// Written in the D programming language.
/**
This package implements the hash-based message authentication code (_HMAC)
algorithm as defined in $(HTTP tools.ietf.org/html/rfc2104, RFC2104). See also
the corresponding $(HTTP en.wikipedia.org/wiki/Hash-based_message_authentication_code, Wikipedia article).
$(SCRIPT inhibitQuickIndex = 1;)
Macros:
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Source: $(PHOBOSSRC std/digest/_hmac.d)
*/
module std.digest.hmac;
import std.digest : isDigest, hasBlockSize, isDigestibleRange, DigestType;
import std.meta : allSatisfy;
@safe:
/**
* Template API HMAC implementation.
*
* This implements an _HMAC over the digest H. If H doesn't provide
* information about the block size, it can be supplied explicitly using
* the second overload.
*
* This type conforms to $(REF isDigest, std,digest).
*/
/// Compute HMAC over an input string
@safe unittest
{
import std.ascii : LetterCase;
import std.digest : toHexString;
import std.digest.sha : SHA1;
import std.string : representation;
auto secret = "secret".representation;
assert("The quick brown fox jumps over the lazy dog"
.representation
.hmac!SHA1(secret)
.toHexString!(LetterCase.lower) == "198ea1ea04c435c1246b586a06d5cf11c3ffcda6");
}
template HMAC(H)
if (isDigest!H && hasBlockSize!H)
{
alias HMAC = HMAC!(H, H.blockSize);
}
/**
* Overload of HMAC to be used if H doesn't provide information about its
* block size.
*/
struct HMAC(H, size_t hashBlockSize)
if (hashBlockSize % 8 == 0)
{
enum blockSize = hashBlockSize;
private H digest;
private ubyte[blockSize / 8] key;
/**
* Constructs the HMAC digest using the specified secret.
*/
this(scope const(ubyte)[] secret)
{
// if secret is too long, shorten it by computing its hash
typeof(digest.finish()) buffer = void;
if (secret.length > blockSize / 8)
{
digest.start();
digest.put(secret);
buffer = digest.finish();
secret = buffer[];
}
// if secret is too short, it will be padded with zeroes
// (the key buffer is already zero-initialized)
import std.algorithm.mutation : copy;
secret.copy(key[]);
start();
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put("Hello, world".representation);
static immutable expected = [
130, 32, 235, 44, 208, 141,
150, 232, 211, 214, 162, 195,
188, 127, 52, 89, 100, 68, 90, 216];
assert(hmac.finish() == expected);
}
/**
* Reinitializes the digest, making it ready for reuse.
*
* Note:
* The constructor leaves the digest in an initialized state, so that this
* method only needs to be called if an unfinished digest is to be reused.
*
* Returns:
* A reference to the digest for convenient chaining.
*/
ref HMAC!(H, blockSize) start() return
{
ubyte[blockSize / 8] ipad = void;
foreach (immutable i; 0 .. blockSize / 8)
ipad[i] = key[i] ^ 0x36;
digest.start();
digest.put(ipad[]);
return this;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put(data1.representation);
hmac.start(); // reset digest
hmac.put(data2.representation); // start over
static immutable expected = [
122, 151, 232, 240, 249, 80,
19, 178, 186, 77, 110, 23, 208,
52, 11, 88, 34, 151, 192, 255];
assert(hmac.finish() == expected);
}
/**
* Feeds a piece of data into the hash computation. This method allows the
* type to be used as an $(REF OutputRange, std,range).
*
* Returns:
* A reference to the digest for convenient chaining.
*/
ref HMAC!(H, blockSize) put(in ubyte[] data...) return
{
digest.put(data);
return this;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put(data1.representation)
.put(data2.representation);
static immutable expected = [
197, 57, 52, 3, 13, 194, 13,
36, 117, 228, 8, 11, 111, 51,
165, 3, 123, 31, 251, 113];
assert(hmac.finish() == expected);
}
/**
* Resets the digest and returns the finished hash.
*/
DigestType!H finish()
{
ubyte[blockSize / 8] opad = void;
foreach (immutable i; 0 .. blockSize / 8)
opad[i] = key[i] ^ 0x5c;
auto tmp = digest.finish();
digest.start();
digest.put(opad[]);
digest.put(tmp);
auto result = digest.finish();
start(); // reset the digest
return result;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
auto digest = hmac.put(data1.representation)
.put(data2.representation)
.finish();
static immutable expected = [
197, 57, 52, 3, 13, 194, 13,
36, 117, 228, 8, 11, 111, 51,
165, 3, 123, 31, 251, 113];
assert(digest == expected);
}
}
/// Convenience constructor for $(LREF HMAC).
template hmac(H)
if (isDigest!H && hasBlockSize!H)
{
alias hmac = hmac!(H, H.blockSize);
}
/// ditto
template hmac(H, size_t blockSize)
if (isDigest!H)
{
/**
* Constructs an HMAC digest with the specified secret.
*
* Returns:
* An instance of HMAC that can be fed data as desired, and finished
* to compute the final hash when done.
*/
auto hmac(scope const(ubyte)[] secret)
{
return HMAC!(H, blockSize)(secret);
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto digest = hmac!SHA1("My s3cR3T keY".representation)
.put(data1.representation)
.put(data2.representation)
.finish();
static immutable expected = [
197, 57, 52, 3, 13, 194, 13, 36,
117, 228, 8, 11, 111, 51, 165,
3, 123, 31, 251, 113];
assert(digest == expected);
}
/**
* Computes an _HMAC digest over the given range of data with the
* specified secret.
*
* Returns:
* The final _HMAC hash.
*/
DigestType!H hmac(T...)(scope T data, scope const(ubyte)[] secret)
if (allSatisfy!(isDigestibleRange, typeof(data)))
{
import std.range.primitives : put;
auto hash = HMAC!(H, blockSize)(secret);
foreach (datum; data)
put(hash, datum);
return hash.finish();
}
///
@safe pure nothrow @nogc unittest
{
import std.algorithm.iteration : map;
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data = "Hello, world";
auto digest = data.representation
.map!(a => cast(ubyte)(a+1))
.hmac!SHA1("My s3cR3T keY".representation);
static assert(is(typeof(digest) == ubyte[20]));
static immutable expected = [
163, 208, 118, 179, 216, 93,
17, 10, 84, 200, 87, 104, 244,
111, 136, 214, 167, 210, 58, 10];
assert(digest == expected);
}
}
version (unittest)
{
import std.digest : toHexString, LetterCase;
alias hex = toHexString!(LetterCase.lower);
}
@safe pure nothrow @nogc
unittest
{
import std.digest.md : MD5;
import std.range : isOutputRange;
static assert(isOutputRange!(HMAC!MD5, ubyte));
static assert(isDigest!(HMAC!MD5));
static assert(hasBlockSize!(HMAC!MD5) && HMAC!MD5.blockSize == MD5.blockSize);
}
@safe pure nothrow
unittest
{
import std.digest.md : MD5;
import std.digest.sha : SHA1, SHA256;
ubyte[] nada;
assert(hmac!MD5 (nada, nada).hex == "74e6f7298a9c2d168935f58c001bad88");
assert(hmac!SHA1 (nada, nada).hex == "fbdb1d1b18aa6c08324b7d64b71fb76370690e1d");
assert(hmac!SHA256(nada, nada).hex == "b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad");
import std.string : representation;
auto key = "key".representation,
long_key = ("012345678901234567890123456789012345678901"
~"234567890123456789012345678901234567890123456789").representation,
data1 = "The quick brown fox ".representation,
data2 = "jumps over the lazy dog".representation,
data = data1 ~ data2;
assert(data.hmac!MD5 (key).hex == "80070713463e7749b90c2dc24911e275");
assert(data.hmac!SHA1 (key).hex == "de7c9b85b8b78aa6bc8a7a36f70a90701c9db4d9");
assert(data.hmac!SHA256(key).hex == "f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8");
assert(data.hmac!MD5 (long_key).hex == "e1728d68e05beae186ea768561963778");
assert(data.hmac!SHA1 (long_key).hex == "560d3cd77316e57ab4bba0c186966200d2b37ba3");
assert(data.hmac!SHA256(long_key).hex == "a1b0065a5d1edd93152c677e1bc1b1e3bc70d3a76619842e7f733f02b8135c04");
assert(hmac!MD5 (key).put(data1).put(data2).finish == data.hmac!MD5 (key));
assert(hmac!SHA1 (key).put(data1).put(data2).finish == data.hmac!SHA1 (key));
assert(hmac!SHA256(key).put(data1).put(data2).finish == data.hmac!SHA256(key));
}