Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
/* Simulator for Motorola's MCore processor
   Copyright (C) 1999-2020 Free Software Foundation, Inc.
   Contributed by Cygnus Solutions.

This file is part of GDB, the GNU debugger.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/times.h>
#include <sys/param.h>
#include <unistd.h>
#include "bfd.h"
#include "gdb/callback.h"
#include "libiberty.h"
#include "gdb/remote-sim.h"

#include "sim-main.h"
#include "sim-base.h"
#include "sim-syscall.h"
#include "sim-options.h"

#define target_big_endian (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)


static unsigned long
mcore_extract_unsigned_integer (unsigned char *addr, int len)
{
  unsigned long retval;
  unsigned char * p;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * endaddr = startaddr + len;

  if (len > (int) sizeof (unsigned long))
    printf ("That operation is not available on integers of more than %zu bytes.",
	    sizeof (unsigned long));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;

  if (! target_big_endian)
    {
      for (p = endaddr; p > startaddr;)
	retval = (retval << 8) | * -- p;
    }
  else
    {
      for (p = startaddr; p < endaddr;)
	retval = (retval << 8) | * p ++;
    }

  return retval;
}

static void
mcore_store_unsigned_integer (unsigned char *addr, int len, unsigned long val)
{
  unsigned char * p;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * endaddr = startaddr + len;

  if (! target_big_endian)
    {
      for (p = startaddr; p < endaddr;)
	{
	  * p ++ = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = endaddr; p > startaddr;)
	{
	  * -- p = val & 0xff;
	  val >>= 8;
	}
    }
}

static int memcycles = 1;

#define gr	cpu->active_gregs
#define cr	cpu->regs.cregs
#define sr	cr[0]
#define vbr	cr[1]
#define esr	cr[2]
#define fsr	cr[3]
#define epc	cr[4]
#define fpc	cr[5]
#define ss0	cr[6]
#define ss1	cr[7]
#define ss2	cr[8]
#define ss3	cr[9]
#define ss4	cr[10]
#define gcr	cr[11]
#define gsr	cr[12]

/* maniuplate the carry bit */
#define C_ON()		(sr & 1)
#define C_VALUE()	(sr & 1)
#define C_OFF()		((sr & 1) == 0)
#define SET_C()		{sr |= 1;}
#define CLR_C()		{sr &= 0xfffffffe;}
#define NEW_C(v)	{CLR_C(); sr |= ((v) & 1);}

#define SR_AF()		((sr >> 1) & 1)
static void set_active_regs (SIM_CPU *cpu)
{
  if (SR_AF())
    cpu->active_gregs = cpu->regs.alt_gregs;
  else
    cpu->active_gregs = cpu->regs.gregs;
}

#define	TRAPCODE	1	/* r1 holds which function we want */
#define	PARM1	2		/* first parameter  */
#define	PARM2	3
#define	PARM3	4
#define	PARM4	5
#define	RET1	2		/* register for return values. */

/* Default to a 8 Mbyte (== 2^23) memory space.  */
#define DEFAULT_MEMORY_SIZE 0x800000

static void
set_initial_gprs (SIM_CPU *cpu)
{
  /* Set up machine just out of reset.  */
  CPU_PC_SET (cpu, 0);
  sr = 0;

  /* Clean out the GPRs and alternate GPRs.  */
  memset (&cpu->regs.gregs, 0, sizeof(cpu->regs.gregs));
  memset (&cpu->regs.alt_gregs, 0, sizeof(cpu->regs.alt_gregs));

  /* Make our register set point to the right place.  */
  set_active_regs (cpu);

  /* ABI specifies initial values for these registers.  */
  gr[0] = DEFAULT_MEMORY_SIZE - 4;

  /* dac fix, the stack address must be 8-byte aligned! */
  gr[0] = gr[0] - gr[0] % 8;
  gr[PARM1] = 0;
  gr[PARM2] = 0;
  gr[PARM3] = 0;
  gr[PARM4] = gr[0];
}

/* Simulate a monitor trap.  */

static void
handle_trap1 (SIM_DESC sd, SIM_CPU *cpu)
{
  /* XXX: We don't pass back the actual errno value.  */
  gr[RET1] = sim_syscall (cpu, gr[TRAPCODE], gr[PARM1], gr[PARM2], gr[PARM3],
			  gr[PARM4]);
}

static void
process_stub (SIM_DESC sd, SIM_CPU *cpu, int what)
{
  /* These values should match those in libgloss/mcore/syscalls.s.  */
  switch (what)
    {
    case 3:  /* _read */
    case 4:  /* _write */
    case 5:  /* _open */
    case 6:  /* _close */
    case 10: /* _unlink */
    case 19: /* _lseek */
    case 43: /* _times */
      gr[TRAPCODE] = what;
      handle_trap1 (sd, cpu);
      break;

    default:
      if (STATE_VERBOSE_P (sd))
	fprintf (stderr, "Unhandled stub opcode: %d\n", what);
      break;
    }
}

static void
util (SIM_DESC sd, SIM_CPU *cpu, unsigned what)
{
  switch (what)
    {
    case 0:	/* exit */
      sim_engine_halt (sd, cpu, NULL, cpu->regs.pc, sim_exited, gr[PARM1]);
      break;

    case 1:	/* printf */
      if (STATE_VERBOSE_P (sd))
	fprintf (stderr, "WARNING: printf unimplemented\n");
      break;

    case 2:	/* scanf */
      if (STATE_VERBOSE_P (sd))
	fprintf (stderr, "WARNING: scanf unimplemented\n");
      break;

    case 3:	/* utime */
      gr[RET1] = cpu->insts;
      break;

    case 0xFF:
      process_stub (sd, cpu, gr[1]);
      break;

    default:
      if (STATE_VERBOSE_P (sd))
	fprintf (stderr, "Unhandled util code: %x\n", what);
      break;
    }
}

/* For figuring out whether we carried; addc/subc use this. */
static int
iu_carry (unsigned long a, unsigned long b, int cin)
{
  unsigned long	x;

  x = (a & 0xffff) + (b & 0xffff) + cin;
  x = (x >> 16) + (a >> 16) + (b >> 16);
  x >>= 16;

  return (x != 0);
}

/* TODO: Convert to common watchpoints.  */
#undef WATCHFUNCTIONS
#ifdef WATCHFUNCTIONS

#define MAXWL 80
word WL[MAXWL];
char * WLstr[MAXWL];

int ENDWL=0;
int WLincyc;
int WLcyc[MAXWL];
int WLcnts[MAXWL];
int WLmax[MAXWL];
int WLmin[MAXWL];
word WLendpc;
int WLbcyc;
int WLW;
#endif

#define RD	(inst        & 0xF)
#define RS	((inst >> 4) & 0xF)
#define RX	((inst >> 8) & 0xF)
#define IMM5	((inst >> 4) & 0x1F)
#define IMM4	((inst) & 0xF)

#define rbat(X)	sim_core_read_1 (cpu, 0, read_map, X)
#define rhat(X)	sim_core_read_2 (cpu, 0, read_map, X)
#define rlat(X)	sim_core_read_4 (cpu, 0, read_map, X)
#define wbat(X, D) sim_core_write_1 (cpu, 0, write_map, X, D)
#define what(X, D) sim_core_write_2 (cpu, 0, write_map, X, D)
#define wlat(X, D) sim_core_write_4 (cpu, 0, write_map, X, D)

static int tracing = 0;

#define ILLEGAL() \
  sim_engine_halt (sd, cpu, NULL, pc, sim_stopped, SIM_SIGILL)

static void
step_once (SIM_DESC sd, SIM_CPU *cpu)
{
  int needfetch;
  word ibuf;
  word pc;
  unsigned short inst;
  int memops;
  int bonus_cycles;
  int insts;
  int w;
  int cycs;
#ifdef WATCHFUNCTIONS
  word WLhash;
#endif

  pc = CPU_PC_GET (cpu);

  /* Fetch the initial instructions that we'll decode. */
  ibuf = rlat (pc & 0xFFFFFFFC);
  needfetch = 0;

  memops = 0;
  bonus_cycles = 0;
  insts = 0;

  /* make our register set point to the right place */
  set_active_regs (cpu);

#ifdef WATCHFUNCTIONS
  /* make a hash to speed exec loop, hope it's nonzero */
  WLhash = 0xFFFFFFFF;

  for (w = 1; w <= ENDWL; w++)
    WLhash = WLhash & WL[w];
#endif

  /* TODO: Unindent this block.  */
    {
      word oldpc;

      insts ++;

      if (pc & 02)
	{
	  if (! target_big_endian)
	    inst = ibuf >> 16;
	  else
	    inst = ibuf & 0xFFFF;
	  needfetch = 1;
	}
      else
	{
	  if (! target_big_endian)
	    inst = ibuf & 0xFFFF;
	  else
	    inst = ibuf >> 16;
	}

#ifdef WATCHFUNCTIONS
      /* now scan list of watch addresses, if match, count it and
	 note return address and count cycles until pc=return address */

      if ((WLincyc == 1) && (pc == WLendpc))
	{
	  cycs = (cpu->cycles + (insts + bonus_cycles +
				       (memops * memcycles)) - WLbcyc);

	  if (WLcnts[WLW] == 1)
	    {
	      WLmax[WLW] = cycs;
	      WLmin[WLW] = cycs;
	      WLcyc[WLW] = 0;
	    }

	  if (cycs > WLmax[WLW])
	    {
	      WLmax[WLW] = cycs;
	    }

	  if (cycs < WLmin[WLW])
	    {
	      WLmin[WLW] = cycs;
	    }

	  WLcyc[WLW] += cycs;
	  WLincyc = 0;
	  WLendpc = 0;
	}

      /* Optimize with a hash to speed loop.  */
      if (WLincyc == 0)
	{
          if ((WLhash == 0) || ((WLhash & pc) != 0))
	    {
	      for (w=1; w <= ENDWL; w++)
		{
		  if (pc == WL[w])
		    {
		      WLcnts[w]++;
		      WLbcyc = cpu->cycles + insts
			+ bonus_cycles + (memops * memcycles);
		      WLendpc = gr[15];
		      WLincyc = 1;
		      WLW = w;
		      break;
		    }
		}
	    }
	}
#endif

      if (tracing)
	fprintf (stderr, "%.4lx: inst = %.4x ", pc, inst);

      oldpc = pc;

      pc += 2;

      switch (inst >> 8)
	{
	case 0x00:
	  switch RS
	    {
	    case 0x0:
	      switch RD
		{
		case 0x0:				/* bkpt */
		  pc -= 2;
		  sim_engine_halt (sd, cpu, NULL, pc - 2,
				   sim_stopped, SIM_SIGTRAP);
		  break;

		case 0x1:				/* sync */
		  break;

		case 0x2:				/* rte */
		  pc = epc;
		  sr = esr;
		  needfetch = 1;

		  set_active_regs (cpu);
		  break;

		case 0x3:				/* rfi */
		  pc = fpc;
		  sr = fsr;
		  needfetch = 1;

		  set_active_regs (cpu);
		  break;

		case 0x4:				/* stop */
		  if (STATE_VERBOSE_P (sd))
		    fprintf (stderr, "WARNING: stop unimplemented\n");
		  break;

		case 0x5:				/* wait */
		  if (STATE_VERBOSE_P (sd))
		    fprintf (stderr, "WARNING: wait unimplemented\n");
		  break;

		case 0x6:				/* doze */
		  if (STATE_VERBOSE_P (sd))
		    fprintf (stderr, "WARNING: doze unimplemented\n");
		  break;

		case 0x7:
		  ILLEGAL ();				/* illegal */
		  break;

		case 0x8:				/* trap 0 */
		case 0xA:				/* trap 2 */
		case 0xB:				/* trap 3 */
		  sim_engine_halt (sd, cpu, NULL, pc,
				   sim_stopped, SIM_SIGTRAP);
		  break;

		case 0xC:				/* trap 4 */
		case 0xD:				/* trap 5 */
		case 0xE:				/* trap 6 */
		  ILLEGAL ();				/* illegal */
		  break;

		case 0xF: 				/* trap 7 */
		  sim_engine_halt (sd, cpu, NULL, pc,	/* integer div-by-0 */
				   sim_stopped, SIM_SIGTRAP);
		  break;

		case 0x9:				/* trap 1 */
		  handle_trap1 (sd, cpu);
		  break;
		}
	      break;

	    case 0x1:
	      ILLEGAL ();				/* illegal */
	      break;

	    case 0x2:					/* mvc */
	      gr[RD] = C_VALUE();
	      break;
	    case 0x3:					/* mvcv */
	      gr[RD] = C_OFF();
	      break;
	    case 0x4:					/* ldq */
	      {
		word addr = gr[RD];
		int regno = 4;			/* always r4-r7 */

		bonus_cycles++;
		memops += 4;
		do
		  {
		    gr[regno] = rlat (addr);
		    addr += 4;
		    regno++;
		  }
		while ((regno&0x3) != 0);
	      }
	      break;
	    case 0x5:					/* stq */
	      {
		word addr = gr[RD];
		int regno = 4;			/* always r4-r7 */

		memops += 4;
		bonus_cycles++;
		do
		  {
		    wlat (addr, gr[regno]);
		    addr += 4;
		    regno++;
		  }
		while ((regno & 0x3) != 0);
	      }
	      break;
	    case 0x6:					/* ldm */
	      {
		word addr = gr[0];
		int regno = RD;

		/* bonus cycle is really only needed if
		   the next insn shifts the last reg loaded.

		   bonus_cycles++;
		*/
		memops += 16-regno;
		while (regno <= 0xF)
		  {
		    gr[regno] = rlat (addr);
		    addr += 4;
		    regno++;
		  }
	      }
	      break;
	    case 0x7:					/* stm */
	      {
		word addr = gr[0];
		int regno = RD;

		/* this should be removed! */
		/*  bonus_cycles ++; */

		memops += 16 - regno;
		while (regno <= 0xF)
		  {
		    wlat (addr, gr[regno]);
		    addr += 4;
		    regno++;
		  }
	      }
	      break;

	    case 0x8:					/* dect */
	      gr[RD] -= C_VALUE();
	      break;
	    case 0x9:					/* decf */
	      gr[RD] -= C_OFF();
	      break;
	    case 0xA:					/* inct */
	      gr[RD] += C_VALUE();
	      break;
	    case 0xB:					/* incf */
	      gr[RD] += C_OFF();
	      break;
	    case 0xC:					/* jmp */
	      pc = gr[RD];
	      if (tracing && RD == 15)
		fprintf (stderr, "Func return, r2 = %lxx, r3 = %lx\n",
			 gr[2], gr[3]);
	      bonus_cycles++;
	      needfetch = 1;
	      break;
	    case 0xD:					/* jsr */
	      gr[15] = pc;
	      pc = gr[RD];
	      bonus_cycles++;
	      needfetch = 1;
	      break;
	    case 0xE:					/* ff1 */
	      {
		word tmp, i;
		tmp = gr[RD];
		for (i = 0; !(tmp & 0x80000000) && i < 32; i++)
		  tmp <<= 1;
		gr[RD] = i;
	      }
	      break;
	    case 0xF:					/* brev */
	      {
		word tmp;
		tmp = gr[RD];
		tmp = ((tmp & 0xaaaaaaaa) >>  1) | ((tmp & 0x55555555) <<  1);
		tmp = ((tmp & 0xcccccccc) >>  2) | ((tmp & 0x33333333) <<  2);
		tmp = ((tmp & 0xf0f0f0f0) >>  4) | ((tmp & 0x0f0f0f0f) <<  4);
		tmp = ((tmp & 0xff00ff00) >>  8) | ((tmp & 0x00ff00ff) <<  8);
		gr[RD] = ((tmp & 0xffff0000) >> 16) | ((tmp & 0x0000ffff) << 16);
	      }
	      break;
	    }
	  break;
	case 0x01:
	  switch RS
	    {
	    case 0x0:					/* xtrb3 */
	      gr[1] = (gr[RD]) & 0xFF;
	      NEW_C (gr[RD] != 0);
	      break;
	    case 0x1:					/* xtrb2 */
	      gr[1] = (gr[RD]>>8) & 0xFF;
	      NEW_C (gr[RD] != 0);
	      break;
	    case 0x2:					/* xtrb1 */
	      gr[1] = (gr[RD]>>16) & 0xFF;
	      NEW_C (gr[RD] != 0);
	      break;
	    case 0x3:					/* xtrb0 */
	      gr[1] = (gr[RD]>>24) & 0xFF;
	      NEW_C (gr[RD] != 0);
	      break;
	    case 0x4:					/* zextb */
	      gr[RD] &= 0x000000FF;
	      break;
	    case 0x5:					/* sextb */
	      {
		long tmp;
		tmp = gr[RD];
		tmp <<= 24;
		tmp >>= 24;
		gr[RD] = tmp;
	      }
	      break;
	    case 0x6:					/* zexth */
	      gr[RD] &= 0x0000FFFF;
	      break;
	    case 0x7:					/* sexth */
	      {
		long tmp;
		tmp = gr[RD];
		tmp <<= 16;
		tmp >>= 16;
		gr[RD] = tmp;
	      }
	      break;
	    case 0x8:					/* declt */
	      --gr[RD];
	      NEW_C ((long)gr[RD] < 0);
	      break;
	    case 0x9:					/* tstnbz */
	      {
		word tmp = gr[RD];
		NEW_C ((tmp & 0xFF000000) != 0 &&
		       (tmp & 0x00FF0000) != 0 && (tmp & 0x0000FF00) != 0 &&
		       (tmp & 0x000000FF) != 0);
	      }
	      break;
	    case 0xA:					/* decgt */
	      --gr[RD];
	      NEW_C ((long)gr[RD] > 0);
	      break;
	    case 0xB:					/* decne */
	      --gr[RD];
	      NEW_C ((long)gr[RD] != 0);
	      break;
	    case 0xC:					/* clrt */
	      if (C_ON())
		gr[RD] = 0;
	      break;
	    case 0xD:					/* clrf */
	      if (C_OFF())
		gr[RD] = 0;
	      break;
	    case 0xE:					/* abs */
	      if (gr[RD] & 0x80000000)
		gr[RD] = ~gr[RD] + 1;
	      break;
	    case 0xF:					/* not */
	      gr[RD] = ~gr[RD];
	      break;
	    }
	  break;
	case 0x02:					/* movt */
	  if (C_ON())
	    gr[RD] = gr[RS];
	  break;
	case 0x03:					/* mult */
	  /* consume 2 bits per cycle from rs, until rs is 0 */
	  {
	    unsigned int t = gr[RS];
	    int ticks;
	    for (ticks = 0; t != 0 ; t >>= 2)
	      ticks++;
	    bonus_cycles += ticks;
	  }
	  bonus_cycles += 2;  /* min. is 3, so add 2, plus ticks above */
	  if (tracing)
	    fprintf (stderr, "  mult %lx by %lx to give %lx",
		     gr[RD], gr[RS], gr[RD] * gr[RS]);
	  gr[RD] = gr[RD] * gr[RS];
	  break;
	case 0x04:					/* loopt */
	  if (C_ON())
	    {
	      pc += (IMM4 << 1) - 32;
	      bonus_cycles ++;
	      needfetch = 1;
	    }
	  --gr[RS];				/* not RD! */
	  NEW_C (((long)gr[RS]) > 0);
	  break;
	case 0x05:					/* subu */
	  gr[RD] -= gr[RS];
	  break;
	case 0x06:					/* addc */
	  {
	    unsigned long tmp, a, b;
	    a = gr[RD];
	    b = gr[RS];
	    gr[RD] = a + b + C_VALUE ();
	    tmp = iu_carry (a, b, C_VALUE ());
	    NEW_C (tmp);
	  }
	  break;
	case 0x07:					/* subc */
	  {
	    unsigned long tmp, a, b;
	    a = gr[RD];
	    b = gr[RS];
	    gr[RD] = a - b + C_VALUE () - 1;
	    tmp = iu_carry (a,~b, C_VALUE ());
	    NEW_C (tmp);
	  }
	  break;
	case 0x08:					/* illegal */
	case 0x09:					/* illegal*/
	  ILLEGAL ();
	  break;
	case 0x0A:					/* movf */
	  if (C_OFF())
	    gr[RD] = gr[RS];
	  break;
	case 0x0B:					/* lsr */
	  {
	    unsigned long dst, src;
	    dst = gr[RD];
	    src = gr[RS];
	    /* We must not rely solely upon the native shift operations, since they
	       may not match the M*Core's behaviour on boundary conditions.  */
	    dst = src > 31 ? 0 : dst >> src;
	    gr[RD] = dst;
	  }
	  break;
	case 0x0C:					/* cmphs */
	  NEW_C ((unsigned long )gr[RD] >=
		 (unsigned long)gr[RS]);
	  break;
	case 0x0D:					/* cmplt */
	  NEW_C ((long)gr[RD] < (long)gr[RS]);
	  break;
	case 0x0E:					/* tst */
	  NEW_C ((gr[RD] & gr[RS]) != 0);
	  break;
	case 0x0F:					/* cmpne */
	  NEW_C (gr[RD] != gr[RS]);
	  break;
	case 0x10: case 0x11:				/* mfcr */
	  {
	    unsigned r;
	    r = IMM5;
	    if (r <= LAST_VALID_CREG)
	      gr[RD] = cr[r];
	    else
	      ILLEGAL ();
	  }
	  break;

	case 0x12:					/* mov */
	  gr[RD] = gr[RS];
	  if (tracing)
	    fprintf (stderr, "MOV %lx into reg %d", gr[RD], RD);
	  break;

	case 0x13:					/* bgenr */
	  if (gr[RS] & 0x20)
	    gr[RD] = 0;
	  else
	    gr[RD] = 1 << (gr[RS] & 0x1F);
	  break;

	case 0x14:					/* rsub */
	  gr[RD] = gr[RS] - gr[RD];
	  break;

	case 0x15:					/* ixw */
	  gr[RD] += gr[RS]<<2;
	  break;

	case 0x16:					/* and */
	  gr[RD] &= gr[RS];
	  break;

	case 0x17:					/* xor */
	  gr[RD] ^= gr[RS];
	  break;

	case 0x18: case 0x19:				/* mtcr */
	  {
	    unsigned r;
	    r = IMM5;
	    if (r <= LAST_VALID_CREG)
	      cr[r] = gr[RD];
	    else
	      ILLEGAL ();

	    /* we might have changed register sets... */
	    set_active_regs (cpu);
	  }
	  break;

	case 0x1A:					/* asr */
	  /* We must not rely solely upon the native shift operations, since they
	     may not match the M*Core's behaviour on boundary conditions.  */
	  if (gr[RS] > 30)
	    gr[RD] = ((long) gr[RD]) < 0 ? -1 : 0;
	  else
	    gr[RD] = (long) gr[RD] >> gr[RS];
	  break;

	case 0x1B:					/* lsl */
	  /* We must not rely solely upon the native shift operations, since they
	     may not match the M*Core's behaviour on boundary conditions.  */
	  gr[RD] = gr[RS] > 31 ? 0 : gr[RD] << gr[RS];
	  break;

	case 0x1C:					/* addu */
	  gr[RD] += gr[RS];
	  break;

	case 0x1D:					/* ixh */
	  gr[RD] += gr[RS] << 1;
	  break;

	case 0x1E:					/* or */
	  gr[RD] |= gr[RS];
	  break;

	case 0x1F:					/* andn */
	  gr[RD] &= ~gr[RS];
	  break;
	case 0x20: case 0x21:				/* addi */
	  gr[RD] =
	    gr[RD] + (IMM5 + 1);
	  break;
	case 0x22: case 0x23:				/* cmplti */
	  {
	    int tmp = (IMM5 + 1);
	    if (gr[RD] < tmp)
	      {
	        SET_C();
	      }
	    else
	      {
	        CLR_C();
	      }
	  }
	  break;
	case 0x24: case 0x25:				/* subi */
	  gr[RD] =
	    gr[RD] - (IMM5 + 1);
	  break;
	case 0x26: case 0x27:				/* illegal */
	  ILLEGAL ();
	  break;
	case 0x28: case 0x29:				/* rsubi */
	  gr[RD] =
	    IMM5 - gr[RD];
	  break;
	case 0x2A: case 0x2B:				/* cmpnei */
	  if (gr[RD] != IMM5)
	    {
	      SET_C();
	    }
	  else
	    {
	      CLR_C();
	    }
	  break;

	case 0x2C: case 0x2D:				/* bmaski, divu */
	  {
	    unsigned imm = IMM5;

	    if (imm == 1)
	      {
		int exe;
		int rxnlz, r1nlz;
		unsigned int rx, r1;

		rx = gr[RD];
		r1 = gr[1];
		exe = 0;

		/* unsigned divide */
		gr[RD] = (word) ((unsigned int) gr[RD] / (unsigned int)gr[1] );

		/* compute bonus_cycles for divu */
		for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32); r1nlz ++)
		  r1 = r1 << 1;

		for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32); rxnlz ++)
		  rx = rx << 1;

		if (r1nlz < rxnlz)
		  exe += 4;
		else
		  exe += 5 + r1nlz - rxnlz;

		if (exe >= (2 * memcycles - 1))
		  {
		    bonus_cycles += exe - (2 * memcycles) + 1;
		  }
	      }
	    else if (imm == 0 || imm >= 8)
	      {
		/* bmaski */
		if (imm == 0)
		  gr[RD] = -1;
		else
		  gr[RD] = (1 << imm) - 1;
	      }
	    else
	      {
		/* illegal */
		ILLEGAL ();
	      }
	  }
	  break;
	case 0x2E: case 0x2F:				/* andi */
	  gr[RD] = gr[RD] & IMM5;
	  break;
	case 0x30: case 0x31:				/* bclri */
	  gr[RD] = gr[RD] & ~(1<<IMM5);
	  break;
	case 0x32: case 0x33:				/* bgeni, divs */
	  {
	    unsigned imm = IMM5;
	    if (imm == 1)
	      {
		int exe,sc;
		int rxnlz, r1nlz;
		signed int rx, r1;

		/* compute bonus_cycles for divu */
		rx = gr[RD];
		r1 = gr[1];
		exe = 0;

		if (((rx < 0) && (r1 > 0)) || ((rx >= 0) && (r1 < 0)))
		  sc = 1;
		else
		  sc = 0;

		rx = abs (rx);
		r1 = abs (r1);

		/* signed divide, general registers are of type int, so / op is OK */
		gr[RD] = gr[RD] / gr[1];

		for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32) ; r1nlz ++ )
		  r1 = r1 << 1;

		for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32) ; rxnlz ++ )
		  rx = rx << 1;

		if (r1nlz < rxnlz)
		  exe += 5;
		else
		  exe += 6 + r1nlz - rxnlz + sc;

		if (exe >= (2 * memcycles - 1))
		  {
		    bonus_cycles += exe - (2 * memcycles) + 1;
		  }
	      }
	    else if (imm >= 7)
	      {
		/* bgeni */
		gr[RD] = (1 << IMM5);
	      }
	    else
	      {
		/* illegal */
		ILLEGAL ();
	      }
	    break;
	  }
	case 0x34: case 0x35:				/* bseti */
	  gr[RD] = gr[RD] | (1 << IMM5);
	  break;
	case 0x36: case 0x37:				/* btsti */
	  NEW_C (gr[RD] >> IMM5);
	  break;
	case 0x38: case 0x39:				/* xsr, rotli */
	  {
	    unsigned imm = IMM5;
	    unsigned long tmp = gr[RD];
	    if (imm == 0)
	      {
		word cbit;
		cbit = C_VALUE();
		NEW_C (tmp);
		gr[RD] = (cbit << 31) | (tmp >> 1);
	      }
	    else
	      gr[RD] = (tmp << imm) | (tmp >> (32 - imm));
	  }
	  break;
	case 0x3A: case 0x3B:				/* asrc, asri */
	  {
	    unsigned imm = IMM5;
	    long tmp = gr[RD];
	    if (imm == 0)
	      {
		NEW_C (tmp);
		gr[RD] = tmp >> 1;
	      }
	    else
	      gr[RD] = tmp >> imm;
	  }
	  break;
	case 0x3C: case 0x3D:				/* lslc, lsli */
	  {
	    unsigned imm = IMM5;
	    unsigned long tmp = gr[RD];
	    if (imm == 0)
	      {
		NEW_C (tmp >> 31);
		gr[RD] = tmp << 1;
	      }
	    else
	      gr[RD] = tmp << imm;
	  }
	  break;
	case 0x3E: case 0x3F:				/* lsrc, lsri */
	  {
	    unsigned imm = IMM5;
	    unsigned long tmp = gr[RD];
	    if (imm == 0)
	      {
		NEW_C (tmp);
		gr[RD] = tmp >> 1;
	      }
	    else
	      gr[RD] = tmp >> imm;
	  }
	  break;
	case 0x40: case 0x41: case 0x42: case 0x43:
	case 0x44: case 0x45: case 0x46: case 0x47:
	case 0x48: case 0x49: case 0x4A: case 0x4B:
	case 0x4C: case 0x4D: case 0x4E: case 0x4F:
	  ILLEGAL ();
	  break;
	case 0x50:
	  util (sd, cpu, inst & 0xFF);
	  break;
	case 0x51: case 0x52: case 0x53:
	case 0x54: case 0x55: case 0x56: case 0x57:
	case 0x58: case 0x59: case 0x5A: case 0x5B:
	case 0x5C: case 0x5D: case 0x5E: case 0x5F:
	  ILLEGAL ();
	  break;
	case 0x60: case 0x61: case 0x62: case 0x63:	/* movi  */
	case 0x64: case 0x65: case 0x66: case 0x67:
	  gr[RD] = (inst >> 4) & 0x7F;
	  break;
	case 0x68: case 0x69: case 0x6A: case 0x6B:
	case 0x6C: case 0x6D: case 0x6E: case 0x6F:	/* illegal */
	  ILLEGAL ();
	  break;
	case 0x71: case 0x72: case 0x73:
	case 0x74: case 0x75: case 0x76: case 0x77:
	case 0x78: case 0x79: case 0x7A: case 0x7B:
	case 0x7C: case 0x7D: case 0x7E:		/* lrw */
	  gr[RX] =  rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
	  if (tracing)
	    fprintf (stderr, "LRW of 0x%x from 0x%lx to reg %d",
		     rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC),
		     (pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC, RX);
	  memops++;
	  break;
	case 0x7F:					/* jsri */
	  gr[15] = pc;
	  if (tracing)
	    fprintf (stderr,
		     "func call: r2 = %lx r3 = %lx r4 = %lx r5 = %lx r6 = %lx r7 = %lx\n",
		     gr[2], gr[3], gr[4], gr[5], gr[6], gr[7]);
	case 0x70:					/* jmpi */
	  pc = rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
	  memops++;
	  bonus_cycles++;
	  needfetch = 1;
	  break;

	case 0x80: case 0x81: case 0x82: case 0x83:
	case 0x84: case 0x85: case 0x86: case 0x87:
	case 0x88: case 0x89: case 0x8A: case 0x8B:
	case 0x8C: case 0x8D: case 0x8E: case 0x8F:	/* ld */
	  gr[RX] = rlat (gr[RD] + ((inst >> 2) & 0x003C));
	  if (tracing)
	    fprintf (stderr, "load reg %d from 0x%lx with 0x%lx",
		     RX,
		     gr[RD] + ((inst >> 2) & 0x003C), gr[RX]);
	  memops++;
	  break;
	case 0x90: case 0x91: case 0x92: case 0x93:
	case 0x94: case 0x95: case 0x96: case 0x97:
	case 0x98: case 0x99: case 0x9A: case 0x9B:
	case 0x9C: case 0x9D: case 0x9E: case 0x9F:	/* st */
	  wlat (gr[RD] + ((inst >> 2) & 0x003C), gr[RX]);
	  if (tracing)
	    fprintf (stderr, "store reg %d (containing 0x%lx) to 0x%lx",
		     RX, gr[RX],
		     gr[RD] + ((inst >> 2) & 0x003C));
	  memops++;
	  break;
	case 0xA0: case 0xA1: case 0xA2: case 0xA3:
	case 0xA4: case 0xA5: case 0xA6: case 0xA7:
	case 0xA8: case 0xA9: case 0xAA: case 0xAB:
	case 0xAC: case 0xAD: case 0xAE: case 0xAF:	/* ld.b */
	  gr[RX] = rbat (gr[RD] + RS);
	  memops++;
	  break;
	case 0xB0: case 0xB1: case 0xB2: case 0xB3:
	case 0xB4: case 0xB5: case 0xB6: case 0xB7:
	case 0xB8: case 0xB9: case 0xBA: case 0xBB:
	case 0xBC: case 0xBD: case 0xBE: case 0xBF:	/* st.b */
	  wbat (gr[RD] + RS, gr[RX]);
	  memops++;
	  break;
	case 0xC0: case 0xC1: case 0xC2: case 0xC3:
	case 0xC4: case 0xC5: case 0xC6: case 0xC7:
	case 0xC8: case 0xC9: case 0xCA: case 0xCB:
	case 0xCC: case 0xCD: case 0xCE: case 0xCF:	/* ld.h */
	  gr[RX] = rhat (gr[RD] + ((inst >> 3) & 0x001E));
	  memops++;
	  break;
	case 0xD0: case 0xD1: case 0xD2: case 0xD3:
	case 0xD4: case 0xD5: case 0xD6: case 0xD7:
	case 0xD8: case 0xD9: case 0xDA: case 0xDB:
	case 0xDC: case 0xDD: case 0xDE: case 0xDF:	/* st.h */
	  what (gr[RD] + ((inst >> 3) & 0x001E), gr[RX]);
	  memops++;
	  break;
	case 0xE8: case 0xE9: case 0xEA: case 0xEB:
	case 0xEC: case 0xED: case 0xEE: case 0xEF:	/* bf */
	  if (C_OFF())
	    {
	      int disp;
	      disp = inst & 0x03FF;
	      if (inst & 0x0400)
		disp |= 0xFFFFFC00;
	      pc += disp<<1;
	      bonus_cycles++;
	      needfetch = 1;
	    }
	  break;
	case 0xE0: case 0xE1: case 0xE2: case 0xE3:
	case 0xE4: case 0xE5: case 0xE6: case 0xE7:	/* bt */
	  if (C_ON())
	    {
	      int disp;
	      disp = inst & 0x03FF;
	      if (inst & 0x0400)
		disp |= 0xFFFFFC00;
	      pc += disp<<1;
	      bonus_cycles++;
	      needfetch = 1;
	    }
	  break;

	case 0xF8: case 0xF9: case 0xFA: case 0xFB:
	case 0xFC: case 0xFD: case 0xFE: case 0xFF:	/* bsr */
	  gr[15] = pc;
	case 0xF0: case 0xF1: case 0xF2: case 0xF3:
	case 0xF4: case 0xF5: case 0xF6: case 0xF7:	/* br */
	  {
	    int disp;
	    disp = inst & 0x03FF;
	    if (inst & 0x0400)
	      disp |= 0xFFFFFC00;
	    pc += disp<<1;
	    bonus_cycles++;
	    needfetch = 1;
	  }
	  break;

	}

      if (tracing)
	fprintf (stderr, "\n");

      if (needfetch)
	{
	  ibuf = rlat (pc & 0xFFFFFFFC);
	  needfetch = 0;
	}
    }

  /* Hide away the things we've cached while executing.  */
  CPU_PC_SET (cpu, pc);
  cpu->insts += insts;		/* instructions done ... */
  cpu->cycles += insts;		/* and each takes a cycle */
  cpu->cycles += bonus_cycles;	/* and extra cycles for branches */
  cpu->cycles += memops * memcycles;	/* and memop cycle delays */
}

void
sim_engine_run (SIM_DESC sd,
		int next_cpu_nr,  /* ignore  */
		int nr_cpus,      /* ignore  */
		int siggnal)      /* ignore  */
{
  sim_cpu *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  cpu = STATE_CPU (sd, 0);

  while (1)
    {
      step_once (sd, cpu);
      if (sim_events_tick (sd))
	sim_events_process (sd);
    }
}

static int
mcore_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  if (rn < NUM_MCORE_REGS && rn >= 0)
    {
      if (length == 4)
	{
	  long ival;

	  /* misalignment safe */
	  ival = mcore_extract_unsigned_integer (memory, 4);
	  cpu->asints[rn] = ival;
	}

      return 4;
    }
  else
    return 0;
}

static int
mcore_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  if (rn < NUM_MCORE_REGS && rn >= 0)
    {
      if (length == 4)
	{
	  long ival = cpu->asints[rn];

	  /* misalignment-safe */
	  mcore_store_unsigned_integer (memory, 4, ival);
	}

      return 4;
    }
  else
    return 0;
}

void
sim_info (SIM_DESC sd, int verbose)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
#ifdef WATCHFUNCTIONS
  int w, wcyc;
#endif
  double virttime = cpu->cycles / 36.0e6;
  host_callback *callback = STATE_CALLBACK (sd);

  callback->printf_filtered (callback, "\n\n# instructions executed  %10d\n",
			     cpu->insts);
  callback->printf_filtered (callback, "# cycles                 %10d\n",
			     cpu->cycles);
  callback->printf_filtered (callback, "# pipeline stalls        %10d\n",
			     cpu->stalls);
  callback->printf_filtered (callback, "# virtual time taken     %10.4f\n",
			     virttime);

#ifdef WATCHFUNCTIONS
  callback->printf_filtered (callback, "\nNumber of watched functions: %d\n",
			     ENDWL);

  wcyc = 0;

  for (w = 1; w <= ENDWL; w++)
    {
      callback->printf_filtered (callback, "WL = %s %8x\n",WLstr[w],WL[w]);
      callback->printf_filtered (callback, "  calls = %d, cycles = %d\n",
				 WLcnts[w],WLcyc[w]);

      if (WLcnts[w] != 0)
	callback->printf_filtered (callback,
				   "  maxcpc = %d, mincpc = %d, avecpc = %d\n",
				   WLmax[w],WLmin[w],WLcyc[w]/WLcnts[w]);
      wcyc += WLcyc[w];
    }

  callback->printf_filtered (callback,
			     "Total cycles for watched functions: %d\n",wcyc);
#endif
}

static sim_cia
mcore_pc_get (sim_cpu *cpu)
{
  return cpu->regs.pc;
}

static void
mcore_pc_set (sim_cpu *cpu, sim_cia pc)
{
  cpu->regs.pc = pc;
}

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb,
	  struct bfd *abfd, char * const *argv)
{
  int i;
  SIM_DESC sd = sim_state_alloc (kind, cb);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_REG_FETCH (cpu) = mcore_reg_fetch;
      CPU_REG_STORE (cpu) = mcore_reg_store;
      CPU_PC_FETCH (cpu) = mcore_pc_get;
      CPU_PC_STORE (cpu) = mcore_pc_set;

      set_initial_gprs (cpu);	/* Reset the GPR registers.  */
    }

  /* Default to a 8 Mbyte (== 2^23) memory space.  */
  sim_do_commandf (sd, "memory-size %#x", DEFAULT_MEMORY_SIZE);

  return sd;
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd,
		     char * const *argv, char * const *env)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  char ** avp;
  int nargs = 0;
  int nenv = 0;
  int s_length;
  int l;
  unsigned long strings;
  unsigned long pointers;
  unsigned long hi_stack;


  /* Set the initial register set.  */
  set_initial_gprs (cpu);

  hi_stack = DEFAULT_MEMORY_SIZE - 4;
  CPU_PC_SET (cpu, bfd_get_start_address (prog_bfd));

  /* Calculate the argument and environment strings.  */
  s_length = 0;
  nargs = 0;
  avp = argv;
  while (avp && *avp)
    {
      l = strlen (*avp) + 1;	/* include the null */
      s_length += (l + 3) & ~3;	/* make it a 4 byte boundary */
      nargs++; avp++;
    }

  nenv = 0;
  avp = env;
  while (avp && *avp)
    {
      l = strlen (*avp) + 1;	/* include the null */
      s_length += (l + 3) & ~ 3;/* make it a 4 byte boundary */
      nenv++; avp++;
    }

  /* Claim some memory for the pointers and strings. */
  pointers = hi_stack - sizeof(word) * (nenv+1+nargs+1);
  pointers &= ~3;		/* must be 4-byte aligned */
  gr[0] = pointers;

  strings = gr[0] - s_length;
  strings &= ~3;		/* want to make it 4-byte aligned */
  gr[0] = strings;
  /* dac fix, the stack address must be 8-byte aligned! */
  gr[0] = gr[0] - gr[0] % 8;

  /* Loop through the arguments and fill them in.  */
  gr[PARM1] = nargs;
  if (nargs == 0)
    {
      /* No strings to fill in.  */
      gr[PARM2] = 0;
    }
  else
    {
      gr[PARM2] = pointers;
      avp = argv;
      while (avp && *avp)
	{
	  /* Save where we're putting it.  */
	  wlat (pointers, strings);

	  /* Copy the string.  */
	  l = strlen (* avp) + 1;
	  sim_core_write_buffer (sd, cpu, write_map, *avp, strings, l);

	  /* Bump the pointers.  */
	  avp++;
	  pointers += 4;
	  strings += l+1;
	}

      /* A null to finish the list.  */
      wlat (pointers, 0);
      pointers += 4;
    }

  /* Now do the environment pointers.  */
  if (nenv == 0)
    {
      /* No strings to fill in.  */
      gr[PARM3] = 0;
    }
  else
    {
      gr[PARM3] = pointers;
      avp = env;

      while (avp && *avp)
	{
	  /* Save where we're putting it.  */
	  wlat (pointers, strings);

	  /* Copy the string.  */
	  l = strlen (* avp) + 1;
	  sim_core_write_buffer (sd, cpu, write_map, *avp, strings, l);

	  /* Bump the pointers.  */
	  avp++;
	  pointers += 4;
	  strings += l+1;
	}

      /* A null to finish the list.  */
      wlat (pointers, 0);
      pointers += 4;
    }

  return SIM_RC_OK;
}