Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

dnl  SPARC v9 32-bit mpn_addmul_1 -- Multiply a limb vector with a limb and add
dnl  the result to a second limb vector.

dnl  Copyright 1998, 2000, 2001, 2003 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')

C Algorithm: We use two floating-point multiplies per limb product, with the
C invariant v operand split into two 16-bit pieces, and the u operand split
C into 32-bit pieces.  We convert the two 48-bit products and transfer them to
C the integer unit.

C		   cycles/limb
C UltraSPARC 1&2:     6.5
C UltraSPARC 3:	      ?

C Possible optimizations:
C   1. Combine 32-bit memory operations into 64-bit operations.  Since we're
C      memory bandwidth limited, this could save 1.5 cycles/limb.
C   2. Unroll the inner loop.  Since we already use alternate temporary areas,
C      it is very straightforward to unroll, using an exit branch midways.
C      Unrolling would allow deeper scheduling which could improve speed for L2
C      cache case.
C   3. For mpn_mul_1: Use more alternating temp areas.  The std'es and ldx'es
C      aren't sufficiently apart-scheduled with just two temp areas.
C   4. Specialize for particular v values.  If its upper 16 bits are zero, we
C      could save many operations.

C INPUT PARAMETERS
C rp	i0
C up	i1
C n	i2
C v	i3

define(`FSIZE',224)

ASM_START()
PROLOGUE(mpn_addmul_1)
	add	%sp, -FSIZE, %sp
	sethi	%hi(0xffff), %g1
	srl	%o3, 16, %g2
	or	%g1, %lo(0xffff), %g1
	and	%o3, %g1, %g1
	stx	%g1, [%sp+104]
	stx	%g2, [%sp+112]
	ldd	[%sp+104], %f6
	ldd	[%sp+112], %f8
	fxtod	%f6, %f6
	fxtod	%f8, %f8
	ld	[%sp+104], %f10		C zero f10

	mov	0, %g3			C cy = 0

define(`fanop', `fitod %f18, %f0')	C  A quasi nop running in the FA pipe

	add	%sp, 160, %o5		C point in scratch area
	and	%o5, -32, %o5		C align at 0 (mod 32) in scratch area

	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	add	%o1, 4, %o1		C up++
	bne,pt	%icc, .L_two_or_more
	fxtod	%f10, %f2

	fmuld	%f2, %f8, %f16
	fmuld	%f2, %f6, %f4
	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+16]
	std	%f12, [%o5+24]
	ldx	[%o5+16], %g2		C p16
	ldx	[%o5+24], %g1		C p0
	lduw	[%o0], %g5		C read rp[i]
	b	.L1
	add	%o0, -16, %o0

	.align	16
.L_two_or_more:
	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	fmuld	%f2, %f8, %f16
	fmuld	%f2, %f6, %f4
	add	%o1, 4, %o1		C up++
	bne,pt	%icc, .L_three_or_more
	fxtod	%f10, %f2

	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+16]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+24]
	fmuld	%f2, %f6, %f4
	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+0]
	std	%f12, [%o5+8]
	lduw	[%o0], %g5		C read rp[i]
	ldx	[%o5+16], %g2		C p16
	ldx	[%o5+24], %g1		C p0
	b	.L2
	add	%o0, -12, %o0

	.align	16
.L_three_or_more:
	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+16]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+24]
	fmuld	%f2, %f6, %f4
	add	%o1, 4, %o1		C up++
	bne,pt	%icc, .L_four_or_more
	fxtod	%f10, %f2

	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+0]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+8]
	fmuld	%f2, %f6, %f4
	fdtox	%f16, %f14
	ldx	[%o5+16], %g2		C p16
	fdtox	%f4, %f12
	ldx	[%o5+24], %g1		C p0
	std	%f14, [%o5+16]
	std	%f12, [%o5+24]
	lduw	[%o0], %g5		C read rp[i]
	b	.L3
	add	%o0, -8, %o0

	.align	16
.L_four_or_more:
	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	fdtox	%f16, %f14
	fdtox	%f4, %f12
	std	%f14, [%o5+0]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+8]
	fmuld	%f2, %f6, %f4
	add	%o1, 4, %o1		C up++
	bne,pt	%icc, .L_five_or_more
	fxtod	%f10, %f2

	fdtox	%f16, %f14
	ldx	[%o5+16], %g2		C p16
	fdtox	%f4, %f12
	ldx	[%o5+24], %g1		C p0
	std	%f14, [%o5+16]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+24]
	fmuld	%f2, %f6, %f4
	add	%o1, 4, %o1		C up++
	lduw	[%o0], %g5		C read rp[i]
	b	.L4
	add	%o0, -4, %o0

	.align	16
.L_five_or_more:
	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	fdtox	%f16, %f14
	ldx	[%o5+16], %g2		C p16
	fdtox	%f4, %f12
	ldx	[%o5+24], %g1		C p0
	std	%f14, [%o5+16]
	fmuld	%f2, %f8, %f16
	std	%f12, [%o5+24]
	fmuld	%f2, %f6, %f4
	add	%o1, 4, %o1		C up++
	lduw	[%o0], %g5		C read rp[i]
	bne,pt	%icc, .Loop
	fxtod	%f10, %f2
	b,a	.L5

C BEGIN MAIN LOOP
	.align 16
C -- 0
.Loop:	nop
	subcc	%o2, 1, %o2
	ld	[%o1], %f11		C read up[i]
	fdtox	%f16, %f14
C -- 1
	sllx	%g2, 16, %g4		C (p16 << 16)
	add	%o0, 4, %o0		C rp++
	ldx	[%o5+0], %g2		C p16
	fdtox	%f4, %f12
C -- 2
	nop
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	ldx	[%o5+8], %g1		C p0
	fanop
C -- 3
	nop
	add	%g3, %g4, %g4		C p += cy
	std	%f14, [%o5+0]
	fmuld	%f2, %f8, %f16
C -- 4
	nop
	add	%g5, %g4, %g4		C p += rp[i]
	std	%f12, [%o5+8]
	fmuld	%f2, %f6, %f4
C -- 5
	xor	%o5, 16, %o5		C alternate scratch variables
	add	%o1, 4, %o1		C up++
	stw	%g4, [%o0-4]
	fanop
C -- 6
	srlx	%g4, 32, %g3		C new cy
	lduw	[%o0], %g5		C read rp[i]
	bne,pt	%icc, .Loop
	fxtod	%f10, %f2
C END MAIN LOOP

.L5:	fdtox	%f16, %f14
	sllx	%g2, 16, %g4		C (p16 << 16)
	ldx	[%o5+0], %g2		C p16
	fdtox	%f4, %f12
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	ldx	[%o5+8], %g1		C p0
	add	%g4, %g3, %g4		C p += cy
	std	%f14, [%o5+0]
	fmuld	%f2, %f8, %f16
	add	%g5, %g4, %g4		C p += rp[i]
	std	%f12, [%o5+8]
	fmuld	%f2, %f6, %f4
	xor	%o5, 16, %o5
	stw	%g4, [%o0+0]
	srlx	%g4, 32, %g3		C new cy
	lduw	[%o0+4], %g5		C read rp[i]

.L4:	fdtox	%f16, %f14
	sllx	%g2, 16, %g4		C (p16 << 16)
	ldx	[%o5+0], %g2		C p16
	fdtox	%f4, %f12
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	ldx	[%o5+8], %g1		C p0
	add	%g3, %g4, %g4		C p += cy
	std	%f14, [%o5+0]
	add	%g5, %g4, %g4		C p += rp[i]
	std	%f12, [%o5+8]
	xor	%o5, 16, %o5
	stw	%g4, [%o0+4]
	srlx	%g4, 32, %g3		C new cy
	lduw	[%o0+8], %g5		C read rp[i]

.L3:	sllx	%g2, 16, %g4		C (p16 << 16)
	ldx	[%o5+0], %g2		C p16
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	ldx	[%o5+8], %g1		C p0
	add	%g3, %g4, %g4		C p += cy
	add	%g5, %g4, %g4		C p += rp[i]
	xor	%o5, 16, %o5
	stw	%g4, [%o0+8]
	srlx	%g4, 32, %g3		C new cy
	lduw	[%o0+12], %g5		C read rp[i]

.L2:	sllx	%g2, 16, %g4		C (p16 << 16)
	ldx	[%o5+0], %g2		C p16
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	ldx	[%o5+8], %g1		C p0
	add	%g3, %g4, %g4		C p += cy
	add	%g5, %g4, %g4		C p += rp[i]
	stw	%g4, [%o0+12]
	srlx	%g4, 32, %g3		C new cy
	lduw	[%o0+16], %g5		C read rp[i]

.L1:	sllx	%g2, 16, %g4		C (p16 << 16)
	add	%g1, %g4, %g4		C p = p0 + (p16 << 16)
	add	%g3, %g4, %g4		C p += cy
	add	%g5, %g4, %g4		C p += rp[i]
	stw	%g4, [%o0+16]
	srlx	%g4, 32, %g3		C new cy

	mov	%g3, %o0
	retl
	sub	%sp, -FSIZE, %sp
EPILOGUE(mpn_addmul_1)