Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;

// SizeClassAllocator64 -- allocator for 64-bit address space.
// The template parameter Params is a class containing the actual parameters.
//
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
// kSpaceSize is a power of two.
// At the beginning the entire space is mprotect-ed, then small parts of it
// are mapped on demand.
//
// Region: a part of Space dedicated to a single size class.
// There are kNumClasses Regions of equal size.
//
// UserChunk: a piece of memory returned to user.
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.

// FreeArray is an array free-d chunks (stored as 4-byte offsets)
//
// A Region looks like this:
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray

struct SizeClassAllocator64FlagMasks {  //  Bit masks.
  enum {
    kRandomShuffleChunks = 1,
  };
};

template <class Params>
class SizeClassAllocator64 {
 public:
  static const uptr kSpaceBeg = Params::kSpaceBeg;
  static const uptr kSpaceSize = Params::kSpaceSize;
  static const uptr kMetadataSize = Params::kMetadataSize;
  typedef typename Params::SizeClassMap SizeClassMap;
  typedef typename Params::MapUnmapCallback MapUnmapCallback;

  static const bool kRandomShuffleChunks =
      Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;

  typedef SizeClassAllocator64<Params> ThisT;
  typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;

  // When we know the size class (the region base) we can represent a pointer
  // as a 4-byte integer (offset from the region start shifted right by 4).
  typedef u32 CompactPtrT;
  static const uptr kCompactPtrScale = 4;
  CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
    return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
  }
  uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
    return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
  }

  void Init(s32 release_to_os_interval_ms) {
    uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
    if (kUsingConstantSpaceBeg) {
      CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
                                             PrimaryAllocatorName, kSpaceBeg));
    } else {
      NonConstSpaceBeg = address_range.Init(TotalSpaceSize,
                                            PrimaryAllocatorName);
      CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
    }
    SetReleaseToOSIntervalMs(release_to_os_interval_ms);
    MapWithCallbackOrDie(SpaceEnd(), AdditionalSize());
    // Check that the RegionInfo array is aligned on the CacheLine size.
    DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
  }

  s32 ReleaseToOSIntervalMs() const {
    return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
  }

  void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
    atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
                 memory_order_relaxed);
  }

  void ForceReleaseToOS() {
    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
      BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
      MaybeReleaseToOS(class_id, true /*force*/);
    }
  }

  static bool CanAllocate(uptr size, uptr alignment) {
    return size <= SizeClassMap::kMaxSize &&
      alignment <= SizeClassMap::kMaxSize;
  }

  NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
                                  const CompactPtrT *chunks, uptr n_chunks) {
    RegionInfo *region = GetRegionInfo(class_id);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    CompactPtrT *free_array = GetFreeArray(region_beg);

    BlockingMutexLock l(&region->mutex);
    uptr old_num_chunks = region->num_freed_chunks;
    uptr new_num_freed_chunks = old_num_chunks + n_chunks;
    // Failure to allocate free array space while releasing memory is non
    // recoverable.
    if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
                                       new_num_freed_chunks))) {
      Report("FATAL: Internal error: %s's allocator exhausted the free list "
             "space for size class %zd (%zd bytes).\n", SanitizerToolName,
             class_id, ClassIdToSize(class_id));
      Die();
    }
    for (uptr i = 0; i < n_chunks; i++)
      free_array[old_num_chunks + i] = chunks[i];
    region->num_freed_chunks = new_num_freed_chunks;
    region->stats.n_freed += n_chunks;

    MaybeReleaseToOS(class_id, false /*force*/);
  }

  NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
                                 CompactPtrT *chunks, uptr n_chunks) {
    RegionInfo *region = GetRegionInfo(class_id);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    CompactPtrT *free_array = GetFreeArray(region_beg);

    BlockingMutexLock l(&region->mutex);
    if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
      if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
                                      n_chunks - region->num_freed_chunks)))
        return false;
      CHECK_GE(region->num_freed_chunks, n_chunks);
    }
    region->num_freed_chunks -= n_chunks;
    uptr base_idx = region->num_freed_chunks;
    for (uptr i = 0; i < n_chunks; i++)
      chunks[i] = free_array[base_idx + i];
    region->stats.n_allocated += n_chunks;
    return true;
  }

  bool PointerIsMine(const void *p) {
    uptr P = reinterpret_cast<uptr>(p);
    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
      return P / kSpaceSize == kSpaceBeg / kSpaceSize;
    return P >= SpaceBeg() && P < SpaceEnd();
  }

  uptr GetRegionBegin(const void *p) {
    if (kUsingConstantSpaceBeg)
      return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
    uptr space_beg = SpaceBeg();
    return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
        space_beg;
  }

  uptr GetRegionBeginBySizeClass(uptr class_id) const {
    return SpaceBeg() + kRegionSize * class_id;
  }

  uptr GetSizeClass(const void *p) {
    if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
      return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
    return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
           kNumClassesRounded;
  }

  void *GetBlockBegin(const void *p) {
    uptr class_id = GetSizeClass(p);
    uptr size = ClassIdToSize(class_id);
    if (!size) return nullptr;
    uptr chunk_idx = GetChunkIdx((uptr)p, size);
    uptr reg_beg = GetRegionBegin(p);
    uptr beg = chunk_idx * size;
    uptr next_beg = beg + size;
    if (class_id >= kNumClasses) return nullptr;
    RegionInfo *region = GetRegionInfo(class_id);
    if (region->mapped_user >= next_beg)
      return reinterpret_cast<void*>(reg_beg + beg);
    return nullptr;
  }

  uptr GetActuallyAllocatedSize(void *p) {
    CHECK(PointerIsMine(p));
    return ClassIdToSize(GetSizeClass(p));
  }

  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }

  void *GetMetaData(const void *p) {
    uptr class_id = GetSizeClass(p);
    uptr size = ClassIdToSize(class_id);
    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
    uptr region_beg = GetRegionBeginBySizeClass(class_id);
    return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
                                    (1 + chunk_idx) * kMetadataSize);
  }

  uptr TotalMemoryUsed() {
    uptr res = 0;
    for (uptr i = 0; i < kNumClasses; i++)
      res += GetRegionInfo(i)->allocated_user;
    return res;
  }

  // Test-only.
  void TestOnlyUnmap() {
    UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize + AdditionalSize());
  }

  static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
                           uptr stats_size) {
    for (uptr class_id = 0; class_id < stats_size; class_id++)
      if (stats[class_id] == start)
        stats[class_id] = rss;
  }

  void PrintStats(uptr class_id, uptr rss) {
    RegionInfo *region = GetRegionInfo(class_id);
    if (region->mapped_user == 0) return;
    uptr in_use = region->stats.n_allocated - region->stats.n_freed;
    uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
    Printf(
        "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
        "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
        "last released: %6zdK region: 0x%zx\n",
        region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
        region->mapped_user >> 10, region->stats.n_allocated,
        region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
        rss >> 10, region->rtoi.num_releases,
        region->rtoi.last_released_bytes >> 10,
        SpaceBeg() + kRegionSize * class_id);
  }

  void PrintStats() {
    uptr rss_stats[kNumClasses];
    for (uptr class_id = 0; class_id < kNumClasses; class_id++)
      rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
    GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);

    uptr total_mapped = 0;
    uptr total_rss = 0;
    uptr n_allocated = 0;
    uptr n_freed = 0;
    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
      RegionInfo *region = GetRegionInfo(class_id);
      if (region->mapped_user != 0) {
        total_mapped += region->mapped_user;
        total_rss += rss_stats[class_id];
      }
      n_allocated += region->stats.n_allocated;
      n_freed += region->stats.n_freed;
    }

    Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
           "%zd allocations; remains %zd\n", total_mapped >> 20,
           total_rss >> 20, n_allocated, n_allocated - n_freed);
    for (uptr class_id = 1; class_id < kNumClasses; class_id++)
      PrintStats(class_id, rss_stats[class_id]);
  }

  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
  // introspection API.
  void ForceLock() {
    for (uptr i = 0; i < kNumClasses; i++) {
      GetRegionInfo(i)->mutex.Lock();
    }
  }

  void ForceUnlock() {
    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
      GetRegionInfo(i)->mutex.Unlock();
    }
  }

  // Iterate over all existing chunks.
  // The allocator must be locked when calling this function.
  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
      RegionInfo *region = GetRegionInfo(class_id);
      uptr chunk_size = ClassIdToSize(class_id);
      uptr region_beg = SpaceBeg() + class_id * kRegionSize;
      for (uptr chunk = region_beg;
           chunk < region_beg + region->allocated_user;
           chunk += chunk_size) {
        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
        callback(chunk, arg);
      }
    }
  }

  static uptr ClassIdToSize(uptr class_id) {
    return SizeClassMap::Size(class_id);
  }

  static uptr AdditionalSize() {
    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
                     GetPageSizeCached());
  }

  typedef SizeClassMap SizeClassMapT;
  static const uptr kNumClasses = SizeClassMap::kNumClasses;
  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;

  // A packed array of counters. Each counter occupies 2^n bits, enough to store
  // counter's max_value. Ctor will try to allocate the required buffer via
  // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
  // whether the initialization was successful by checking IsAllocated() result.
  // For the performance sake, none of the accessors check the validity of the
  // arguments, it is assumed that index is always in [0, n) range and the value
  // is not incremented past max_value.
  template<class MemoryMapperT>
  class PackedCounterArray {
   public:
    PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
        : n(num_counters), memory_mapper(mapper) {
      CHECK_GT(num_counters, 0);
      CHECK_GT(max_value, 0);
      constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
      // Rounding counter storage size up to the power of two allows for using
      // bit shifts calculating particular counter's index and offset.
      uptr counter_size_bits =
          RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
      CHECK_LE(counter_size_bits, kMaxCounterBits);
      counter_size_bits_log = Log2(counter_size_bits);
      counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);

      uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
      CHECK_GT(packing_ratio, 0);
      packing_ratio_log = Log2(packing_ratio);
      bit_offset_mask = packing_ratio - 1;

      buffer_size =
          (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
          sizeof(*buffer);
      buffer = reinterpret_cast<u64*>(
          memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
    }
    ~PackedCounterArray() {
      if (buffer) {
        memory_mapper->UnmapPackedCounterArrayBuffer(
            reinterpret_cast<uptr>(buffer), buffer_size);
      }
    }

    bool IsAllocated() const {
      return !!buffer;
    }

    u64 GetCount() const {
      return n;
    }

    uptr Get(uptr i) const {
      DCHECK_LT(i, n);
      uptr index = i >> packing_ratio_log;
      uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
      return (buffer[index] >> bit_offset) & counter_mask;
    }

    void Inc(uptr i) const {
      DCHECK_LT(Get(i), counter_mask);
      uptr index = i >> packing_ratio_log;
      uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
      buffer[index] += 1ULL << bit_offset;
    }

    void IncRange(uptr from, uptr to) const {
      DCHECK_LE(from, to);
      for (uptr i = from; i <= to; i++)
        Inc(i);
    }

   private:
    const u64 n;
    u64 counter_size_bits_log;
    u64 counter_mask;
    u64 packing_ratio_log;
    u64 bit_offset_mask;

    MemoryMapperT* const memory_mapper;
    u64 buffer_size;
    u64* buffer;
  };

  template<class MemoryMapperT>
  class FreePagesRangeTracker {
   public:
    explicit FreePagesRangeTracker(MemoryMapperT* mapper)
        : memory_mapper(mapper),
          page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
          in_the_range(false), current_page(0), current_range_start_page(0) {}

    void NextPage(bool freed) {
      if (freed) {
        if (!in_the_range) {
          current_range_start_page = current_page;
          in_the_range = true;
        }
      } else {
        CloseOpenedRange();
      }
      current_page++;
    }

    void Done() {
      CloseOpenedRange();
    }

   private:
    void CloseOpenedRange() {
      if (in_the_range) {
        memory_mapper->ReleasePageRangeToOS(
            current_range_start_page << page_size_scaled_log,
            current_page << page_size_scaled_log);
        in_the_range = false;
      }
    }

    MemoryMapperT* const memory_mapper;
    const uptr page_size_scaled_log;
    bool in_the_range;
    uptr current_page;
    uptr current_range_start_page;
  };

  // Iterates over the free_array to identify memory pages containing freed
  // chunks only and returns these pages back to OS.
  // allocated_pages_count is the total number of pages allocated for the
  // current bucket.
  template<class MemoryMapperT>
  static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
                                    uptr free_array_count, uptr chunk_size,
                                    uptr allocated_pages_count,
                                    MemoryMapperT *memory_mapper) {
    const uptr page_size = GetPageSizeCached();

    // Figure out the number of chunks per page and whether we can take a fast
    // path (the number of chunks per page is the same for all pages).
    uptr full_pages_chunk_count_max;
    bool same_chunk_count_per_page;
    if (chunk_size <= page_size && page_size % chunk_size == 0) {
      // Same number of chunks per page, no cross overs.
      full_pages_chunk_count_max = page_size / chunk_size;
      same_chunk_count_per_page = true;
    } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
        chunk_size % (page_size % chunk_size) == 0) {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks, but all pages contain the same
      // number of chunks.
      full_pages_chunk_count_max = page_size / chunk_size + 1;
      same_chunk_count_per_page = true;
    } else if (chunk_size <= page_size) {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks.
      full_pages_chunk_count_max = page_size / chunk_size + 2;
      same_chunk_count_per_page = false;
    } else if (chunk_size > page_size && chunk_size % page_size == 0) {
      // One chunk covers multiple pages, no cross overs.
      full_pages_chunk_count_max = 1;
      same_chunk_count_per_page = true;
    } else if (chunk_size > page_size) {
      // One chunk covers multiple pages, Some chunks are crossing page
      // boundaries. Some pages contain one chunk, some contain two.
      full_pages_chunk_count_max = 2;
      same_chunk_count_per_page = false;
    } else {
      UNREACHABLE("All chunk_size/page_size ratios must be handled.");
    }

    PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
                                               full_pages_chunk_count_max,
                                               memory_mapper);
    if (!counters.IsAllocated())
      return;

    const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
    const uptr page_size_scaled = page_size >> kCompactPtrScale;
    const uptr page_size_scaled_log = Log2(page_size_scaled);

    // Iterate over free chunks and count how many free chunks affect each
    // allocated page.
    if (chunk_size <= page_size && page_size % chunk_size == 0) {
      // Each chunk affects one page only.
      for (uptr i = 0; i < free_array_count; i++)
        counters.Inc(free_array[i] >> page_size_scaled_log);
    } else {
      // In all other cases chunks might affect more than one page.
      for (uptr i = 0; i < free_array_count; i++) {
        counters.IncRange(
            free_array[i] >> page_size_scaled_log,
            (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
      }
    }

    // Iterate over pages detecting ranges of pages with chunk counters equal
    // to the expected number of chunks for the particular page.
    FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
    if (same_chunk_count_per_page) {
      // Fast path, every page has the same number of chunks affecting it.
      for (uptr i = 0; i < counters.GetCount(); i++)
        range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
    } else {
      // Show path, go through the pages keeping count how many chunks affect
      // each page.
      const uptr pn =
          chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
      const uptr pnc = pn * chunk_size_scaled;
      // The idea is to increment the current page pointer by the first chunk
      // size, middle portion size (the portion of the page covered by chunks
      // except the first and the last one) and then the last chunk size, adding
      // up the number of chunks on the current page and checking on every step
      // whether the page boundary was crossed.
      uptr prev_page_boundary = 0;
      uptr current_boundary = 0;
      for (uptr i = 0; i < counters.GetCount(); i++) {
        uptr page_boundary = prev_page_boundary + page_size_scaled;
        uptr chunks_per_page = pn;
        if (current_boundary < page_boundary) {
          if (current_boundary > prev_page_boundary)
            chunks_per_page++;
          current_boundary += pnc;
          if (current_boundary < page_boundary) {
            chunks_per_page++;
            current_boundary += chunk_size_scaled;
          }
        }
        prev_page_boundary = page_boundary;

        range_tracker.NextPage(counters.Get(i) == chunks_per_page);
      }
    }
    range_tracker.Done();
  }

 private:
  friend class MemoryMapper;

  ReservedAddressRange address_range;

  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
  // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
  // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
  // elements, but in reality this will not happen. For simplicity we
  // dedicate 1/8 of the region's virtual space to FreeArray.
  static const uptr kFreeArraySize = kRegionSize / 8;

  static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
  uptr NonConstSpaceBeg;
  uptr SpaceBeg() const {
    return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
  }
  uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
  // kRegionSize must be >= 2^32.
#if _LP64
  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
  // kRegionSize must be <= 2^36, see CompactPtrT.
  COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
#endif
  // Call mmap for user memory with at least this size.
  static const uptr kUserMapSize = 1 << 16;
  // Call mmap for metadata memory with at least this size.
  static const uptr kMetaMapSize = 1 << 16;
  // Call mmap for free array memory with at least this size.
  static const uptr kFreeArrayMapSize = 1 << 16;

  atomic_sint32_t release_to_os_interval_ms_;

  struct Stats {
    uptr n_allocated;
    uptr n_freed;
  };

  struct ReleaseToOsInfo {
    uptr n_freed_at_last_release;
    uptr num_releases;
    u64 last_release_at_ns;
    u64 last_released_bytes;
  };

  struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
    BlockingMutex mutex;
    uptr num_freed_chunks;  // Number of elements in the freearray.
    uptr mapped_free_array;  // Bytes mapped for freearray.
    uptr allocated_user;  // Bytes allocated for user memory.
    uptr allocated_meta;  // Bytes allocated for metadata.
    uptr mapped_user;  // Bytes mapped for user memory.
    uptr mapped_meta;  // Bytes mapped for metadata.
    u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
    bool exhausted;  // Whether region is out of space for new chunks.
    Stats stats;
    ReleaseToOsInfo rtoi;
  };
  COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);

  RegionInfo *GetRegionInfo(uptr class_id) const {
    DCHECK_LT(class_id, kNumClasses);
    RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
    return &regions[class_id];
  }

  uptr GetMetadataEnd(uptr region_beg) const {
    return region_beg + kRegionSize - kFreeArraySize;
  }

  uptr GetChunkIdx(uptr chunk, uptr size) const {
    if (!kUsingConstantSpaceBeg)
      chunk -= SpaceBeg();

    uptr offset = chunk % kRegionSize;
    // Here we divide by a non-constant. This is costly.
    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
    if (offset >> (SANITIZER_WORDSIZE / 2))
      return offset / size;
    return (u32)offset / (u32)size;
  }

  CompactPtrT *GetFreeArray(uptr region_beg) const {
    return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
  }

  bool MapWithCallback(uptr beg, uptr size) {
    uptr mapped = address_range.Map(beg, size);
    if (UNLIKELY(!mapped))
      return false;
    CHECK_EQ(beg, mapped);
    MapUnmapCallback().OnMap(beg, size);
    return true;
  }

  void MapWithCallbackOrDie(uptr beg, uptr size) {
    CHECK_EQ(beg, address_range.MapOrDie(beg, size));
    MapUnmapCallback().OnMap(beg, size);
  }

  void UnmapWithCallbackOrDie(uptr beg, uptr size) {
    MapUnmapCallback().OnUnmap(beg, size);
    address_range.Unmap(beg, size);
  }

  bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
                            uptr num_freed_chunks) {
    uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
    if (region->mapped_free_array < needed_space) {
      uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
      CHECK_LE(new_mapped_free_array, kFreeArraySize);
      uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
                             region->mapped_free_array;
      uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
      if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size)))
        return false;
      region->mapped_free_array = new_mapped_free_array;
    }
    return true;
  }

  // Check whether this size class is exhausted.
  bool IsRegionExhausted(RegionInfo *region, uptr class_id,
                         uptr additional_map_size) {
    if (LIKELY(region->mapped_user + region->mapped_meta +
               additional_map_size <= kRegionSize - kFreeArraySize))
      return false;
    if (!region->exhausted) {
      region->exhausted = true;
      Printf("%s: Out of memory. ", SanitizerToolName);
      Printf("The process has exhausted %zuMB for size class %zu.\n",
             kRegionSize >> 20, ClassIdToSize(class_id));
    }
    return true;
  }

  NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
                                  RegionInfo *region, uptr requested_count) {
    // region->mutex is held.
    const uptr region_beg = GetRegionBeginBySizeClass(class_id);
    const uptr size = ClassIdToSize(class_id);

    const uptr total_user_bytes =
        region->allocated_user + requested_count * size;
    // Map more space for chunks, if necessary.
    if (LIKELY(total_user_bytes > region->mapped_user)) {
      if (UNLIKELY(region->mapped_user == 0)) {
        if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
          // The random state is initialized from ASLR.
          region->rand_state = static_cast<u32>(region_beg >> 12);
        // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
        // preventing just allocated memory from being released sooner than
        // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
        // for short lived processes.
        // Do it only when the feature is turned on, to avoid a potentially
        // extraneous syscall.
        if (ReleaseToOSIntervalMs() >= 0)
          region->rtoi.last_release_at_ns = MonotonicNanoTime();
      }
      // Do the mmap for the user memory.
      const uptr user_map_size =
          RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
      if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
        return false;
      if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
                                    user_map_size)))
        return false;
      stat->Add(AllocatorStatMapped, user_map_size);
      region->mapped_user += user_map_size;
    }
    const uptr new_chunks_count =
        (region->mapped_user - region->allocated_user) / size;

    if (kMetadataSize) {
      // Calculate the required space for metadata.
      const uptr total_meta_bytes =
          region->allocated_meta + new_chunks_count * kMetadataSize;
      const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
          RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
      // Map more space for metadata, if necessary.
      if (meta_map_size) {
        if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
          return false;
        if (UNLIKELY(!MapWithCallback(
            GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
            meta_map_size)))
          return false;
        region->mapped_meta += meta_map_size;
      }
    }

    // If necessary, allocate more space for the free array and populate it with
    // newly allocated chunks.
    const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
    if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
      return false;
    CompactPtrT *free_array = GetFreeArray(region_beg);
    for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
         i++, chunk += size)
      free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
    if (kRandomShuffleChunks)
      RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
                    &region->rand_state);

    // All necessary memory is mapped and now it is safe to advance all
    // 'allocated_*' counters.
    region->num_freed_chunks += new_chunks_count;
    region->allocated_user += new_chunks_count * size;
    CHECK_LE(region->allocated_user, region->mapped_user);
    region->allocated_meta += new_chunks_count * kMetadataSize;
    CHECK_LE(region->allocated_meta, region->mapped_meta);
    region->exhausted = false;

    // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
    // MaybeReleaseToOS from releasing just allocated pages or protect these
    // not yet used chunks some other way.

    return true;
  }

  class MemoryMapper {
   public:
    MemoryMapper(const ThisT& base_allocator, uptr class_id)
        : allocator(base_allocator),
          region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
          released_ranges_count(0),
          released_bytes(0) {
    }

    uptr GetReleasedRangesCount() const {
      return released_ranges_count;
    }

    uptr GetReleasedBytes() const {
      return released_bytes;
    }

    uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
      // TODO(alekseyshl): The idea to explore is to check if we have enough
      // space between num_freed_chunks*sizeof(CompactPtrT) and
      // mapped_free_array to fit buffer_size bytes and use that space instead
      // of mapping a temporary one.
      return reinterpret_cast<uptr>(
          MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
    }

    void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
      UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
    }

    // Releases [from, to) range of pages back to OS.
    void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
      const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
      const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
      ReleaseMemoryPagesToOS(from_page, to_page);
      released_ranges_count++;
      released_bytes += to_page - from_page;
    }

   private:
    const ThisT& allocator;
    const uptr region_base;
    uptr released_ranges_count;
    uptr released_bytes;
  };

  // Attempts to release RAM occupied by freed chunks back to OS. The region is
  // expected to be locked.
  void MaybeReleaseToOS(uptr class_id, bool force) {
    RegionInfo *region = GetRegionInfo(class_id);
    const uptr chunk_size = ClassIdToSize(class_id);
    const uptr page_size = GetPageSizeCached();

    uptr n = region->num_freed_chunks;
    if (n * chunk_size < page_size)
      return;  // No chance to release anything.
    if ((region->stats.n_freed -
         region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
      return;  // Nothing new to release.
    }

    if (!force) {
      s32 interval_ms = ReleaseToOSIntervalMs();
      if (interval_ms < 0)
        return;

      if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
          MonotonicNanoTime()) {
        return;  // Memory was returned recently.
      }
    }

    MemoryMapper memory_mapper(*this, class_id);

    ReleaseFreeMemoryToOS<MemoryMapper>(
        GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
        RoundUpTo(region->allocated_user, page_size) / page_size,
        &memory_mapper);

    if (memory_mapper.GetReleasedRangesCount() > 0) {
      region->rtoi.n_freed_at_last_release = region->stats.n_freed;
      region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
      region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
    }
    region->rtoi.last_release_at_ns = MonotonicNanoTime();
  }
};