Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/* mpn_powm -- Compute R = U^E mod M.

   Contributed to the GNU project by Torbjorn Granlund.

   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.

Copyright 2007-2012, 2019 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 2 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library.  If not,
see https://www.gnu.org/licenses/.  */


/*
  BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.

  1. W <- U

  2. T <- (B^n * U) mod M                Convert to REDC form

  3. Compute table U^1, U^3, U^5... of E-dependent size

  4. While there are more bits in E
       W <- power left-to-right base-k


  TODO:

   * Make getbits a macro, thereby allowing it to update the index operand.
     That will simplify the code using getbits.  (Perhaps make getbits' sibling
     getbit then have similar form, for symmetry.)

   * Write an itch function.  Or perhaps get rid of tp parameter since the huge
     pp area is allocated locally anyway?

   * Choose window size without looping.  (Superoptimize or think(tm).)

   * Handle small bases with initial, reduction-free exponentiation.

   * Call new division functions, not mpn_tdiv_qr.

   * Consider special code for one-limb M.

   * How should we handle the redc1/redc2/redc_n choice?
     - redc1:  T(binvert_1limb)  + e * (n)   * (T(mullo-1x1) + n*T(addmul_1))
     - redc2:  T(binvert_2limbs) + e * (n/2) * (T(mullo-2x2) + n*T(addmul_2))
     - redc_n: T(binvert_nlimbs) + e * (T(mullo-nxn) + T(M(n)))
     This disregards the addmul_N constant term, but we could think of
     that as part of the respective mullo.

   * When U (the base) is small, we should start the exponentiation with plain
     operations, then convert that partial result to REDC form.

   * When U is just one limb, should it be handled without the k-ary tricks?
     We could keep a factor of B^n in W, but use U' = BU as base.  After
     multiplying by this (pseudo two-limb) number, we need to multiply by 1/B
     mod M.
*/

#include "gmp-impl.h"
#include "longlong.h"

#undef MPN_REDC_0
#define MPN_REDC_0(rp, up, mp, invm)					\
  do {									\
    mp_limb_t p1, r0, u0, _dummy;					\
    u0 = *(up);								\
    umul_ppmm (p1, _dummy, *(mp), (u0 * (invm)) & GMP_NUMB_MASK);	\
    ASSERT (((u0 + _dummy) & GMP_NUMB_MASK) == 0);			\
    p1 += (u0 != 0);							\
    r0 = (up)[1] + p1;							\
    if (p1 > r0)							\
      r0 -= *(mp);							\
    *(rp) = r0;								\
  } while (0)

#undef MPN_REDC_1
#if HAVE_NATIVE_mpn_sbpi1_bdiv_r
#define MPN_REDC_1(rp, up, mp, n, invm)					\
  do {									\
    mp_limb_t cy;							\
    cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm);			\
    if (cy != 0)							\
      mpn_sub_n (rp, up + n, mp, n);					\
    else								\
      MPN_COPY (rp, up + n, n);						\
  } while (0)
#else
#define MPN_REDC_1(rp, up, mp, n, invm)					\
  do {									\
    mp_limb_t cy;							\
    cy = mpn_redc_1 (rp, up, mp, n, invm);				\
    if (cy != 0)							\
      mpn_sub_n (rp, rp, mp, n);					\
  } while (0)
#endif

#undef MPN_REDC_2
#define MPN_REDC_2(rp, up, mp, n, mip)					\
  do {									\
    mp_limb_t cy;							\
    cy = mpn_redc_2 (rp, up, mp, n, mip);				\
    if (cy != 0)							\
      mpn_sub_n (rp, rp, mp, n);					\
  } while (0)

#if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2
#define WANT_REDC_2 1
#endif

#define getbit(p,bi) \
  ((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1)

static inline mp_limb_t
getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)
{
  int nbits_in_r;
  mp_limb_t r;
  mp_size_t i;

  if (bi < nbits)
    {
      return p[0] & (((mp_limb_t) 1 << bi) - 1);
    }
  else
    {
      bi -= nbits;			/* bit index of low bit to extract */
      i = bi / GMP_NUMB_BITS;		/* word index of low bit to extract */
      bi %= GMP_NUMB_BITS;		/* bit index in low word */
      r = p[i] >> bi;			/* extract (low) bits */
      nbits_in_r = GMP_NUMB_BITS - bi;	/* number of bits now in r */
      if (nbits_in_r < nbits)		/* did we get enough bits? */
	r += p[i + 1] << nbits_in_r;	/* prepend bits from higher word */
      return r & (((mp_limb_t) 1 << nbits) - 1);
    }
}

static inline int
win_size (mp_bitcnt_t eb)
{
  int k;
  static mp_bitcnt_t x[] = {0,7,25,81,241,673,1793,4609,11521,28161,~(mp_bitcnt_t)0};
  for (k = 1; eb > x[k]; k++)
    ;
  return k;
}

/* Convert U to REDC form, U_r = B^n * U mod M */
static void
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n)
{
  mp_ptr tp, qp;
  TMP_DECL;
  TMP_MARK;

  TMP_ALLOC_LIMBS_2 (tp, un + n, qp, un + 1);

  MPN_ZERO (tp, n);
  MPN_COPY (tp + n, up, un);
  mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n);
  TMP_FREE;
}

/* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0]
   Requires that mp[n-1..0] is odd.
   Requires that ep[en-1..0] is > 1.
   Uses scratch space at tp of MAX(mpn_binvert_itch(n),2n) limbs.  */
void
mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
	  mp_srcptr ep, mp_size_t en,
	  mp_srcptr mp, mp_size_t n, mp_ptr tp)
{
  mp_limb_t ip[2], *mip;
  int cnt;
  mp_bitcnt_t ebi;
  int windowsize, this_windowsize;
  mp_limb_t expbits;
  mp_ptr pp, this_pp;
  long i;
  TMP_DECL;

  ASSERT (en > 1 || (en == 1 && ep[0] > 1));
  ASSERT (n >= 1 && ((mp[0] & 1) != 0));

  TMP_MARK;

  MPN_SIZEINBASE_2EXP(ebi, ep, en, 1);

#if 0
  if (bn < n)
    {
      /* Do the first few exponent bits without mod reductions,
	 until the result is greater than the mod argument.  */
      for (;;)
	{
	  mpn_sqr (tp, this_pp, tn);
	  tn = tn * 2 - 1,  tn += tp[tn] != 0;
	  if (getbit (ep, ebi) != 0)
	    mpn_mul (..., tp, tn, bp, bn);
	  ebi--;
	}
    }
#endif

  windowsize = win_size (ebi);

#if WANT_REDC_2
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
    {
      mip = ip;
      binvert_limb (mip[0], mp[0]);
      mip[0] = -mip[0];
    }
  else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
    {
      mip = ip;
      mpn_binvert (mip, mp, 2, tp);
      mip[0] = -mip[0]; mip[1] = ~mip[1];
    }
#else
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
    {
      mip = ip;
      binvert_limb (mip[0], mp[0]);
      mip[0] = -mip[0];
    }
#endif
  else
    {
      mip = TMP_ALLOC_LIMBS (n);
      mpn_binvert (mip, mp, n, tp);
    }

  pp = TMP_ALLOC_LIMBS (n << (windowsize - 1));

  this_pp = pp;
  redcify (this_pp, bp, bn, mp, n);

  /* Store b^2 at rp.  */
  mpn_sqr (tp, this_pp, n);
#if 0
  if (n == 1) {
    MPN_REDC_0 (rp, tp, mp, mip[0]);
  } else
#endif
#if WANT_REDC_2
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
    MPN_REDC_1 (rp, tp, mp, n, mip[0]);
  else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
    MPN_REDC_2 (rp, tp, mp, n, mip);
#else
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
    MPN_REDC_1 (rp, tp, mp, n, mip[0]);
#endif
  else
    mpn_redc_n (rp, tp, mp, n, mip);

  /* Precompute odd powers of b and put them in the temporary area at pp.  */
  for (i = (1 << (windowsize - 1)) - 1; i > 0; i--)
#if 1
    if (n == 1) {
      umul_ppmm((tp)[1], *(tp), *(this_pp), *(rp));
      ++this_pp ;
      MPN_REDC_0 (this_pp, tp, mp, mip[0]);
    } else
#endif
    {
      mpn_mul_n (tp, this_pp, rp, n);
      this_pp += n;
#if WANT_REDC_2
      if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
	MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);
      else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
	MPN_REDC_2 (this_pp, tp, mp, n, mip);
#else
      if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
	MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);
#endif
      else
	mpn_redc_n (this_pp, tp, mp, n, mip);
    }

  expbits = getbits (ep, ebi, windowsize);
  if (ebi < windowsize)
    ebi = 0;
  else
    ebi -= windowsize;

  count_trailing_zeros (cnt, expbits);
  ebi += cnt;
  expbits >>= cnt;

  MPN_COPY (rp, pp + n * (expbits >> 1), n);

#define INNERLOOP							\
  while (ebi != 0)							\
    {									\
      while (getbit (ep, ebi) == 0)					\
	{								\
	  MPN_SQR (tp, rp, n);						\
	  MPN_REDUCE (rp, tp, mp, n, mip);				\
	  if (--ebi == 0)						\
	    goto done;							\
	}								\
									\
      /* The next bit of the exponent is 1.  Now extract the largest	\
	 block of bits <= windowsize, and such that the least		\
	 significant bit is 1.  */					\
									\
      expbits = getbits (ep, ebi, windowsize);				\
      this_windowsize = windowsize;					\
      if (ebi < windowsize)						\
	{								\
	  this_windowsize -= windowsize - ebi;				\
	  ebi = 0;							\
	}								\
      else								\
        ebi -= windowsize;						\
									\
      count_trailing_zeros (cnt, expbits);				\
      this_windowsize -= cnt;						\
      ebi += cnt;							\
      expbits >>= cnt;							\
									\
      do								\
	{								\
	  MPN_SQR (tp, rp, n);						\
	  MPN_REDUCE (rp, tp, mp, n, mip);				\
	}								\
      while (--this_windowsize != 0);					\
									\
      MPN_MUL_N (tp, rp, pp + n * (expbits >> 1), n);			\
      MPN_REDUCE (rp, tp, mp, n, mip);					\
    }


  if (n == 1)
    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		umul_ppmm((r)[1], *(r), *(a), *(b))
#define MPN_SQR(r,a,n)			umul_ppmm((r)[1], *(r), *(a), *(a))
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_0(rp, tp, mp, mip[0])
      INNERLOOP;
    }
  else
#if WANT_REDC_2
  if (REDC_1_TO_REDC_2_THRESHOLD < MUL_TOOM22_THRESHOLD)
    {
      if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
	{
	  if (REDC_1_TO_REDC_2_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	}
      else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))
	{
	  if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_2 (rp, tp, mp, n, mip)
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_2 (rp, tp, mp, n, mip)
	      INNERLOOP;
	    }
	}
      else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_2 (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
      else
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
    }
  else
    {
      if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))
	{
	  if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	}
      else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	  INNERLOOP;
	}
      else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_2 (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
      else
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
    }

#else  /* WANT_REDC_2 */

  if (REDC_1_TO_REDC_N_THRESHOLD < MUL_TOOM22_THRESHOLD)
    {
      if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
	{
	  if (REDC_1_TO_REDC_N_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	}
      else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))
	{
	  if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	      INNERLOOP;
	    }
	}
      else
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
    }
  else
    {
      if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))
	{
	  if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD
	      || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_mul_basecase (r,a,n,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	  else
	    {
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_basecase (r,a,n,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr_basecase (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	      INNERLOOP;
	    }
	}
      else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	MPN_REDC_1 (rp, tp, mp, n, mip[0])
	  INNERLOOP;
	}
      else
	{
#undef MPN_MUL_N
#undef MPN_SQR
#undef MPN_REDUCE
#define MPN_MUL_N(r,a,b,n)		mpn_mul_n (r,a,b,n)
#define MPN_SQR(r,a,n)			mpn_sqr (r,a,n)
#define MPN_REDUCE(rp,tp,mp,n,mip)	mpn_redc_n (rp, tp, mp, n, mip)
	  INNERLOOP;
	}
    }
#endif  /* WANT_REDC_2 */

 done:

  MPN_COPY (tp, rp, n);
  MPN_ZERO (tp + n, n);

#if WANT_REDC_2
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
    MPN_REDC_1 (rp, tp, mp, n, mip[0]);
  else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
    MPN_REDC_2 (rp, tp, mp, n, mip);
#else
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
    MPN_REDC_1 (rp, tp, mp, n, mip[0]);
#endif
  else
    mpn_redc_n (rp, tp, mp, n, mip);

  if (mpn_cmp (rp, mp, n) >= 0)
    mpn_sub_n (rp, rp, mp, n);

  TMP_FREE;
}