 0;
              break;
            }
        }
    }

  for (i = 0; i < all_cnt; i++)
    if (all_infos[i].obj1 || all_infos[i].obj2)
      {
        set_flag (all_infos + i);
        if (FLAG_ONE_HOT (all_infos[i].flag))
            both_hot_cnt++;
        if (FLAG_BOTH_COLD(all_infos[i].flag))
            both_cold_cnt++;
        if (FLAG_BOTH_ZERO(all_infos[i].flag))
            both_zero_cnt++;
      }

  double prg_val = 0;
  double sum_val = 0;
  double sum_cum_1 = 0;
  double sum_cum_2 = 0;

  for (i = 0; i < all_cnt; i++)
    {
      double val;
      double cum_1, cum_2;
      const char *filename;

      if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0)
        continue;
      if (FLAG_BOTH_ZERO (all_infos[i].flag))
          continue;

      if (all_infos[i].obj1)
        filename = get_file_basename (all_infos[i].obj1->filename);
      else
        filename = get_file_basename (all_infos[i].obj2->filename);

      if (overlap_func_level)
        printf("\n   processing %36s:\n", filename);

      val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2,
          overlap_sum_1, overlap_sum_2, &cum_1, &cum_2);

      if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag)))
        {
          printf("   obj=%36s  overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
                  filename, val*100, cum_1*100, cum_2*100);
          sum_val += val;
          sum_cum_1 += cum_1;
          sum_cum_2 += cum_2;
        }

      prg_val += val;

    }

  free (all_infos);

  if (overlap_obj_level)
    printf("   SUM:%36s  overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
           "", sum_val*100, sum_cum_1*100, sum_cum_2*100);

  printf ("  Statistics:\n"
          "                    profile1_#     profile2_#       overlap_#\n");
  printf ("    gcda files:  %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1],
	  gcda_files[0]-unique_gcda_files[0]);
  printf ("  unique files:  %12u\t%12u\n", unique_gcda_files[0],
	  unique_gcda_files[1]);
  printf ("     hot files:  %12u\t%12u\t%12u\n", hot_gcda_files[0],
	  hot_gcda_files[1], both_hot_cnt);
  printf ("    cold files:  %12u\t%12u\t%12u\n", cold_gcda_files[0],
	  cold_gcda_files[1], both_cold_cnt);
  printf ("    zero files:  %12u\t%12u\t%12u\n", zero_gcda_files[0],
	  zero_gcda_files[1], both_zero_cnt);

  return prg_val;
}

/* Compute the overlap score of two lists of gcov_info objects PROFILE1 and
   PROFILE2.
   Return 0 on success: without mismatch. Reutrn 1 on error.  */

int
gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2)
{
  double result;

  result = calculate_overlap (profile1, profile2);

  if (result > 0)
    {
      printf("\nProgram level overlap result is %3.2f%%\n\n", result*100);
      return 0;
    }
  return 1;
}