Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*
    Kickstart is a coarse-grained "filter" engine that finds likely matches
    to be verified by full-blown matcher.
*/
module std.regex.internal.kickstart;

package(std.regex):

import std.range.primitives, std.utf;
import std.regex.internal.ir;

//utility for shiftOr, returns a minimum number of bytes to test in a Char
uint effectiveSize(Char)()
{
    static if (is(Char == char))
        return 1;
    else static if (is(Char == wchar))
        return 2;
    else static if (is(Char == dchar))
        return 3;
    else
        static assert(0);
}

/*
    Kickstart engine using ShiftOr algorithm,
    a bit parallel technique for inexact string searching.
*/
struct ShiftOr(Char)
{
private:
    uint[] table;
    uint fChar;
    uint n_length;
    enum charSize =  effectiveSize!Char();
    //maximum number of chars in CodepointSet to process
    enum uint charsetThreshold = 32_000;
    static struct ShiftThread
    {
        uint[] tab;
        uint mask;
        uint idx;
        uint pc, counter, hops;
        this(uint newPc, uint newCounter, uint[] table)
        {
            pc = newPc;
            counter = newCounter;
            mask = 1;
            idx = 0;
            hops = 0;
            tab = table;
        }

        void setMask(uint idx, uint mask)
        {
            tab[idx] |= mask;
        }

        void setInvMask(uint idx, uint mask)
        {
            tab[idx] &= ~mask;
        }

        void set(alias setBits = setInvMask)(dchar ch)
        {
            static if (charSize == 3)
            {
                uint val = ch, tmask = mask;
                setBits(val&0xFF, tmask);
                tmask <<= 1;
                val >>= 8;
                setBits(val&0xFF, tmask);
                tmask <<= 1;
                val >>= 8;
                assert(val <= 0x10);
                setBits(val, tmask);
                tmask <<= 1;
            }
            else
            {
                Char[dchar.sizeof/Char.sizeof] buf;
                uint tmask = mask;
                size_t total = encode(buf, ch);
                for (size_t i = 0; i < total; i++, tmask<<=1)
                {
                    static if (charSize == 1)
                        setBits(buf[i], tmask);
                    else static if (charSize == 2)
                    {
                        setBits(buf[i]&0xFF, tmask);
                        tmask <<= 1;
                        setBits(buf[i]>>8, tmask);
                    }
                }
            }
        }
        void add(dchar ch){ return set!setInvMask(ch); }
        void advance(uint s)
        {
            mask <<= s;
            idx += s;
        }
        @property bool full(){    return !mask; }
    }

    static ShiftThread fork(ShiftThread t, uint newPc, uint newCounter)
    {
        ShiftThread nt = t;
        nt.pc = newPc;
        nt.counter = newCounter;
        return nt;
    }

    @trusted static ShiftThread fetch(ref ShiftThread[] worklist)
    {
        auto t = worklist[$-1];
        worklist.length -= 1;
        if (!__ctfe)
            cast(void) worklist.assumeSafeAppend();
        return t;
    }

    static uint charLen(uint ch)
    {
        assert(ch <= 0x10FFFF);
        return codeLength!Char(cast(dchar) ch)*charSize;
    }

public:
    @trusted this(ref Regex!Char re, uint[] memory)
    {
        static import std.algorithm.comparison;
        import std.algorithm.searching : countUntil;
        import std.conv : text;
        import std.range : assumeSorted;
        assert(memory.length == 256);
        fChar = uint.max;
        // FNV-1a flavored hash (uses 32bits at a time)
        ulong hash(uint[] tab)
        {
            ulong h = 0xcbf29ce484222325;
            foreach (v; tab)
            {
                h ^= v;
                h *= 0x100000001b3;
            }
            return h;
        }
    L_FindChar:
        for (size_t i = 0;;)
        {
            switch (re.ir[i].code)
            {
                case IR.Char:
                    fChar = re.ir[i].data;
                    static if (charSize != 3)
                    {
                        Char[dchar.sizeof/Char.sizeof] buf;
                        encode(buf, fChar);
                        fChar = buf[0];
                    }
                    fChar = fChar & 0xFF;
                    break L_FindChar;
                case IR.GroupStart, IR.GroupEnd:
                    i += IRL!(IR.GroupStart);
                    break;
                case IR.Bof, IR.Bol, IR.Wordboundary, IR.Notwordboundary:
                    i += IRL!(IR.Bol);
                    break;
                default:
                    break L_FindChar;
            }
        }
        table = memory;
        table[] =  uint.max;
        alias MergeTab = bool[ulong];
        // use reasonably complex hash to identify equivalent tables
        auto merge = new MergeTab[re.hotspotTableSize];
        ShiftThread[] trs;
        ShiftThread t = ShiftThread(0, 0, table);
        //locate first fixed char if any
        n_length = 32;
        for (;;)
        {
        L_Eval_Thread:
            for (;;)
            {
                switch (re.ir[t.pc].code)
                {
                case IR.Char:
                    uint s = charLen(re.ir[t.pc].data);
                    if (t.idx+s > n_length)
                        goto L_StopThread;
                    t.add(re.ir[t.pc].data);
                    t.advance(s);
                    t.pc += IRL!(IR.Char);
                    break;
                case IR.OrChar://assumes IRL!(OrChar) == 1
                    uint len = re.ir[t.pc].sequence;
                    uint end = t.pc + len;
                    uint[Bytecode.maxSequence] s;
                    uint numS;
                    for (uint i = 0; i < len; i++)
                    {
                        auto x = charLen(re.ir[t.pc+i].data);
                        if (countUntil(s[0 .. numS], x) < 0)
                           s[numS++] = x;
                    }
                    for (uint i = t.pc; i < end; i++)
                    {
                        t.add(re.ir[i].data);
                    }
                    for (uint i = 0; i < numS; i++)
                    {
                        auto tx = fork(t, t.pc + len, t.counter);
                        if (tx.idx + s[i] <= n_length)
                        {
                            tx.advance(s[i]);
                            trs ~= tx;
                        }
                    }
                    if (!trs.empty)
                        t = fetch(trs);
                    else
                        goto L_StopThread;
                    break;
                case IR.CodepointSet:
                case IR.Trie:
                    auto set = re.charsets[re.ir[t.pc].data];
                    uint[4] s;
                    uint numS;
                    static if (charSize == 3)
                    {
                        s[0] = charSize;
                        numS = 1;
                    }
                    else
                    {

                        static if (charSize == 1)
                            static immutable codeBounds = [0x0, 0x7F, 0x80, 0x7FF, 0x800, 0xFFFF, 0x10000, 0x10FFFF];
                        else //== 2
                            static immutable codeBounds = [0x0, 0xFFFF, 0x10000, 0x10FFFF];
                        uint[] arr = new uint[set.byInterval.length * 2];
                        size_t ofs = 0;
                        foreach (ival; set.byInterval)
                        {
                            arr[ofs++] = ival.a;
                            arr[ofs++] = ival.b;
                        }
                        auto srange = assumeSorted!"a <= b"(arr);
                        for (uint i = 0; i < codeBounds.length/2; i++)
                        {
                            auto start = srange.lowerBound(codeBounds[2*i]).length;
                            auto end = srange.lowerBound(codeBounds[2*i+1]).length;
                            if (end > start || (end == start && (end & 1)))
                               s[numS++] = (i+1)*charSize;
                        }
                    }
                    if (numS == 0 || t.idx + s[numS-1] > n_length)
                        goto L_StopThread;
                    auto  chars = set.length;
                    if (chars > charsetThreshold)
                        goto L_StopThread;
                    foreach (ch; set.byCodepoint)
                    {
                        //avoid surrogate pairs
                        if (0xD800 <= ch && ch <= 0xDFFF)
                            continue;
                        t.add(ch);
                    }
                    for (uint i = 0; i < numS; i++)
                    {
                        auto tx =  fork(t, t.pc + IRL!(IR.CodepointSet), t.counter);
                        tx.advance(s[i]);
                        trs ~= tx;
                    }
                    if (!trs.empty)
                        t = fetch(trs);
                    else
                        goto L_StopThread;
                    break;
                case IR.Any:
                    goto L_StopThread;

                case IR.GotoEndOr:
                    t.pc += IRL!(IR.GotoEndOr)+re.ir[t.pc].data;
                    assert(re.ir[t.pc].code == IR.OrEnd);
                    goto case;
                case IR.OrEnd:
                    auto slot = re.ir[t.pc+1].raw+t.counter;
                    auto val = hash(t.tab);
                    if (val in merge[slot])
                        goto L_StopThread; // merge equivalent
                    merge[slot][val] = true;
                    t.pc += IRL!(IR.OrEnd);
                    break;
                case IR.OrStart:
                    t.pc += IRL!(IR.OrStart);
                    goto case;
                case IR.Option:
                    uint next = t.pc + re.ir[t.pc].data + IRL!(IR.Option);
                    //queue next Option
                    if (re.ir[next].code == IR.Option)
                    {
                        trs ~= fork(t, next, t.counter);
                    }
                    t.pc += IRL!(IR.Option);
                    break;
                case IR.RepeatStart:case IR.RepeatQStart:
                    t.pc += IRL!(IR.RepeatStart)+re.ir[t.pc].data;
                    goto case IR.RepeatEnd;
                case IR.RepeatEnd:
                case IR.RepeatQEnd:
                    auto slot = re.ir[t.pc+1].raw+t.counter;
                    auto val = hash(t.tab);
                    if (val in merge[slot])
                        goto L_StopThread; // merge equivalent
                    merge[slot][val] = true;
                    uint len = re.ir[t.pc].data;
                    uint step = re.ir[t.pc+2].raw;
                    uint min = re.ir[t.pc+3].raw;
                    if (t.counter < min)
                    {
                        t.counter += step;
                        t.pc -= len;
                        break;
                    }
                    uint max = re.ir[t.pc+4].raw;
                    if (t.counter < max)
                    {
                        trs ~= fork(t, t.pc - len, t.counter + step);
                        t.counter = t.counter%step;
                        t.pc += IRL!(IR.RepeatEnd);
                    }
                    else
                    {
                        t.counter = t.counter%step;
                        t.pc += IRL!(IR.RepeatEnd);
                    }
                    break;
                case IR.InfiniteStart, IR.InfiniteQStart:
                    t.pc += re.ir[t.pc].data + IRL!(IR.InfiniteStart);
                    goto case IR.InfiniteEnd; //both Q and non-Q
                case IR.InfiniteEnd:
                case IR.InfiniteQEnd:
                    auto slot = re.ir[t.pc+1].raw+t.counter;
                    auto val = hash(t.tab);
                    if (val in merge[slot])
                        goto L_StopThread; // merge equivalent
                    merge[slot][val] = true;
                    uint len = re.ir[t.pc].data;
                    uint pc1, pc2; //branches to take in priority order
                    if (++t.hops == 32)
                        goto L_StopThread;
                    pc1 = t.pc + IRL!(IR.InfiniteEnd);
                    pc2 = t.pc - len;
                    trs ~= fork(t, pc2, t.counter);
                    t.pc = pc1;
                    break;
                case IR.GroupStart, IR.GroupEnd:
                    t.pc += IRL!(IR.GroupStart);
                    break;
                case IR.Bof, IR.Bol, IR.Wordboundary, IR.Notwordboundary:
                    t.pc += IRL!(IR.Bol);
                    break;
                case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
                    t.pc += IRL!(IR.LookaheadStart) + IRL!(IR.LookaheadEnd) + re.ir[t.pc].data;
                    break;
                default:
                L_StopThread:
                    assert(re.ir[t.pc].code >= 0x80, text(re.ir[t.pc].code));
                    debug (fred_search) writeln("ShiftOr stumbled on ",re.ir[t.pc].mnemonic);
                    n_length = std.algorithm.comparison.min(t.idx, n_length);
                    break L_Eval_Thread;
                }
            }
            if (trs.empty)
                break;
            t = fetch(trs);
        }
        debug(std_regex_search)
        {
            writeln("Min length: ", n_length);
        }
    }

    @property bool empty() const {  return n_length == 0; }

    @property uint length() const{ return n_length/charSize; }

    // lookup compatible bit pattern in haystack, return starting index
    // has a useful trait: if supplied with valid UTF indexes,
    // returns only valid UTF indexes
    // (that given the haystack in question is valid UTF string)
    @trusted size_t search(const(Char)[] haystack, size_t idx)
    {//@BUG: apparently assumes little endian machines
        import core.stdc.string : memchr;
        import std.conv : text;
        assert(!empty);
        auto p = cast(const(ubyte)*)(haystack.ptr+idx);
        uint state = uint.max;
        uint limit = 1u<<(n_length - 1u);
        debug(std_regex_search) writefln("Limit: %32b",limit);
        if (fChar != uint.max)
        {
            const(ubyte)* end = cast(ubyte*)(haystack.ptr + haystack.length);
            const orginalAlign = cast(size_t) p & (Char.sizeof-1);
            while (p != end)
            {
                if (!~state)
                {//speed up seeking first matching place
                    for (;;)
                    {
                        assert(p <= end, text(p," vs ", end));
                        p = cast(ubyte*) memchr(p, fChar, end - p);
                        if (!p)
                            return haystack.length;
                        if ((cast(size_t) p & (Char.sizeof-1)) == orginalAlign)
                            break;
                        if (++p == end)
                            return haystack.length;
                    }
                    state = ~1u;
                    assert((cast(size_t) p & (Char.sizeof-1)) == orginalAlign);
                    static if (charSize == 3)
                    {
                        state = (state << 1) | table[p[1]];
                        state = (state << 1) | table[p[2]];
                        p += 4;
                    }
                    else
                        p++;
                    //first char is tested, see if that's all
                    if (!(state & limit))
                        return (p-cast(ubyte*) haystack.ptr)/Char.sizeof
                            -length;
                }
                else
                {//have some bits/states for possible matches,
                 //use the usual shift-or cycle
                    static if (charSize == 3)
                    {
                        state = (state << 1) | table[p[0]];
                        state = (state << 1) | table[p[1]];
                        state = (state << 1) | table[p[2]];
                        p += 4;
                    }
                    else
                    {
                        state = (state << 1) | table[p[0]];
                        p++;
                    }
                    if (!(state & limit))
                        return (p-cast(ubyte*) haystack.ptr)/Char.sizeof
                            -length;
                }
                debug(std_regex_search) writefln("State: %32b", state);
            }
        }
        else
        {
            //normal path, partially unrolled for char/wchar
            static if (charSize == 3)
            {
                const(ubyte)* end = cast(ubyte*)(haystack.ptr + haystack.length);
                while (p != end)
                {
                    state = (state << 1) | table[p[0]];
                    state = (state << 1) | table[p[1]];
                    state = (state << 1) | table[p[2]];
                    p += 4;
                    if (!(state & limit))//division rounds down for dchar
                        return (p-cast(ubyte*) haystack.ptr)/Char.sizeof
                        -length;
                }
            }
            else
            {
                auto len = cast(ubyte*)(haystack.ptr + haystack.length) - p;
                size_t i  = 0;
                if (len & 1)
                {
                    state = (state << 1) | table[p[i++]];
                    if (!(state & limit))
                        return idx+i/Char.sizeof-length;
                }
                while (i < len)
                {
                    state = (state << 1) | table[p[i++]];
                    if (!(state & limit))
                        return idx+i/Char.sizeof
                            -length;
                    state = (state << 1) | table[p[i++]];
                    if (!(state & limit))
                        return idx+i/Char.sizeof
                            -length;
                    debug(std_regex_search) writefln("State: %32b", state);
                }
            }
        }
        return haystack.length;
    }

    @system debug static void dump(uint[] table)
    {//@@@BUG@@@ writef(ln) is @system
        import std.stdio : writefln;
        for (size_t i = 0; i < table.length; i += 4)
        {
            writefln("%32b %32b %32b %32b",table[i], table[i+1], table[i+2], table[i+3]);
        }
    }
}

@system unittest
{
    import std.conv, std.regex;
    @trusted void test_fixed(alias Kick)()
    {
        foreach (i, v; AliasSeq!(char, wchar, dchar))
        {
            alias Char = v;
            alias String = immutable(v)[];
            auto r = regex(to!String(`abc$`));
            auto kick = Kick!Char(r, new uint[256]);
            assert(kick.length == 3, text(Kick.stringof," ",v.stringof, " == ", kick.length));
            auto r2 = regex(to!String(`(abc){2}a+`));
            kick = Kick!Char(r2, new uint[256]);
            assert(kick.length == 7, text(Kick.stringof,v.stringof," == ", kick.length));
            auto r3 = regex(to!String(`\b(a{2}b{3}){2,4}`));
            kick = Kick!Char(r3, new uint[256]);
            assert(kick.length == 10, text(Kick.stringof,v.stringof," == ", kick.length));
            auto r4 = regex(to!String(`\ba{2}c\bxyz`));
            kick = Kick!Char(r4, new uint[256]);
            assert(kick.length == 6, text(Kick.stringof,v.stringof, " == ", kick.length));
            auto r5 = regex(to!String(`\ba{2}c\b`));
            kick = Kick!Char(r5, new uint[256]);
            size_t x = kick.search("aabaacaa", 0);
            assert(x == 3, text(Kick.stringof,v.stringof," == ", kick.length));
            x = kick.search("aabaacaa", x+1);
            assert(x == 8, text(Kick.stringof,v.stringof," == ", kick.length));
        }
    }
    @trusted void test_flex(alias Kick)()
    {
        foreach (i, v; AliasSeq!(char, wchar, dchar))
        {
            alias Char = v;
            alias String = immutable(v)[];
            auto r = regex(to!String(`abc[a-z]`));
            auto kick = Kick!Char(r, new uint[256]);
            auto x = kick.search(to!String("abbabca"), 0);
            assert(x == 3, text("real x is ", x, " ",v.stringof));

            auto r2 = regex(to!String(`(ax|bd|cdy)`));
            String s2 = to!String("abdcdyabax");
            kick = Kick!Char(r2, new uint[256]);
            x = kick.search(s2, 0);
            assert(x == 1, text("real x is ", x));
            x = kick.search(s2, x+1);
            assert(x == 3, text("real x is ", x));
            x = kick.search(s2, x+1);
            assert(x == 8, text("real x is ", x));
            auto rdot = regex(to!String(`...`));
            kick = Kick!Char(rdot, new uint[256]);
            assert(kick.length == 0);
            auto rN = regex(to!String(`a(b+|c+)x`));
            kick = Kick!Char(rN, new uint[256]);
            assert(kick.length == 3, to!string(kick.length));
            assert(kick.search("ababx",0) == 2);
            assert(kick.search("abaacba",0) == 3);//expected inexact

        }
    }
    test_fixed!(ShiftOr)();
    test_flex!(ShiftOr)();
}

alias Kickstart = ShiftOr;