Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/* Functions to convert descriptors between CFI and gfortran
   and the CFI function declarations whose prototypes appear
   in ISO_Fortran_binding.h.
   Copyright (C) 2018-2020 Free Software Foundation, Inc.
   Contributed by Daniel Celis Garza  <celisdanieljr@gmail.com>
	       and Paul Thomas  <pault@gcc.gnu.org>

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"
#include <ISO_Fortran_binding.h>
#include <string.h>

extern void cfi_desc_to_gfc_desc (gfc_array_void *, CFI_cdesc_t **);
export_proto(cfi_desc_to_gfc_desc);

void
cfi_desc_to_gfc_desc (gfc_array_void *d, CFI_cdesc_t **s_ptr)
{
  int n;
  index_type kind;
  CFI_cdesc_t *s = *s_ptr;

  if (!s)
    return;

  GFC_DESCRIPTOR_DATA (d) = s->base_addr;
  GFC_DESCRIPTOR_TYPE (d) = (signed char)(s->type & CFI_type_mask);
  kind = (index_type)((s->type - (s->type & CFI_type_mask)) >> CFI_type_kind_shift);

  /* Correct the unfortunate difference in order with types.  */
  if (GFC_DESCRIPTOR_TYPE (d) == BT_CHARACTER)
    GFC_DESCRIPTOR_TYPE (d) = BT_DERIVED;
  else if (GFC_DESCRIPTOR_TYPE (d) == BT_DERIVED)
    GFC_DESCRIPTOR_TYPE (d) = BT_CHARACTER;

  if (!s->rank || s->dim[0].sm == (CFI_index_t)s->elem_len)
    GFC_DESCRIPTOR_SIZE (d) = s->elem_len;
  else if (GFC_DESCRIPTOR_TYPE (d) != BT_DERIVED)
    GFC_DESCRIPTOR_SIZE (d) = kind;
  else
    GFC_DESCRIPTOR_SIZE (d) = s->elem_len;

  d->dtype.version = s->version;
  GFC_DESCRIPTOR_RANK (d) = (signed char)s->rank;

  d->dtype.attribute = (signed short)s->attribute;

  if (s->rank)
    {
      if ((size_t)s->dim[0].sm % s->elem_len)
	d->span = (index_type)s->dim[0].sm;
      else
	d->span = (index_type)s->elem_len;
    }

  d->offset = 0;
  for (n = 0; n < GFC_DESCRIPTOR_RANK (d); n++)
    {
      GFC_DESCRIPTOR_LBOUND(d, n) = (index_type)s->dim[n].lower_bound;
      GFC_DESCRIPTOR_UBOUND(d, n) = (index_type)(s->dim[n].extent
						+ s->dim[n].lower_bound - 1);
      GFC_DESCRIPTOR_STRIDE(d, n) = (index_type)(s->dim[n].sm / s->elem_len);
      d->offset -= GFC_DESCRIPTOR_STRIDE(d, n) * GFC_DESCRIPTOR_LBOUND(d, n);
    }
}

extern void gfc_desc_to_cfi_desc (CFI_cdesc_t **, const gfc_array_void *);
export_proto(gfc_desc_to_cfi_desc);

void
gfc_desc_to_cfi_desc (CFI_cdesc_t **d_ptr, const gfc_array_void *s)
{
  int n;
  CFI_cdesc_t *d;

  /* Play it safe with allocation of the flexible array member 'dim'
     by setting the length to CFI_MAX_RANK. This should not be necessary
     but valgrind complains accesses after the allocated block.  */
  if (*d_ptr == NULL)
    d = malloc (sizeof (CFI_cdesc_t)
		+ (CFI_type_t)(CFI_MAX_RANK * sizeof (CFI_dim_t)));
  else
    d = *d_ptr;

  d->base_addr = GFC_DESCRIPTOR_DATA (s);
  d->elem_len = GFC_DESCRIPTOR_SIZE (s);
  d->version = s->dtype.version;
  d->rank = (CFI_rank_t)GFC_DESCRIPTOR_RANK (s);
  d->attribute = (CFI_attribute_t)s->dtype.attribute;

  if (GFC_DESCRIPTOR_TYPE (s) == BT_CHARACTER)
    d->type = CFI_type_Character;
  else if (GFC_DESCRIPTOR_TYPE (s) == BT_DERIVED)
    d->type = CFI_type_struct;
  else
    d->type = (CFI_type_t)GFC_DESCRIPTOR_TYPE (s);

  if (GFC_DESCRIPTOR_TYPE (s) != BT_DERIVED)
    d->type = (CFI_type_t)(d->type
		+ ((CFI_type_t)d->elem_len << CFI_type_kind_shift));

  if (d->base_addr)
    /* Full pointer or allocatable arrays retain their lower_bounds.  */
    for (n = 0; n < GFC_DESCRIPTOR_RANK (s); n++)
      {
	if (d->attribute != CFI_attribute_other)
	  d->dim[n].lower_bound = (CFI_index_t)GFC_DESCRIPTOR_LBOUND(s, n);
	else
	  d->dim[n].lower_bound = 0;

	/* Assumed size arrays have gfc ubound == 0 and CFI extent = -1.  */
	if (n == GFC_DESCRIPTOR_RANK (s) - 1
	    && GFC_DESCRIPTOR_LBOUND(s, n) == 1
	    && GFC_DESCRIPTOR_UBOUND(s, n) == 0)
	  d->dim[n].extent = -1;
	else
	  d->dim[n].extent = (CFI_index_t)GFC_DESCRIPTOR_UBOUND(s, n)
			     - (CFI_index_t)GFC_DESCRIPTOR_LBOUND(s, n) + 1;
	d->dim[n].sm = (CFI_index_t)(GFC_DESCRIPTOR_STRIDE(s, n) * s->span);
      }

  if (*d_ptr == NULL)
    *d_ptr = d;
}

void *CFI_address (const CFI_cdesc_t *dv, const CFI_index_t subscripts[])
{
  int i;
  char *base_addr = (char *)dv->base_addr;

  if (unlikely (compile_options.bounds_check))
    {
      /* C Descriptor must not be NULL. */
      if (dv == NULL)
	{
	  fprintf (stderr, "CFI_address: C Descriptor is NULL.\n");
	  return NULL;
	}

      /* Base address of C Descriptor must not be NULL. */
      if (dv->base_addr == NULL)
	{
	  fprintf (stderr, "CFI_address: base address of C Descriptor "
		   "must not be NULL.\n");
	  return NULL;
	}
    }

  /* Return base address if C descriptor is a scalar. */
  if (dv->rank == 0)
    return dv->base_addr;

  /* Calculate the appropriate base address if dv is not a scalar. */
  else
    {
      /* Base address is the C address of the element of the object
	 specified by subscripts. */
      for (i = 0; i < dv->rank; i++)
	{
	  CFI_index_t idx = subscripts[i] - dv->dim[i].lower_bound;
	  if (unlikely (compile_options.bounds_check)
	      && ((dv->dim[i].extent != -1 && idx >= dv->dim[i].extent)
		  || idx < 0))
	    {
	      fprintf (stderr, "CFI_address: subscripts[%d] is out of "
		       "bounds. For dimension = %d, subscripts = %d, "
		       "lower_bound = %d, upper bound = %d, extend = %d\n",
		       i, i, (int)subscripts[i], (int)dv->dim[i].lower_bound,
		       (int)(dv->dim[i].extent - dv->dim[i].lower_bound),
		       (int)dv->dim[i].extent);
              return NULL;
            }

	  base_addr = base_addr + (CFI_index_t)(idx * dv->dim[i].sm);
	}
    }

  return (void *)base_addr;
}


int
CFI_allocate (CFI_cdesc_t *dv, const CFI_index_t lower_bounds[],
	      const CFI_index_t upper_bounds[], size_t elem_len)
{
  if (unlikely (compile_options.bounds_check))
    {
      /* C Descriptor must not be NULL. */
      if (dv == NULL)
	{
	  fprintf (stderr, "CFI_allocate: C Descriptor is NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      /* The C Descriptor must be for an allocatable or pointer object. */
      if (dv->attribute == CFI_attribute_other)
	{
	  fprintf (stderr, "CFI_allocate: The object of the C descriptor "
		   "must be a pointer or allocatable variable.\n");
	  return CFI_INVALID_ATTRIBUTE;
	}

      /* Base address of C Descriptor must be NULL. */
      if (dv->base_addr != NULL)
	{
	  fprintf (stderr, "CFI_allocate: Base address of C descriptor "
		   "must be NULL.\n");
	  return CFI_ERROR_BASE_ADDR_NOT_NULL;
	}
    }

  /* If the type is a character, the descriptor's element length is replaced
     by the elem_len argument. */
  if (dv->type == CFI_type_char || dv->type == CFI_type_ucs4_char ||
      dv->type == CFI_type_signed_char)
    dv->elem_len = elem_len;

  /* Dimension information and calculating the array length. */
  size_t arr_len = 1;

  /* If rank is greater than 0, lower_bounds and upper_bounds are used. They're
     ignored otherwise. */
  if (dv->rank > 0)
    {
      if (unlikely (compile_options.bounds_check)
	  && (lower_bounds == NULL || upper_bounds == NULL))
	{
	  fprintf (stderr, "CFI_allocate: If 0 < rank (= %d) upper_bounds[] "
		   "and lower_bounds[], must not be NULL.\n", dv->rank);
	  return CFI_INVALID_EXTENT;
	}

      for (int i = 0; i < dv->rank; i++)
	{
	  dv->dim[i].lower_bound = lower_bounds[i];
	  dv->dim[i].extent = upper_bounds[i] - dv->dim[i].lower_bound + 1;
	  if (i == 0)
	    dv->dim[i].sm = dv->elem_len;
	  else
	    dv->dim[i].sm = dv->elem_len * dv->dim[i - 1].extent;
	  arr_len *= dv->dim[i].extent;
        }
    }

  dv->base_addr = calloc (arr_len, dv->elem_len);
  if (dv->base_addr == NULL)
    {
      fprintf (stderr, "CFI_allocate: Failure in memory allocation.\n");
      return CFI_ERROR_MEM_ALLOCATION;
    }

  return CFI_SUCCESS;
}


int
CFI_deallocate (CFI_cdesc_t *dv)
{
  if (unlikely (compile_options.bounds_check))
    {
      /* C Descriptor must not be NULL */
      if (dv == NULL)
	{
	  fprintf (stderr, "CFI_deallocate: C Descriptor is NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      /* Base address must not be NULL. */
      if (dv->base_addr == NULL)
	{
	  fprintf (stderr, "CFI_deallocate: Base address is already NULL.\n");
	  return CFI_ERROR_BASE_ADDR_NULL;
	}

      /* C Descriptor must be for an allocatable or pointer variable. */
      if (dv->attribute == CFI_attribute_other)
	{
	  fprintf (stderr, "CFI_deallocate: C Descriptor must describe a "
		  "pointer or allocatable object.\n");
	  return CFI_INVALID_ATTRIBUTE;
	}
    }

  /* Free and nullify memory. */
  free (dv->base_addr);
  dv->base_addr = NULL;

  return CFI_SUCCESS;
}


int CFI_establish (CFI_cdesc_t *dv, void *base_addr, CFI_attribute_t attribute,
		   CFI_type_t type, size_t elem_len, CFI_rank_t rank,
		   const CFI_index_t extents[])
{
  if (unlikely (compile_options.bounds_check))
    {
      /* C descriptor must not be NULL. */
      if (dv == NULL)
	{
	  fprintf (stderr, "CFI_establish: C descriptor is NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      /* Rank must be between 0 and CFI_MAX_RANK. */
      if (rank < 0 || rank > CFI_MAX_RANK)
	{
	  fprintf (stderr, "CFI_establish: Rank must be between 0 and %d, "
		   "0 < rank (0 !< %d).\n", CFI_MAX_RANK, (int)rank);
	  return CFI_INVALID_RANK;
	}

      /* If base address is not NULL, the established C Descriptor is for a
	  nonallocatable entity. */
      if (attribute == CFI_attribute_allocatable && base_addr != NULL)
	{
	  fprintf (stderr, "CFI_establish: If base address is not NULL "
		   "(base_addr != NULL), the established C descriptor is "
		   "for a nonallocatable entity (attribute != %d).\n",
		   CFI_attribute_allocatable);
	  return CFI_INVALID_ATTRIBUTE;
	}
    }

  dv->base_addr = base_addr;

  if (type == CFI_type_char || type == CFI_type_ucs4_char ||
      type == CFI_type_signed_char || type == CFI_type_struct ||
      type == CFI_type_other)
    dv->elem_len = elem_len;
  else
    {
      /* base_type describes the intrinsic type with kind parameter. */
      size_t base_type = type & CFI_type_mask;
      /* base_type_size is the size in bytes of the variable as given by its
       * kind parameter. */
      size_t base_type_size = (type - base_type) >> CFI_type_kind_shift;
      /* Kind types 10 have a size of 64 bytes. */
      if (base_type_size == 10)
	{
	  base_type_size = 64;
	}
      /* Complex numbers are twice the size of their real counterparts. */
      if (base_type == CFI_type_Complex)
	{
	  base_type_size *= 2;
	}
      dv->elem_len = base_type_size;
    }

  dv->version = CFI_VERSION;
  dv->rank = rank;
  dv->attribute = attribute;
  dv->type = type;

  /* Extents must not be NULL if rank is greater than zero and base_addr is not
     NULL */
  if (rank > 0 && base_addr != NULL)
    {
      if (unlikely (compile_options.bounds_check) && extents == NULL)
        {
	  fprintf (stderr, "CFI_establish: Extents must not be NULL "
		   "(extents != NULL) if rank (= %d) > 0 and base address "
		   "is not NULL (base_addr != NULL).\n", (int)rank);
	  return CFI_INVALID_EXTENT;
	}

      for (int i = 0; i < rank; i++)
	{
	  dv->dim[i].lower_bound = 0;
	  dv->dim[i].extent = extents[i];
	  if (i == 0)
	    dv->dim[i].sm = dv->elem_len;
	  else
	    dv->dim[i].sm = (CFI_index_t)(dv->elem_len * extents[i - 1]);
	}
    }

  return CFI_SUCCESS;
}


int CFI_is_contiguous (const CFI_cdesc_t *dv)
{
  if (unlikely (compile_options.bounds_check))
    {
      /* C descriptor must not be NULL. */
      if (dv == NULL)
	{
	  fprintf (stderr, "CFI_is_contiguous: C descriptor is NULL.\n");
	  return 0;
	}

      /* Base address must not be NULL. */
      if (dv->base_addr == NULL)
	{
	  fprintf (stderr, "CFI_is_contiguous: Base address of C Descriptor "
		   "is already NULL.\n");
	  return 0;
	}

      /* Must be an array. */
      if (dv->rank == 0)
	{
	  fprintf (stderr, "CFI_is_contiguous: C Descriptor must describe an "
		   "array (0 < dv->rank = %d).\n", dv->rank);
	  return 0;
	}
    }

  /* Assumed size arrays are always contiguous.  */
  if (dv->rank > 0 && dv->dim[dv->rank - 1].extent == -1)
    return 1;

  /* If an array is not contiguous the memory stride is different to the element
   * length. */
  for (int i = 0; i < dv->rank; i++)
    {
      if (i == 0 && dv->dim[i].sm == (CFI_index_t)dv->elem_len)
	continue;
      else if (i > 0
	       && dv->dim[i].sm == (CFI_index_t)(dv->dim[i - 1].sm
				   * dv->dim[i - 1].extent))
	continue;

      return 0;
    }

  /* Array sections are guaranteed to be contiguous by the previous test.  */
  return 1;
}


int CFI_section (CFI_cdesc_t *result, const CFI_cdesc_t *source,
		 const CFI_index_t lower_bounds[],
		 const CFI_index_t upper_bounds[], const CFI_index_t strides[])
{
  /* Dimension information. */
  CFI_index_t lower[CFI_MAX_RANK];
  CFI_index_t upper[CFI_MAX_RANK];
  CFI_index_t stride[CFI_MAX_RANK];
  int zero_count = 0;
  bool assumed_size;

  if (unlikely (compile_options.bounds_check))
    {
      /* C Descriptors must not be NULL. */
      if (source == NULL)
	{
	  fprintf (stderr, "CFI_section: Source must not be  NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      if (result == NULL)
	{
	  fprintf (stderr, "CFI_section: Result must not be NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      /* Base address of source must not be NULL. */
      if (source->base_addr == NULL)
	{
	  fprintf (stderr, "CFI_section: Base address of source must "
		   "not be NULL.\n");
	  return CFI_ERROR_BASE_ADDR_NULL;
	}

      /* Result must not be an allocatable array. */
      if (result->attribute == CFI_attribute_allocatable)
	{
	  fprintf (stderr, "CFI_section: Result must not describe an "
		   "allocatable array.\n");
	  return CFI_INVALID_ATTRIBUTE;
	}

      /* Source must be some form of array (nonallocatable nonpointer array,
	 allocated allocatable array or an associated pointer array). */
      if (source->rank <= 0)
	{
	  fprintf (stderr, "CFI_section: Source must describe an array "
		       "(0 < source->rank, 0 !< %d).\n", source->rank);
	  return CFI_INVALID_RANK;
	}

      /* Element lengths of source and result must be equal. */
      if (result->elem_len != source->elem_len)
	{
	  fprintf (stderr, "CFI_section: The element lengths of "
		   "source (source->elem_len = %d) and result "
		   "(result->elem_len = %d) must be equal.\n",
		   (int)source->elem_len, (int)result->elem_len);
	  return CFI_INVALID_ELEM_LEN;
	}

      /* Types must be equal. */
      if (result->type != source->type)
	{
	  fprintf (stderr, "CFI_section: Types of source "
		   "(source->type = %d) and result (result->type = %d) "
		   "must be equal.\n", source->type, result->type);
	  return CFI_INVALID_TYPE;
	}
    }

  /* Stride of zero in the i'th dimension means rank reduction in that
     dimension. */
  for (int i = 0; i < source->rank; i++)
    {
      if (strides[i] == 0)
	zero_count++;
    }

  /* Rank of result must be equal the the rank of source minus the number of
   * zeros in strides. */
  if (unlikely (compile_options.bounds_check)
      && result->rank != source->rank - zero_count)
    {
      fprintf (stderr, "CFI_section: Rank of result must be equal to the "
		       "rank of source minus the number of zeros in strides "
		       "(result->rank = source->rank - zero_count, %d != %d "
		       "- %d).\n", result->rank, source->rank, zero_count);
      return CFI_INVALID_RANK;
    }

  /* Lower bounds. */
  if (lower_bounds == NULL)
    {
      for (int i = 0; i < source->rank; i++)
	lower[i] = source->dim[i].lower_bound;
    }
  else
    {
      for (int i = 0; i < source->rank; i++)
	lower[i] = lower_bounds[i];
    }

  /* Upper bounds. */
  if (upper_bounds == NULL)
    {
      if (unlikely (compile_options.bounds_check)
	  && source->dim[source->rank - 1].extent == -1)
        {
	  fprintf (stderr, "CFI_section: Source must not be an assumed size "
		   "array if upper_bounds is NULL.\n");
	  return CFI_INVALID_EXTENT;
	}

      for (int i = 0; i < source->rank; i++)
	upper[i] = source->dim[i].lower_bound + source->dim[i].extent - 1;
    }
  else
    {
      for (int i = 0; i < source->rank; i++)
	upper[i] = upper_bounds[i];
    }

  /* Stride */
  if (strides == NULL)
    {
      for (int i = 0; i < source->rank; i++)
	stride[i] = 1;
    }
  else
    {
      for (int i = 0; i < source->rank; i++)
	{
	  stride[i] = strides[i];
	  /* If stride[i] == 0 then lower[i] and upper[i] must be equal. */
	  if (unlikely (compile_options.bounds_check)
	      && stride[i] == 0 && lower[i] != upper[i])
	    {
	      fprintf (stderr, "CFI_section: If strides[%d] = 0, then the "
		       "lower bounds, lower_bounds[%d] = %d, and "
		       "upper_bounds[%d] = %d, must be equal.\n",
		       i, i, (int)lower_bounds[i], i, (int)upper_bounds[i]);
	      return CFI_ERROR_OUT_OF_BOUNDS;
	    }
	}
    }

  /* Check that section upper and lower bounds are within the array bounds. */
  for (int i = 0; i < source->rank; i++)
    {
      assumed_size = (i == source->rank - 1)
		     && (source->dim[i].extent == -1);
      if (unlikely (compile_options.bounds_check)
	  && lower_bounds != NULL
	  && (lower[i] < source->dim[i].lower_bound ||
	      (!assumed_size && lower[i] > source->dim[i].lower_bound
					   + source->dim[i].extent - 1)))
	{
	  fprintf (stderr, "CFI_section: Lower bounds must be within the "
		   "bounds of the fortran array (source->dim[%d].lower_bound "
		   "<= lower_bounds[%d] <= source->dim[%d].lower_bound "
		   "+ source->dim[%d].extent - 1, %d <= %d <= %d).\n",
		   i, i, i, i, (int)source->dim[i].lower_bound, (int)lower[i],
		   (int)(source->dim[i].lower_bound
			 + source->dim[i].extent - 1));
	  return CFI_ERROR_OUT_OF_BOUNDS;
        }

      if (unlikely (compile_options.bounds_check)
	  && upper_bounds != NULL
	  && (upper[i] < source->dim[i].lower_bound
	      || (!assumed_size
		  && upper[i] > source->dim[i].lower_bound
				+ source->dim[i].extent - 1)))
	{
	  fprintf (stderr, "CFI_section: Upper bounds must be within the "
		   "bounds of the fortran array (source->dim[%d].lower_bound "
		   "<= upper_bounds[%d] <= source->dim[%d].lower_bound + "
		   "source->dim[%d].extent - 1, %d !<= %d !<= %d).\n",
		   i, i, i, i, (int)source->dim[i].lower_bound, (int)upper[i],
		   (int)(source->dim[i].lower_bound
			 + source->dim[i].extent - 1));
	  return CFI_ERROR_OUT_OF_BOUNDS;
	}

      if (unlikely (compile_options.bounds_check)
	  && upper[i] < lower[i] && stride[i] >= 0)
        {
          fprintf (stderr, "CFI_section: If the upper bound is smaller than "
		   "the lower bound for a given dimension (upper[%d] < "
		   "lower[%d], %d < %d), then he stride for said dimension"
		   "t must be negative (stride[%d] < 0, %d < 0).\n",
		   i, i, (int)upper[i], (int)lower[i], i, (int)stride[i]);
	  return CFI_INVALID_STRIDE;
	}
    }

  /* Set the appropriate dimension information that gives us access to the
   * data. */
  int aux = 0;
  for (int i = 0; i < source->rank; i++)
    {
      if (stride[i] == 0)
	{
	  aux++;
	  /* Adjust 'lower' for the base address offset.  */
	  lower[i] = lower[i] - source->dim[i].lower_bound;
	  continue;
	}
      int idx = i - aux;
      result->dim[idx].lower_bound = lower[i];
      result->dim[idx].extent = 1 + (upper[i] - lower[i])/stride[i];
      result->dim[idx].sm = stride[i] * source->dim[i].sm;
      /* Adjust 'lower' for the base address offset.  */
      lower[idx] = lower[idx] - source->dim[i].lower_bound;
    }

  /* Set the base address. */
  result->base_addr = CFI_address (source, lower);

  return CFI_SUCCESS;
}


int CFI_select_part (CFI_cdesc_t *result, const CFI_cdesc_t *source,
		     size_t displacement, size_t elem_len)
{
  if (unlikely (compile_options.bounds_check))
    {
      /* C Descriptors must not be NULL. */
      if (source == NULL)
	{
	  fprintf (stderr, "CFI_select_part: Source must not be NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      if (result == NULL)
	{
	  fprintf (stderr, "CFI_select_part: Result must not be NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}

      /* Attribute of result will be CFI_attribute_other or
	 CFI_attribute_pointer. */
      if (result->attribute == CFI_attribute_allocatable)
	{
	  fprintf (stderr, "CFI_select_part: Result must not describe an "
		   "allocatable object (result->attribute != %d).\n",
		   CFI_attribute_allocatable);
	  return CFI_INVALID_ATTRIBUTE;
	}

      /* Base address of source must not be NULL. */
      if (source->base_addr == NULL)
	{
	  fprintf (stderr, "CFI_select_part: Base address of source must "
		   "not be NULL.\n");
	  return CFI_ERROR_BASE_ADDR_NULL;
	}

      /* Source and result must have the same rank. */
      if (source->rank != result->rank)
	{
	  fprintf (stderr, "CFI_select_part: Source and result must have "
		   "the same rank (source->rank = %d, result->rank = %d).\n",
		   (int)source->rank, (int)result->rank);
	  return CFI_INVALID_RANK;
	}

      /* Nonallocatable nonpointer must not be an assumed size array. */
      if (source->rank > 0 && source->dim[source->rank - 1].extent == -1)
	{
	  fprintf (stderr, "CFI_select_part: Source must not describe an "
		   "assumed size array  (source->dim[%d].extent != -1).\n",
		   source->rank - 1);
	  return CFI_INVALID_DESCRIPTOR;
	}
    }

  /* Element length. */
  if (result->type == CFI_type_char || result->type == CFI_type_ucs4_char ||
      result->type == CFI_type_signed_char)
    result->elem_len = elem_len;

  if (unlikely (compile_options.bounds_check))
    {
      /* Ensure displacement is within the bounds of the element length
	 of source.*/
      if (displacement > source->elem_len - 1)
	{
	  fprintf (stderr, "CFI_select_part: Displacement must be within the "
		   "bounds of source (0 <= displacement <= source->elem_len "
		   "- 1, 0 <= %d <= %d).\n", (int)displacement,
		   (int)(source->elem_len - 1));
	  return CFI_ERROR_OUT_OF_BOUNDS;
	}

      /* Ensure displacement and element length of result are less than or
	 equal to the element length of source. */
      if (displacement + result->elem_len > source->elem_len)
	{
	  fprintf (stderr, "CFI_select_part: Displacement plus the element "
		   "length of result must be less than or equal to the "
		   "element length of source (displacement + result->elem_len "
		   "<= source->elem_len, %d + %d = %d <= %d).\n",
		   (int)displacement, (int)result->elem_len,
		   (int)(displacement + result->elem_len),
		   (int)source->elem_len);
	  return CFI_ERROR_OUT_OF_BOUNDS;
	}
    }

  if (result->rank > 0)
    {
      for (int i = 0; i < result->rank; i++)
	{
	  result->dim[i].lower_bound = source->dim[i].lower_bound;
	  result->dim[i].extent = source->dim[i].extent;
	  result->dim[i].sm = source->dim[i].sm;
        }
    }

  result->base_addr = (char *) source->base_addr + displacement;
  return CFI_SUCCESS;
}


int CFI_setpointer (CFI_cdesc_t *result, CFI_cdesc_t *source,
		    const CFI_index_t lower_bounds[])
{
  /* Result must not be NULL and must be a Fortran pointer. */
  if (unlikely (compile_options.bounds_check))
    {
      if (result == NULL)
	{
	  fprintf (stderr, "CFI_setpointer: Result is NULL.\n");
	  return CFI_INVALID_DESCRIPTOR;
	}
      
      if (result->attribute != CFI_attribute_pointer)
	{
 	  fprintf (stderr, "CFI_setpointer: Result shall be the address of a "
		   "C descriptor for a Fortran pointer.\n");
 	  return CFI_INVALID_ATTRIBUTE;
 	}
    }
      
  /* If source is NULL, the result is a C Descriptor that describes a
   * disassociated pointer. */
  if (source == NULL)
    {
      result->base_addr = NULL;
      result->version  = CFI_VERSION;
    }
  else
    {
      /* Check that element lengths, ranks and types of source and result are
       * the same. */
      if (unlikely (compile_options.bounds_check))
	{
	  if (result->elem_len != source->elem_len)
	    {
	      fprintf (stderr, "CFI_setpointer: Element lengths of result "
		       "(result->elem_len = %d) and source (source->elem_len "
		       "= %d) must be the same.\n", (int)result->elem_len,
		       (int)source->elem_len);
	      return CFI_INVALID_ELEM_LEN;
	    }

	  if (result->rank != source->rank)
	    {
	      fprintf (stderr, "CFI_setpointer: Ranks of result (result->rank "
		       "= %d) and source (source->rank = %d) must be the same."
		       "\n", result->rank, source->rank);
	      return CFI_INVALID_RANK;
	    }

	  if (result->type != source->type)
	    {
	      fprintf (stderr, "CFI_setpointer: Types of result (result->type"
		       "= %d) and source (source->type = %d) must be the same."
		       "\n", result->type, source->type);
	      return CFI_INVALID_TYPE;
	    }
	}

      /* If the source is a disassociated pointer, the result must also describe
       * a disassociated pointer. */
      if (source->base_addr == NULL &&
          source->attribute == CFI_attribute_pointer)
	result->base_addr = NULL;
      else
	result->base_addr = source->base_addr;

      /* Assign components to result. */
      result->version = source->version;

      /* Dimension information. */
      for (int i = 0; i < source->rank; i++)
	{
	  if (lower_bounds != NULL)
	    result->dim[i].lower_bound = lower_bounds[i];
	  else
	    result->dim[i].lower_bound = source->dim[i].lower_bound;

	  result->dim[i].extent = source->dim[i].extent;
	  result->dim[i].sm = source->dim[i].sm;
	}
    }

  return CFI_SUCCESS;
}