Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
/*	$NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $	*/
/* From sources sent on February 17, 2003 */
/*-
 * As its sole author, I explicitly place this code in the public
 *  domain.  Anyone may use it for any purpose (though I would
 *  appreciate credit where it is due).
 *
 *					der Mouse
 *
 *			       mouse@rodents.montreal.qc.ca
 *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
 */
/*
 * resize_ffs:
 *
 * Resize a file system.  Is capable of both growing and shrinking.
 *
 * Usage: resize_ffs [-s newsize] [-y] file_system
 *
 * Example: resize_ffs -s 29574 /dev/rsd1e
 *
 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
 *  each).
 *
 * Note: this currently requires gcc to build, since it is written
 *  depending on gcc-specific features, notably nested function
 *  definitions (which in at least a few cases depend on the lexical
 *  scoping gcc provides, so they can't be trivially moved outside).
 *
 * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the
 *  one responsible for the "realloccgblk: can't find blk in cyl"
 *  problem and a more minor one which left fs_dsize wrong when
 *  shrinking.  (These actually indicate bugs in fsck too - it should
 *  have caught and fixed them.)
 *
 */

#include <sys/cdefs.h>
__RCSID("$NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $");

#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/dkio.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/param.h>		/* MAXFRAG */
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */

#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <util.h>

#include "progress.h"

/* new size of file system, in sectors */
static int64_t newsize;

/* fd open onto disk device or file */
static int fd;

/* disk device or file path */
const char *special;

/* must we break up big I/O operations - see checksmallio() */
static int smallio;

/* size of a cg, in bytes, rounded up to a frag boundary */
static int cgblksz;

/* possible superblock localtions */
static int search[] = SBLOCKSEARCH;
/* location of the superblock */
static off_t where;

/* Superblocks. */
static struct fs *oldsb;	/* before we started */
static struct fs *newsb;	/* copy to work with */
/* Buffer to hold the above.  Make sure it's aligned correctly. */
static char sbbuf[2 * SBLOCKSIZE]
	__attribute__((__aligned__(__alignof__(struct fs))));

union dinode {
	struct ufs1_dinode dp1;
	struct ufs2_dinode dp2;
};
#define DIP(dp, field)							      \
	((is_ufs2) ?							      \
	    (dp)->dp2.field : (dp)->dp1.field)

#define DIP_ASSIGN(dp, field, value)					      \
	do {								      \
		if (is_ufs2)						      \
			(dp)->dp2.field = (value);			      \
		else							      \
			(dp)->dp1.field = (value);			      \
	} while (0)

/* a cg's worth of brand new squeaky-clean inodes */
static struct ufs1_dinode *zinodes1;
static struct ufs2_dinode *zinodes2;

/* pointers to the in-core cgs, read off disk and possibly modified */
static struct cg **cgs;

/* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
static struct csum *csums;

/* per-cg flags, indexed by cg number */
static unsigned char *cgflags;
#define CGF_DIRTY   0x01	/* needs to be written to disk */
#define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
#define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */

/* when shrinking, these two arrays record how we want blocks to move.	 */
/*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
/*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
/*  started out as inode i should end up as inode j.			 */
static unsigned int *blkmove;
static unsigned int *inomove;

/* in-core copies of all inodes in the fs, indexed by inumber */
union dinode *inodes;

void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */

/* byteswapped inodes */
union dinode *sinodes;

/* per-inode flags, indexed by inumber */
static unsigned char *iflags;
#define IF_DIRTY  0x01		/* needs to be written to disk */
#define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
				 * block of inodes, and applies to the whole
				 * block. */

/* resize_ffs works directly on dinodes, adapt blksize() */
#define dblksize(fs, dip, lbn, filesize) \
	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
	    ? (fs)->fs_bsize						       \
	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))


/*
 * Number of disk sectors per block/fragment
 */
#define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
#define NSPF(fs)	(FFS_FSBTODB((fs),1))

/* global flags */
int is_ufs2 = 0;
int needswap = 0;
int verbose = 0;
int progress = 0;

static void usage(void) __dead;

/*
 * See if we need to break up large I/O operations.  This should never
 *  be needed, but under at least one <version,platform> combination,
 *  large enough disk transfers to the raw device hang.  So if we're
 *  talking to a character special device, play it safe; in this case,
 *  readat() and writeat() break everything up into pieces no larger
 *  than 8K, doing multiple syscalls for larger operations.
 */
static void
checksmallio(void)
{
	struct stat stb;

	fstat(fd, &stb);
	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
}

static int
isplainfile(void)
{
	struct stat stb;

	fstat(fd, &stb);
	return S_ISREG(stb.st_mode);
}
/*
 * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
 *  units, ie, after FFS_FSBTODB(); size is in bytes.
 */
static void
readat(off_t blkno, void *buf, int size)
{
	/* Seek to the correct place. */
	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
		err(EXIT_FAILURE, "lseek failed");

	/* See if we have to break up the transfer... */
	if (smallio) {
		char *bp;	/* pointer into buf */
		int left;	/* bytes left to go */
		int n;		/* number to do this time around */
		int rv;		/* syscall return value */
		bp = buf;
		left = size;
		while (left > 0) {
			n = (left > 8192) ? 8192 : left;
			rv = read(fd, bp, n);
			if (rv < 0)
				err(EXIT_FAILURE, "read failed");
			if (rv != n)
				errx(EXIT_FAILURE,
				    "read: wanted %d, got %d", n, rv);
			bp += n;
			left -= n;
		}
	} else {
		int rv;
		rv = read(fd, buf, size);
		if (rv < 0)
			err(EXIT_FAILURE, "read failed");
		if (rv != size)
			errx(EXIT_FAILURE, "read: wanted %d, got %d",
			    size, rv);
	}
}
/*
 * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
 *  units, ie, after FFS_FSBTODB(); size is in bytes.
 */
static void
writeat(off_t blkno, const void *buf, int size)
{
	/* Seek to the correct place. */
	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
		err(EXIT_FAILURE, "lseek failed");
	/* See if we have to break up the transfer... */
	if (smallio) {
		const char *bp;	/* pointer into buf */
		int left;	/* bytes left to go */
		int n;		/* number to do this time around */
		int rv;		/* syscall return value */
		bp = buf;
		left = size;
		while (left > 0) {
			n = (left > 8192) ? 8192 : left;
			rv = write(fd, bp, n);
			if (rv < 0)
				err(EXIT_FAILURE, "write failed");
			if (rv != n)
				errx(EXIT_FAILURE,
				    "write: wanted %d, got %d", n, rv);
			bp += n;
			left -= n;
		}
	} else {
		int rv;
		rv = write(fd, buf, size);
		if (rv < 0)
			err(EXIT_FAILURE, "write failed");
		if (rv != size)
			errx(EXIT_FAILURE,
			    "write: wanted %d, got %d", size, rv);
	}
}
/*
 * Never-fail versions of malloc() and realloc(), and an allocation
 *  routine (which also never fails) for allocating memory that will
 *  never be freed until exit.
 */

/*
 * Never-fail malloc.
 */
static void *
nfmalloc(size_t nb, const char *tag)
{
	void *rv;

	rv = malloc(nb);
	if (rv)
		return (rv);
	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
	    (unsigned long int) nb, tag);
}
/*
 * Never-fail realloc.
 */
static void *
nfrealloc(void *blk, size_t nb, const char *tag)
{
	void *rv;

	rv = realloc(blk, nb);
	if (rv)
		return (rv);
	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
	    (unsigned long int) nb, tag);
}
/*
 * Allocate memory that will never be freed or reallocated.  Arguably
 *  this routine should handle small allocations by chopping up pages,
 *  but that's not worth the bother; it's not called more than a
 *  handful of times per run, and if the allocations are that small the
 *  waste in giving each one its own page is ignorable.
 */
static void *
alloconce(size_t nb, const char *tag)
{
	void *rv;

	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
	if (rv != MAP_FAILED)
		return (rv);
	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
	    (unsigned long int) nb, tag);
}
/*
 * Load the cgs and csums off disk.  Also allocates the space to load
 *  them into and initializes the per-cg flags.
 */
static void
loadcgs(void)
{
	uint32_t cg;
	char *cgp;

	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
		cgs[cg] = (struct cg *) cgp;
		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
		if (needswap)
			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
		cgflags[cg] = 0;
		cgp += cgblksz;
	}
	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
	if (needswap)
		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
}
/*
 * Set n bits, starting with bit #base, in the bitmap pointed to by
 *  bitvec (which is assumed to be large enough to include bits base
 *  through base+n-1).
 */
static void
set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
{
	if (n < 1)
		return;		/* nothing to do */
	if (base & 7) {		/* partial byte at beginning */
		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
			return;
		}
		bitvec[base >> 3] |= (~0U) << (base & 7);
		n -= 8 - (base & 7);
		base = (base & ~7) + 8;
	}
	if (n >= 8) {		/* do full bytes */
		memset(bitvec + (base >> 3), 0xff, n >> 3);
		base += n & ~7;
		n &= 7;
	}
	if (n) {		/* partial byte at end */
		bitvec[base >> 3] |= ~((~0U) << n);
	}
}
/*
 * Clear n bits, starting with bit #base, in the bitmap pointed to by
 *  bitvec (which is assumed to be large enough to include bits base
 *  through base+n-1).  Code parallels set_bits().
 */
static void
clr_bits(unsigned char *bitvec, int base, int n)
{
	if (n < 1)
		return;
	if (base & 7) {
		if (n <= 8 - (base & 7)) {
			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
			return;
		}
		bitvec[base >> 3] &= ~((~0U) << (base & 7));
		n -= 8 - (base & 7);
		base = (base & ~7) + 8;
	}
	if (n >= 8) {
		memset(bitvec + (base >> 3), 0, n >> 3);
		base += n & ~7;
		n &= 7;
	}
	if (n) {
		bitvec[base >> 3] &= (~0U) << n;
	}
}
/*
 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
 */
static int
bit_is_set(unsigned char *bitvec, int bit)
{
	return (bitvec[bit >> 3] & (1 << (bit & 7)));
}
/*
 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
 */
static int
bit_is_clr(unsigned char *bitvec, int bit)
{
	return (!bit_is_set(bitvec, bit));
}
/*
 * Test whether a whole block of bits is set in a bitmap.  This is
 *  designed for testing (aligned) disk blocks in a bit-per-frag
 *  bitmap; it has assumptions wired into it based on that, essentially
 *  that the entire block fits into a single byte.  This returns true
 *  iff _all_ the bits are set; it is not just the complement of
 *  blk_is_clr on the same arguments (unless blkfrags==1).
 */
static int
blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
{
	unsigned int mask;

	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
	return ((bitvec[blkbase >> 3] & mask) == mask);
}
/*
 * Test whether a whole block of bits is clear in a bitmap.  See
 *  blk_is_set (above) for assumptions.  This returns true iff _all_
 *  the bits are clear; it is not just the complement of blk_is_set on
 *  the same arguments (unless blkfrags==1).
 */
static int
blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
{
	unsigned int mask;

	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
	return ((bitvec[blkbase >> 3] & mask) == 0);
}
/*
 * Initialize a new cg.  Called when growing.  Assumes memory has been
 *  allocated but not otherwise set up.  This code sets the fields of
 *  the cg, initializes the bitmaps (and cluster summaries, if
 *  applicable), updates both per-cylinder summary info and the global
 *  summary info in newsb; it also writes out new inodes for the cg.
 *
 * This code knows it can never be called for cg 0, which makes it a
 *  bit simpler than it would otherwise be.
 */
static void
initcg(uint32_t cgn)
{
	struct cg *cg;		/* The in-core cg, of course */
	int64_t base;		/* Disk address of cg base */
	int64_t dlow;		/* Size of pre-cg data area */
	int64_t dhigh;		/* Offset of post-inode data area, from base */
	int64_t dmax;		/* Offset of end of post-inode data area */
	int i;			/* Generic loop index */
	int n;			/* Generic count */
	int start;		/* start of cg maps */

	cg = cgs[cgn];
	/* Place the data areas */
	base = cgbase(newsb, cgn);
	dlow = cgsblock(newsb, cgn) - base;
	dhigh = cgdmin(newsb, cgn) - base;
	dmax = newsb->fs_size - base;
	if (dmax > newsb->fs_fpg)
		dmax = newsb->fs_fpg;
	start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg;
	/*
         * Clear out the cg - assumes all-0-bytes is the correct way
         * to initialize fields we don't otherwise touch, which is
         * perhaps not the right thing to do, but it's what fsck and
         * mkfs do.
         */
	memset(cg, 0, newsb->fs_cgsize);
	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
		cg->cg_time = newsb->fs_time;
	cg->cg_magic = CG_MAGIC;
	cg->cg_cgx = cgn;
	cg->cg_niblk = newsb->fs_ipg;
	cg->cg_ndblk = dmax;

	if (is_ufs2) {
		cg->cg_time = newsb->fs_time;
		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
		cg->cg_iusedoff = start;
	} else {
		cg->cg_old_time = newsb->fs_time;
		cg->cg_old_niblk = cg->cg_niblk;
		cg->cg_niblk = 0;
		cg->cg_initediblk = 0;


		cg->cg_old_ncyl = newsb->fs_old_cpg;
		/* Update the cg_old_ncyl value for the last cylinder. */
		if (cgn == newsb->fs_ncg - 1) {
			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
				cg->cg_old_ncyl = newsb->fs_old_ncyl %
				    newsb->fs_old_cpg;
		}

		/* Set up the bitmap pointers.  We have to be careful
		 * to lay out the cg _exactly_ the way mkfs and fsck
		 * do it, since fsck compares the _entire_ cg against
		 * a recomputed cg, and whines if there is any
		 * mismatch, including the bitmap offsets. */
		/* XXX update this comment when fsck is fixed */
		cg->cg_old_btotoff = start;
		cg->cg_old_boff = cg->cg_old_btotoff
		    + (newsb->fs_old_cpg * sizeof(int32_t));
		cg->cg_iusedoff = cg->cg_old_boff +
		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
	}
	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
	if (newsb->fs_contigsumsize > 0) {
		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
		cg->cg_clustersumoff = cg->cg_freeoff +
		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
		cg->cg_clustersumoff =
		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
		cg->cg_clusteroff = cg->cg_clustersumoff +
		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
		cg->cg_nextfreeoff = cg->cg_clusteroff +
		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
		n = dlow / newsb->fs_frag;
		if (n > 0) {
			set_bits(cg_clustersfree(cg, 0), 0, n);
			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
			    newsb->fs_contigsumsize : n]++;
		}
	} else {
		cg->cg_nextfreeoff = cg->cg_freeoff +
		    howmany(newsb->fs_fpg, NBBY);
	}
	/* Mark the data areas as free; everything else is marked busy by the
	 * memset() up at the top. */
	set_bits(cg_blksfree(cg, 0), 0, dlow);
	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
	/* Initialize summary info */
	cg->cg_cs.cs_ndir = 0;
	cg->cg_cs.cs_nifree = newsb->fs_ipg;
	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
	cg->cg_cs.cs_nffree = 0;

	/* This is the simplest way of doing this; we perhaps could
	 * compute the correct cg_blktot()[] and cg_blks()[] values
	 * other ways, but it would be complicated and hardly seems
	 * worth the effort.  (The reason there isn't
	 * frag-at-beginning and frag-at-end code here, like the code
	 * below for the post-inode data area, is that the pre-sb data
	 * area always starts at 0, and thus is block-aligned, and
	 * always ends at the sb, which is block-aligned.) */
	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
		int64_t di;

		for (di = 0; di < dlow; di += newsb->fs_frag) {
			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++;
			old_cg_blks(newsb, cg,
			    old_cbtocylno(newsb, di),
			    0)[old_cbtorpos(newsb, di)]++;
		}
	}

	/* Deal with a partial block at the beginning of the post-inode area.
	 * I'm not convinced this can happen - I think the inodes are always
	 * block-aligned and always an integral number of blocks - but it's
	 * cheap to do the right thing just in case. */
	if (dhigh % newsb->fs_frag) {
		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
		cg->cg_frsum[n]++;
		cg->cg_cs.cs_nffree += n;
		dhigh += n;
	}
	n = (dmax - dhigh) / newsb->fs_frag;
	/* We have n full-size blocks in the post-inode data area. */
	if (n > 0) {
		cg->cg_cs.cs_nbfree += n;
		if (newsb->fs_contigsumsize > 0) {
			i = dhigh / newsb->fs_frag;
			set_bits(cg_clustersfree(cg, 0), i, n);
			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
			    newsb->fs_contigsumsize : n]++;
		}
		for (i = n; i > 0; i--) {
			if (is_ufs2 == 0) {
				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
					    dhigh)]++;
				old_cg_blks(newsb, cg,
				    old_cbtocylno(newsb, dhigh),
				    0)[old_cbtorpos(newsb,
					    dhigh)]++;
			}
			dhigh += newsb->fs_frag;
		}
	}
	/* Deal with any leftover frag at the end of the cg. */
	i = dmax - dhigh;
	if (i) {
		cg->cg_frsum[i]++;
		cg->cg_cs.cs_nffree += i;
	}
	/* Update the csum info. */
	csums[cgn] = cg->cg_cs;
	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
	if (is_ufs2) {
		/* Write out the cleared inodes. */
		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2,
		    cg->cg_initediblk * sizeof(*zinodes2));
	} else {
		/* Write out the cleared inodes. */
		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1,
		    newsb->fs_ipg * sizeof(*zinodes1));
	}
	/* Dirty the cg. */
	cgflags[cgn] |= CGF_DIRTY;
}
/*
 * Find free space, at least nfrags consecutive frags of it.  Pays no
 *  attention to block boundaries, but refuses to straddle cg
 *  boundaries, even if the disk blocks involved are in fact
 *  consecutive.  Return value is the frag number of the first frag of
 *  the block, or -1 if no space was found.  Uses newsb for sb values,
 *  and assumes the cgs[] structures correctly describe the area to be
 *  searched.
 *
 * XXX is there a bug lurking in the ignoring of block boundaries by
 *  the routine used by fragmove() in evict_data()?  Can an end-of-file
 *  frag legally straddle a block boundary?  If not, this should be
 *  cloned and fixed to stop at block boundaries for that use.  The
 *  current one may still be needed for csum info motion, in case that
 *  takes up more than a whole block (is the csum info allowed to begin
 *  partway through a block and continue into the following block?).
 *
 * If we wrap off the end of the file system back to the beginning, we
 *  can end up searching the end of the file system twice.  I ignore
 *  this inefficiency, since if that happens we're going to croak with
 *  a no-space error anyway, so it happens at most once.
 */
static int
find_freespace(unsigned int nfrags)
{
	static int hand = 0;	/* hand rotates through all frags in the fs */
	int cgsize;		/* size of the cg hand currently points into */
	uint32_t cgn;		/* number of cg hand currently points into */
	int fwc;		/* frag-within-cg number of frag hand points
				 * to */
	unsigned int run;	/* length of run of free frags seen so far */
	int secondpass;		/* have we wrapped from end of fs to
				 * beginning? */
	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */

	cgn = dtog(newsb, hand);
	fwc = dtogd(newsb, hand);
	secondpass = (hand == 0);
	run = 0;
	bits = cg_blksfree(cgs[cgn], 0);
	cgsize = cgs[cgn]->cg_ndblk;
	while (1) {
		if (bit_is_set(bits, fwc)) {
			run++;
			if (run >= nfrags)
				return (hand + 1 - run);
		} else {
			run = 0;
		}
		hand++;
		fwc++;
		if (fwc >= cgsize) {
			fwc = 0;
			cgn++;
			if (cgn >= newsb->fs_ncg) {
				hand = 0;
				if (secondpass)
					return (-1);
				secondpass = 1;
				cgn = 0;
			}
			bits = cg_blksfree(cgs[cgn], 0);
			cgsize = cgs[cgn]->cg_ndblk;
			run = 0;
		}
	}
}
/*
 * Find a free block of disk space.  Finds an entire block of frags,
 *  all of which are free.  Return value is the frag number of the
 *  first frag of the block, or -1 if no space was found.  Uses newsb
 *  for sb values, and assumes the cgs[] structures correctly describe
 *  the area to be searched.
 *
 * See find_freespace(), above, for remarks about hand wrapping around.
 */
static int
find_freeblock(void)
{
	static int hand = 0;	/* hand rotates through all frags in fs */
	uint32_t cgn;		/* cg number of cg hand points into */
	int fwc;		/* frag-within-cg number of frag hand points
				 * to */
	int cgsize;		/* size of cg hand points into */
	int secondpass;		/* have we wrapped from end to beginning? */
	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */

	cgn = dtog(newsb, hand);
	fwc = dtogd(newsb, hand);
	secondpass = (hand == 0);
	bits = cg_blksfree(cgs[cgn], 0);
	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
	while (1) {
		if (blk_is_set(bits, fwc, newsb->fs_frag))
			return (hand);
		fwc += newsb->fs_frag;
		hand += newsb->fs_frag;
		if (fwc >= cgsize) {
			fwc = 0;
			cgn++;
			if (cgn >= newsb->fs_ncg) {
				hand = 0;
				if (secondpass)
					return (-1);
				secondpass = 1;
				cgn = 0;
			}
			bits = cg_blksfree(cgs[cgn], 0);
			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
		}
	}
}
/*
 * Find a free inode, returning its inumber or -1 if none was found.
 *  Uses newsb for sb values, and assumes the cgs[] structures
 *  correctly describe the area to be searched.
 *
 * See find_freespace(), above, for remarks about hand wrapping around.
 */
static int
find_freeinode(void)
{
	static int hand = 0;	/* hand rotates through all inodes in fs */
	uint32_t cgn;		/* cg number of cg hand points into */
	uint32_t iwc;		/* inode-within-cg number of inode hand points
				 * to */
	int secondpass;		/* have we wrapped from end to beginning? */
	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */

	cgn = hand / newsb->fs_ipg;
	iwc = hand % newsb->fs_ipg;
	secondpass = (hand == 0);
	bits = cg_inosused(cgs[cgn], 0);
	while (1) {
		if (bit_is_clr(bits, iwc))
			return (hand);
		hand++;
		iwc++;
		if (iwc >= newsb->fs_ipg) {
			iwc = 0;
			cgn++;
			if (cgn >= newsb->fs_ncg) {
				hand = 0;
				if (secondpass)
					return (-1);
				secondpass = 1;
				cgn = 0;
			}
			bits = cg_inosused(cgs[cgn], 0);
		}
	}
}
/*
 * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
 *  for the appropriate cg, and marks the cg as dirty.
 */
static void
free_frag(int fno)
{
	int cgn;

	cgn = dtog(newsb, fno);
	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
}
/*
 * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
 *  for the appropriate cg, and marks the cg as dirty.
 */
static void
alloc_frag(int fno)
{
	int cgn;

	cgn = dtog(newsb, fno);
	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
}
/*
 * Fix up the csum array.  If shrinking, this involves freeing zero or
 *  more frags; if growing, it involves allocating them, or if the
 *  frags being grown into aren't free, finding space elsewhere for the
 *  csum info.  (If the number of occupied frags doesn't change,
 *  nothing happens here.)
 */
static void
csum_fixup(void)
{
	int nold;		/* # frags in old csum info */
	int ntot;		/* # frags in new csum info */
	int nnew;		/* ntot-nold */
	int newloc;		/* new location for csum info, if necessary */
	int i;			/* generic loop index */
	int j;			/* generic loop index */
	int f;			/* "from" frag number, if moving */
	int t;			/* "to" frag number, if moving */
	int cgn;		/* cg number, used when shrinking */

	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
	nnew = ntot - nold;
	/* First, if there's no change in frag counts, it's easy. */
	if (nnew == 0)
		return;
	/* Next, if we're shrinking, it's almost as easy.  Just free up any
	 * frags in the old area we no longer need. */
	if (nnew < 0) {
		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
		    j < 0;
		    i--, j++) {
			free_frag(i);
		}
		return;
	}
	/* We must be growing.  Check to see that the new csum area fits
	 * within the file system.  I think this can never happen, since for
	 * the csum area to grow, we must be adding at least one cg, so the
	 * old csum area can't be this close to the end of the new file system.
	 * But it's a cheap check. */
	/* XXX what if csum info is at end of cg and grows into next cg, what
	 * if it spills over onto the next cg's backup superblock?  Can this
	 * happen? */
	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
		/* Okay, it fits - now,  see if the space we want is free. */
		for ((i = newsb->fs_csaddr + nold), (j = nnew);
		    j > 0;
		    i++, j--) {
			cgn = dtog(newsb, i);
			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
				dtogd(newsb, i)))
				break;
		}
		if (j <= 0) {
			/* Win win - all the frags we want are free. Allocate
			 * 'em and we're all done.  */
			for ((i = newsb->fs_csaddr + ntot - nnew),
				 (j = nnew); j > 0; i++, j--) {
				alloc_frag(i);
			}
			return;
		}
	}
	/* We have to move the csum info, sigh.  Look for new space, free old
	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
	 * on disk at this point; the csum info will be written to the
	 * then-current fs_csaddr as part of the final flush. */
	newloc = find_freespace(ntot);
	if (newloc < 0)
		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
		if (i < nold) {
			free_frag(f);
		}
		alloc_frag(t);
	}
	newsb->fs_csaddr = newloc;
}
/*
 * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
 *  data blocks in that cg to the total.
 */
static void
recompute_fs_dsize(void)
{
	uint32_t i;

	newsb->fs_dsize = 0;
	for (i = 0; i < newsb->fs_ncg; i++) {
		int64_t dlow;	/* size of before-sb data area */
		int64_t dhigh;	/* offset of post-inode data area */
		int64_t dmax;	/* total size of cg */
		int64_t base;	/* base of cg, since cgsblock() etc add it in */
		base = cgbase(newsb, i);
		dlow = cgsblock(newsb, i) - base;
		dhigh = cgdmin(newsb, i) - base;
		dmax = newsb->fs_size - base;
		if (dmax > newsb->fs_fpg)
			dmax = newsb->fs_fpg;
		newsb->fs_dsize += dlow + dmax - dhigh;
	}
	/* Space in cg 0 before cgsblock is boot area, not free space! */
	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
	/* And of course the csum info takes up space. */
	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
}
/*
 * Return the current time.  We call this and assign, rather than
 *  calling time() directly, as insulation against OSes where fs_time
 *  is not a time_t.
 */
static time_t
timestamp(void)
{
	time_t t;

	time(&t);
	return (t);
}

/*
 * Calculate new filesystem geometry
 *  return 0 if geometry actually changed
 */
static int
makegeometry(int chatter)
{

	/* Update the size. */
	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
	if (is_ufs2)
		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
	else {
		/* Update fs_old_ncyl and fs_ncg. */
		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
		    newsb->fs_old_spc);
		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
	}

	/* Does the last cg end before the end of its inode area? There is no
	 * reason why this couldn't be handled, but it would complicate a lot
	 * of code (in all file system code - fsck, kernel, etc) because of the
	 * potential partial inode area, and the gain in space would be
	 * minimal, at most the pre-sb data area. */
	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
		newsb->fs_ncg--;
		if (is_ufs2)
			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
		else {
			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
			newsb->fs_size = (newsb->fs_old_ncyl *
				newsb->fs_old_spc) / NSPF(newsb);
		}
		if (chatter || verbose) {
			printf("Warning: last cylinder group is too small;\n");
			printf("    dropping it.  New size = %lu.\n",
			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
		}
	}

	/* Did we actually not grow?  (This can happen if newsize is less than
	 * a frag larger than the old size - unlikely, but no excuse to
	 * misbehave if it happens.) */
	if (newsb->fs_size == oldsb->fs_size)
		return 1;

	return 0;
}


/*
 * Grow the file system.
 */
static void
grow(void)
{
	uint32_t i;

	if (makegeometry(1)) {
		printf("New fs size %"PRIu64" = old fs size %"PRIu64
		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
		return;
	}

	if (verbose) {
		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
	}

	/* Update the timestamp. */
	newsb->fs_time = timestamp();
	/* Allocate and clear the new-inode area, in case we add any cgs. */
	if (is_ufs2) {
		zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2),
			"zeroed inodes");
		memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2));
	} else {
		zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1),
			"zeroed inodes");
		memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1));
	}
	
	/* Check that the new last sector (frag, actually) is writable.  Since
	 * it's at least one frag larger than it used to be, we know we aren't
	 * overwriting anything important by this.  (The choice of sbbuf as
	 * what to write is irrelevant; it's just something handy that's known
	 * to be at least one frag in size.) */
	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);

	/* Find out how big the csum area is, and realloc csums if bigger. */
	newsb->fs_cssize = ffs_fragroundup(newsb,
	    newsb->fs_ncg * sizeof(struct csum));
	if (newsb->fs_cssize > oldsb->fs_cssize)
		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
	/* If we're adding any cgs, realloc structures and set up the new
	   cgs. */
	if (newsb->fs_ncg > oldsb->fs_ncg) {
		char *cgp;
		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
                                "cg pointers");
		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
		memset(cgflags + oldsb->fs_ncg, 0,
		    newsb->fs_ncg - oldsb->fs_ncg);
		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
                                "cgs");
		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
			cgs[i] = (struct cg *) cgp;
			progress_bar(special, "grow cg",
			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
			initcg(i);
			cgp += cgblksz;
		}
		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
	}
	/* If the old fs ended partway through a cg, we have to update the old
	 * last cg (though possibly not to a full cg!). */
	if (oldsb->fs_size % oldsb->fs_fpg) {
		struct cg *cg;
		int64_t newcgsize;
		int64_t prevcgtop;
		int64_t oldcgsize;
		cg = cgs[oldsb->fs_ncg - 1];
		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
		newcgsize = newsb->fs_size - prevcgtop;
		if (newcgsize > newsb->fs_fpg)
			newcgsize = newsb->fs_fpg;
		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
		cg->cg_old_ncyl = oldsb->fs_old_cpg;
		cg->cg_ndblk = newcgsize;
	}
	/* Fix up the csum info, if necessary. */
	csum_fixup();
	/* Make fs_dsize match the new reality. */
	recompute_fs_dsize();

	progress_done();
}
/*
 * Call (*fn)() for each inode, passing the inode and its inumber.  The
 *  number of cylinder groups is passed in, so this can be used to map
 *  over either the old or the new file system's set of inodes.
 */
static void
map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
	   int ncg, void *cbarg) {
	int i;
	int ni;

	ni = oldsb->fs_ipg * ncg;
	for (i = 0; i < ni; i++)
		(*fn) (inodes + i, i, cbarg);
}
/* Values for the third argument to the map function for
 * map_inode_data_blocks.  MDB_DATA indicates the block is contains
 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
 * indirect block.  The MDB_INDIR_PRE call is made before the indirect
 * block pointers are followed and the pointed-to blocks scanned,
 * MDB_INDIR_POST after.
 */
#define MDB_DATA       1
#define MDB_INDIR_PRE  2
#define MDB_INDIR_POST 3

typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
				 unsigned int blksize, int opcode);

/* Helper function - handles a data block.  Calls the callback
 * function and returns number of bytes occupied in file (actually,
 * rounded up to a frag boundary).  The name is historical.  */
static int
markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
{
	int sz;
	int nb;
	off_t filesize;

	filesize = DIP(di,di_size);
	if (o >= filesize)
		return (0);
	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
	nb = (sz > filesize - o) ? filesize - o : sz;
	if (bn)
		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
	return (sz);
}
/* Helper function - handles an indirect block.  Makes the
 * MDB_INDIR_PRE callback for the indirect block, loops over the
 * pointers and recurses, and makes the MDB_INDIR_POST callback.
 * Returns the number of bytes occupied in file, as does markblk().
 * For the sake of update_for_data_move(), we read the indirect block
 * _after_ making the _PRE callback.  The name is historical.  */
static off_t
markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
{
	int i;
	unsigned k;
	off_t j, tot;
	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
	static int32_t *indirblks[3] = {
		&indirblk1[0], &indirblk2[0], &indirblk3[0]
	};

	if (lev < 0)
		return (markblk(fn, di, bn, o));
	if (bn == 0) {
		for (j = newsb->fs_bsize;
		    lev >= 0;
		    j *= FFS_NINDIR(newsb), lev--);
		return (j);
	}
	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
	if (needswap)
		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
			indirblks[lev][k] = bswap32(indirblks[lev][k]);
	tot = 0;
	for (i = 0; i < FFS_NINDIR(newsb); i++) {
		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
		if (j == 0)
			break;
		o += j;
		tot += j;
	}
	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
	return (tot);
}


/*
 * Call (*fn)() for each data block for an inode.  This routine assumes
 *  the inode is known to be of a type that has data blocks (file,
 *  directory, or non-fast symlink).  The called function is:
 *
 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
 *
 *  where blkno is the frag number, nf is the number of frags starting
 *  at blkno (always <= fs_frag), nb is the number of bytes that belong
 *  to the file (usually nf*fs_frag, often less for the last block/frag
 *  of a file).
 */
static void
map_inode_data_blocks(union dinode * di, mark_callback_t fn)
{
	off_t o;		/* offset within  inode */
	off_t inc;		/* increment for o */
	int b;			/* index within di_db[] and di_ib[] arrays */

	/* Scan the direct blocks... */
	o = 0;
	for (b = 0; b < UFS_NDADDR; b++) {
		inc = markblk(fn, di, DIP(di,di_db[b]), o);
		if (inc == 0)
			break;
		o += inc;
	}
	/* ...and the indirect blocks. */
	if (inc) {
		for (b = 0; b < UFS_NIADDR; b++) {
			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
			if (inc == 0)
				return;
			o += inc;
		}
	}
}

static void
dblk_callback(union dinode * di, unsigned int inum, void *arg)
{
	mark_callback_t fn;
	off_t filesize;

	filesize = DIP(di,di_size);
	fn = (mark_callback_t) arg;
	switch (DIP(di,di_mode) & IFMT) {
	case IFLNK:
		if (filesize <= newsb->fs_maxsymlinklen) {
			break;
		}
		/* FALLTHROUGH */
	case IFDIR:
	case IFREG:
		map_inode_data_blocks(di, fn);
		break;
	}
}
/*
 * Make a callback call, a la map_inode_data_blocks, for all data
 *  blocks in the entire fs.  This is used only once, in
 *  update_for_data_move, but it's out at top level because the complex
 *  downward-funarg nesting that would otherwise result seems to give
 *  gcc gastric distress.
 */
static void
map_data_blocks(mark_callback_t fn, int ncg)
{
	map_inodes(&dblk_callback, ncg, (void *) fn);
}
/*
 * Initialize the blkmove array.
 */
static void
blkmove_init(void)
{
	int i;

	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
	for (i = 0; i < oldsb->fs_size; i++)
		blkmove[i] = i;
}
/*
 * Load the inodes off disk.  Allocates the structures and initializes
 *  them - the inodes from disk, the flags to zero.
 */
static void
loadinodes(void)
{
	int imax, ino, j;
	uint32_t i;
	struct ufs1_dinode *dp1 = NULL;
	struct ufs2_dinode *dp2 = NULL;

	/* read inodes one fs block at a time and copy them */

	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
	    sizeof(union dinode), "inodes");
	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);

	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
	if (is_ufs2)
		dp2 = (struct ufs2_dinode *)ibuf;
	else
		dp1 = (struct ufs1_dinode *)ibuf;

	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
		    oldsb->fs_bsize);

		for (i = 0; i < oldsb->fs_inopb; i++) {
			if (is_ufs2) {
				if (needswap) {
					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
					for (j = 0; j < UFS_NDADDR; j++)
						dp2[i].di_db[j] =
						    bswap32(dp2[i].di_db[j]);
					for (j = 0; j < UFS_NIADDR; j++)
						dp2[i].di_ib[j] =
						    bswap32(dp2[i].di_ib[j]);
				}
				memcpy(&inodes[ino].dp2, &dp2[i],
				    sizeof(inodes[ino].dp2));
			} else {
				if (needswap) {
					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
					for (j = 0; j < UFS_NDADDR; j++)
						dp1[i].di_db[j] =
						    bswap32(dp1[i].di_db[j]);
					for (j = 0; j < UFS_NIADDR; j++)
						dp1[i].di_ib[j] =
						    bswap32(dp1[i].di_ib[j]);
				}
				memcpy(&inodes[ino].dp1, &dp1[i],
				    sizeof(inodes[ino].dp1));
			}
			    if (++ino > imax)
				    errx(EXIT_FAILURE,
					"Exceeded number of inodes");
		}

	}
}
/*
 * Report a file-system-too-full problem.
 */
__dead static void
toofull(void)
{
	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
}
/*
 * Record a desire to move "n" frags from "from" to "to".
 */
static void
mark_move(unsigned int from, unsigned int to, unsigned int n)
{
	for (; n > 0; n--)
		blkmove[from++] = to++;
}
/* Helper function - evict n frags, starting with start (cg-relative).
 * The free bitmap is scanned, unallocated frags are ignored, and
 * each block of consecutive allocated frags is moved as a unit.
 */
static void
fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n)
{
	unsigned int i;
	int run;

	run = 0;
	for (i = 0; i <= n; i++) {
		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
			run++;
		} else {
			if (run > 0) {
				int off;
				off = find_freespace(run);
				if (off < 0)
					toofull();
				mark_move(base + start + i - run, off, run);
				set_bits(cg_blksfree(cg, 0), start + i - run,
				    run);
				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
				    dtogd(oldsb, off), run);
			}
			run = 0;
		}
	}
}
/*
 * Evict all data blocks from the given cg, starting at minfrag (based
 *  at the beginning of the cg), for length nfrag.  The eviction is
 *  assumed to be entirely data-area; this should not be called with a
 *  range overlapping the metadata structures in the cg.  It also
 *  assumes minfrag points into the given cg; it will misbehave if this
 *  is not true.
 *
 * See the comment header on find_freespace() for one possible bug
 *  lurking here.
 */
static void
evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
{
	int64_t base;	/* base of cg (in frags from beginning of fs) */

	base = cgbase(oldsb, cg->cg_cgx);
	/* Does the boundary fall in the middle of a block?  To avoid
	 * breaking between frags allocated as consecutive, we always
	 * evict the whole block in this case, though one could argue
	 * we should check to see if the frag before or after the
	 * break is unallocated. */
	if (minfrag % oldsb->fs_frag) {
		int n;
		n = minfrag % oldsb->fs_frag;
		minfrag -= n;
		nfrag += n;
	}
	/* Do whole blocks.  If a block is wholly free, skip it; if
	 * wholly allocated, move it in toto.  If neither, call
	 * fragmove() to move the frags to new locations. */
	while (nfrag >= oldsb->fs_frag) {
		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
				oldsb->fs_frag)) {
				int off;
				off = find_freeblock();
				if (off < 0)
					toofull();
				mark_move(base + minfrag, off, oldsb->fs_frag);
				set_bits(cg_blksfree(cg, 0), minfrag,
				    oldsb->fs_frag);
				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
				    dtogd(oldsb, off), oldsb->fs_frag);
			} else {
				fragmove(cg, base, minfrag, oldsb->fs_frag);
			}
		}
		minfrag += oldsb->fs_frag;
		nfrag -= oldsb->fs_frag;
	}
	/* Clean up any sub-block amount left over. */
	if (nfrag) {
		fragmove(cg, base, minfrag, nfrag);
	}
}
/*
 * Move all data blocks according to blkmove.  We have to be careful,
 *  because we may be updating indirect blocks that will themselves be
 *  getting moved, or inode int32_t arrays that point to indirect
 *  blocks that will be moved.  We call this before
 *  update_for_data_move, and update_for_data_move does inodes first,
 *  then indirect blocks in preorder, so as to make sure that the
 *  file system is self-consistent at all points, for better crash
 *  tolerance.  (We can get away with this only because all the writes
 *  done by perform_data_move() are writing into space that's not used
 *  by the old file system.)  If we crash, some things may point to the
 *  old data and some to the new, but both copies are the same.  The
 *  only wrong things should be csum info and free bitmaps, which fsck
 *  is entirely capable of cleaning up.
 *
 * Since blkmove_init() initializes all blocks to move to their current
 *  locations, we can have two blocks marked as wanting to move to the
 *  same location, but only two and only when one of them is the one
 *  that was already there.  So if blkmove[i]==i, we ignore that entry
 *  entirely - for unallocated blocks, we don't want it (and may be
 *  putting something else there), and for allocated blocks, we don't
 *  want to copy it anywhere.
 */
static void
perform_data_move(void)
{
	int i;
	int run;
	int maxrun;
	char buf[65536];

	maxrun = sizeof(buf) / newsb->fs_fsize;
	run = 0;
	for (i = 0; i < oldsb->fs_size; i++) {
		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
		    (run >= maxrun) ||
		    ((run > 0) &&
			(blkmove[i] != blkmove[i - 1] + 1))) {
			if (run > 0) {
				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
				    run << oldsb->fs_fshift);
				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
				    &buf[0], run << oldsb->fs_fshift);
			}
			run = 0;
		}
		if (blkmove[i] != (unsigned)i /*XXX cast*/)
			run++;
	}
	if (run > 0) {
		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
		    run << oldsb->fs_fshift);
		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
		    run << oldsb->fs_fshift);
	}
}
/*
 * This modifies an array of int32_t, according to blkmove.  This is
 *  used to update inode block arrays and indirect blocks to point to
 *  the new locations of data blocks.
 *
 * Return value is the number of int32_ts that needed updating; in
 *  particular, the return value is zero iff nothing was modified.
 */
static int
movemap_blocks(int32_t * vec, int n)
{
	int rv;

	rv = 0;
	for (; n > 0; n--, vec++) {
		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
			*vec = blkmove[*vec];
			rv++;
		}
	}
	return (rv);
}
static void
moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
{
	int32_t *dblkptr, *iblkptr;

	switch (DIP(di,di_mode) & IFMT) {
	case IFLNK:
		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
			break;
		}
		/* FALLTHROUGH */
	case IFDIR:
	case IFREG:
		if (is_ufs2) {
			/* XXX these are not int32_t and this is WRONG! */
			dblkptr = (void *) &(di->dp2.di_db[0]);
			iblkptr = (void *) &(di->dp2.di_ib[0]);
		} else {
			dblkptr = &(di->dp1.di_db[0]);
			iblkptr = &(di->dp1.di_ib[0]);
		}
		/*
		 * Don't || these two calls; we need their
		 * side-effects.
		 */
		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
			iflags[inum] |= IF_DIRTY;
		}
		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
			iflags[inum] |= IF_DIRTY;
		}
		break;
	}
}

static void
moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
		   int kind)
{
	unsigned int i;

	if (kind == MDB_INDIR_PRE) {
		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
		if (needswap)
			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
				blk[i] = bswap32(blk[i]);
		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
			if (needswap)
				for (i = 0; i < howmany(MAXBSIZE,
					sizeof(int32_t)); i++)
					blk[i] = bswap32(blk[i]);
			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
		}
	}
}
/*
 * Update all inode data arrays and indirect blocks to point to the new
 *  locations of data blocks.  See the comment header on
 *  perform_data_move for some ordering considerations.
 */
static void
update_for_data_move(void)
{
	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
}
/*
 * Initialize the inomove array.
 */
static void
inomove_init(void)
{
	int i;

	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
                            "inomove");
	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
		inomove[i] = i;
}
/*
 * Flush all dirtied inodes to disk.  Scans the inode flags array; for
 *  each dirty inode, it sets the BDIRTY bit on the first inode in the
 *  block containing the dirty inode.  Then it scans by blocks, and for
 *  each marked block, writes it.
 */
static void
flush_inodes(void)
{
	int i, j, k, ni, m;
	struct ufs1_dinode *dp1 = NULL;
	struct ufs2_dinode *dp2 = NULL;

	ni = newsb->fs_ipg * newsb->fs_ncg;
	m = FFS_INOPB(newsb) - 1;
	for (i = 0; i < ni; i++) {
		if (iflags[i] & IF_DIRTY) {
			iflags[i & ~m] |= IF_BDIRTY;
		}
	}
	m++;

	if (is_ufs2)
		dp2 = (struct ufs2_dinode *)ibuf;
	else
		dp1 = (struct ufs1_dinode *)ibuf;

	for (i = 0; i < ni; i += m) {
		if ((iflags[i] & IF_BDIRTY) == 0)
			continue;
		if (is_ufs2)
			for (j = 0; j < m; j++) {
				dp2[j] = inodes[i + j].dp2;
				if (needswap) {
					for (k = 0; k < UFS_NDADDR; k++)
						dp2[j].di_db[k] =
						    bswap32(dp2[j].di_db[k]);
					for (k = 0; k < UFS_NIADDR; k++)
						dp2[j].di_ib[k] =
						    bswap32(dp2[j].di_ib[k]);
					ffs_dinode2_swap(&dp2[j],
					    &dp2[j]);
				}
			}
		else
			for (j = 0; j < m; j++) {
				dp1[j] = inodes[i + j].dp1;
				if (needswap) {
					for (k = 0; k < UFS_NDADDR; k++)
						dp1[j].di_db[k]=
						    bswap32(dp1[j].di_db[k]);
					for (k = 0; k < UFS_NIADDR; k++)
						dp1[j].di_ib[k]=
						    bswap32(dp1[j].di_ib[k]);
					ffs_dinode1_swap(&dp1[j],
					    &dp1[j]);
				}
			}

		writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
		    ibuf, newsb->fs_bsize);
	}
}
/*
 * Evict all inodes from the specified cg.  shrink() already checked
 *  that there were enough free inodes, so the no-free-inodes check is
 *  a can't-happen.  If it does trip, the file system should be in good
 *  enough shape for fsck to fix; see the comment on perform_data_move
 *  for the considerations in question.
 */
static void
evict_inodes(struct cg * cg)
{
	int inum;
	int fi;
	uint32_t i;

	inum = newsb->fs_ipg * cg->cg_cgx;
	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
		if (DIP(inodes + inum,di_mode) != 0) {
			fi = find_freeinode();
			if (fi < 0)
				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
				    "file system probably needs fsck");
			inomove[inum] = fi;
			clr_bits(cg_inosused(cg, 0), i, 1);
			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
			    fi % newsb->fs_ipg, 1);
		}
	}
}
/*
 * Move inodes from old locations to new.  Does not actually write
 *  anything to disk; just copies in-core and sets dirty bits.
 *
 * We have to be careful here for reasons similar to those mentioned in
 *  the comment header on perform_data_move, above: for the sake of
 *  crash tolerance, we want to make sure everything is present at both
 *  old and new locations before we update pointers.  So we call this
 *  first, then flush_inodes() to get them out on disk, then update
 *  directories to match.
 */
static void
perform_inode_move(void)
{
	unsigned int i;
	unsigned int ni;

	ni = oldsb->fs_ipg * oldsb->fs_ncg;
	for (i = 0; i < ni; i++) {
		if (inomove[i] != i) {
			inodes[inomove[i]] = inodes[i];
			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
		}
	}
}
/*
 * Update the directory contained in the nb bytes at buf, to point to
 *  inodes' new locations.
 */
static int
update_dirents(char *buf, int nb)
{
	int rv;
#define d ((struct direct *)buf)
#define s32(x) (needswap?bswap32((x)):(x))
#define s16(x) (needswap?bswap16((x)):(x))

	rv = 0;
	while (nb > 0) {
		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
			rv++;
			d->d_ino = s32(inomove[s32(d->d_ino)]);
		}
		nb -= s16(d->d_reclen);
		buf += s16(d->d_reclen);
	}
	return (rv);
#undef d
#undef s32
#undef s16
}
/*
 * Callback function for map_inode_data_blocks, for updating a
 *  directory to point to new inode locations.
 */
static void
update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
{
	if (kind == MDB_DATA) {
		union {
			struct direct d;
			char ch[MAXBSIZE];
		}     buf;
		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
		if (update_dirents((char *) &buf, nb)) {
			writeat(FFS_FSBTODB(oldsb, bn), &buf,
			    size << oldsb->fs_fshift);
		}
	}
}
static void
dirmove_callback(union dinode * di, unsigned int inum, void *arg)
{
	switch (DIP(di,di_mode) & IFMT) {
	case IFDIR:
		map_inode_data_blocks(di, &update_dir_data);
		break;
	}
}
/*
 * Update directory entries to point to new inode locations.
 */
static void
update_for_inode_move(void)
{
	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
}
/*
 * Shrink the file system.
 */
static void
shrink(void)
{
	uint32_t i;

	if (makegeometry(1)) {
		printf("New fs size %"PRIu64" = old fs size %"PRIu64
		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
		return;
	}

	/* Let's make sure we're not being shrunk into oblivion. */
	if (newsb->fs_ncg < 1)
		errx(EXIT_FAILURE, "Size too small - file system would "
		    "have no cylinders");

	if (verbose) {
		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
	}

	/* Load the inodes off disk - we'll need 'em. */
	loadinodes();

	/* Update the timestamp. */
	newsb->fs_time = timestamp();

	/* Initialize for block motion. */
	blkmove_init();
	/* Update csum size, then fix up for the new size */
	newsb->fs_cssize = ffs_fragroundup(newsb,
	    newsb->fs_ncg * sizeof(struct csum));
	csum_fixup();
	/* Evict data from any cgs being wholly eliminated */
	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
		int64_t base;
		int64_t dlow;
		int64_t dhigh;
		int64_t dmax;
		base = cgbase(oldsb, i);
		dlow = cgsblock(oldsb, i) - base;
		dhigh = cgdmin(oldsb, i) - base;
		dmax = oldsb->fs_size - base;
		if (dmax > cgs[i]->cg_ndblk)
			dmax = cgs[i]->cg_ndblk;
		evict_data(cgs[i], 0, dlow);
		evict_data(cgs[i], dhigh, dmax - dhigh);
		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
	}
	/* Update the new last cg. */
	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
	/* Is the new last cg partial?  If so, evict any data from the part
	 * being shrunken away. */
	if (newsb->fs_size % newsb->fs_fpg) {
		struct cg *cg;
		int oldcgsize;
		int newcgsize;
		cg = cgs[newsb->fs_ncg - 1];
		newcgsize = newsb->fs_size % newsb->fs_fpg;
		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
		    oldsb->fs_fpg);
		if (oldcgsize > oldsb->fs_fpg)
			oldcgsize = oldsb->fs_fpg;
		evict_data(cg, newcgsize, oldcgsize - newcgsize);
		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
	}
	/* Find out whether we would run out of inodes.  (Note we
	 * haven't actually done anything to the file system yet; all
	 * those evict_data calls just update blkmove.) */
	{
		int slop;
		slop = 0;
		for (i = 0; i < newsb->fs_ncg; i++)
			slop += cgs[i]->cg_cs.cs_nifree;
		for (; i < oldsb->fs_ncg; i++)
			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
		if (slop < 0)
			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
	}
	/* Copy data, then update pointers to data.  See the comment
	 * header on perform_data_move for ordering considerations. */
	perform_data_move();
	update_for_data_move();
	/* Now do inodes.  Initialize, evict, move, update - see the
	 * comment header on perform_inode_move. */
	inomove_init();
	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
		evict_inodes(cgs[i]);
	perform_inode_move();
	flush_inodes();
	update_for_inode_move();
	/* Recompute all the bitmaps; most of them probably need it anyway,
	 * the rest are just paranoia and not wanting to have to bother
	 * keeping track of exactly which ones require it. */
	for (i = 0; i < newsb->fs_ncg; i++)
		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
	/* Update the cg_old_ncyl value for the last cylinder. */
	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
	/* Make fs_dsize match the new reality. */
	recompute_fs_dsize();
}
/*
 * Recompute the block totals, block cluster summaries, and rotational
 *  position summaries, for a given cg (specified by number), based on
 *  its free-frag bitmap (cg_blksfree()[]).
 */
static void
rescan_blkmaps(int cgn)
{
	struct cg *cg;
	uint32_t f;
	int b;
	int blkfree;
	int blkrun;
	int fragrun;
	int fwb;

	cg = cgs[cgn];
	/* Subtract off the current totals from the sb's summary info */
	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
	/* Clear counters and bitmaps. */
	cg->cg_cs.cs_nffree = 0;
	cg->cg_cs.cs_nbfree = 0;
	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
	memset(&old_cg_blktot(cg, 0)[0], 0,
	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
	if (newsb->fs_contigsumsize > 0) {
		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
		memset(&cg_clustersum(cg, 0)[1], 0,
		    newsb->fs_contigsumsize *
		    sizeof(cg_clustersum(cg, 0)[1]));
		if (is_ufs2)
			memset(&cg_clustersfree(cg, 0)[0], 0,
			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
		else
			memset(&cg_clustersfree(cg, 0)[0], 0,
			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
				NSPB(newsb), NBBY));
	}
	/* Scan the free-frag bitmap.  Runs of free frags are kept
	 * track of with fragrun, and recorded into cg_frsum[] and
	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
	 * are recorded as well. */
	blkfree = 1;
	blkrun = 0;
	fragrun = 0;
	f = 0;
	b = 0;
	fwb = 0;
	while (f < cg->cg_ndblk) {
		if (bit_is_set(cg_blksfree(cg, 0), f)) {
			fragrun++;
		} else {
			blkfree = 0;
			if (fragrun > 0) {
				cg->cg_frsum[fragrun]++;
				cg->cg_cs.cs_nffree += fragrun;
			}
			fragrun = 0;
		}
		f++;
		fwb++;
		if (fwb >= newsb->fs_frag) {
			if (blkfree) {
				cg->cg_cs.cs_nbfree++;
				if (newsb->fs_contigsumsize > 0)
					set_bits(cg_clustersfree(cg, 0), b, 1);
				if (is_ufs2 == 0) {
					old_cg_blktot(cg, 0)[
						old_cbtocylno(newsb,
						    f - newsb->fs_frag)]++;
					old_cg_blks(newsb, cg,
					    old_cbtocylno(newsb,
						f - newsb->fs_frag),
					    0)[old_cbtorpos(newsb,
						    f - newsb->fs_frag)]++;
				}
				blkrun++;
			} else {
				if (fragrun > 0) {
					cg->cg_frsum[fragrun]++;
					cg->cg_cs.cs_nffree += fragrun;
				}
				if (newsb->fs_contigsumsize > 0) {
					if (blkrun > 0) {
						cg_clustersum(cg, 0)[(blkrun
						    > newsb->fs_contigsumsize)
						    ? newsb->fs_contigsumsize
						    : blkrun]++;
					}
				}
				blkrun = 0;
			}
			fwb = 0;
			b++;
			blkfree = 1;
			fragrun = 0;
		}
	}
	if (fragrun > 0) {
		cg->cg_frsum[fragrun]++;
		cg->cg_cs.cs_nffree += fragrun;
	}
	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
		    newsb->fs_contigsumsize : blkrun]++;
	}
	/*
         * Put the updated summary info back into csums, and add it
         * back into the sb's summary info.  Then mark the cg dirty.
         */
	csums[cgn] = cg->cg_cs;
	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
	cgflags[cgn] |= CGF_DIRTY;
}
/*
 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
 *  values, for a cg, based on the in-core inodes for that cg.
 */
static void
rescan_inomaps(int cgn)
{
	struct cg *cg;
	int inum;
	uint32_t iwc;

	cg = cgs[cgn];
	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
	cg->cg_cs.cs_ndir = 0;
	cg->cg_cs.cs_nifree = 0;
	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
	inum = cgn * newsb->fs_ipg;
	if (cgn == 0) {
		set_bits(cg_inosused(cg, 0), 0, 2);
		iwc = 2;
		inum += 2;
	} else {
		iwc = 0;
	}
	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
		switch (DIP(inodes + inum, di_mode) & IFMT) {
		case 0:
			cg->cg_cs.cs_nifree++;
			break;
		case IFDIR:
			cg->cg_cs.cs_ndir++;
			/* FALLTHROUGH */
		default:
			set_bits(cg_inosused(cg, 0), iwc, 1);
			break;
		}
	}
	csums[cgn] = cg->cg_cs;
	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
	cgflags[cgn] |= CGF_DIRTY;
}
/*
 * Flush cgs to disk, recomputing anything they're marked as needing.
 */
static void
flush_cgs(void)
{
	uint32_t i;

	for (i = 0; i < newsb->fs_ncg; i++) {
		progress_bar(special, "flush cg",
		    i, newsb->fs_ncg - 1);
		if (cgflags[i] & CGF_BLKMAPS) {
			rescan_blkmaps(i);
		}
		if (cgflags[i] & CGF_INOMAPS) {
			rescan_inomaps(i);
		}
		if (cgflags[i] & CGF_DIRTY) {
			cgs[i]->cg_rotor = 0;
			cgs[i]->cg_frotor = 0;
			cgs[i]->cg_irotor = 0;
			if (needswap)
				ffs_cg_swap(cgs[i],cgs[i],newsb);
			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
			    cgblksz);
		}
	}
	if (needswap)
		ffs_csum_swap(csums,csums,newsb->fs_cssize);
	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);

	progress_done();
}
/*
 * Write the superblock, both to the main superblock and to each cg's
 *  alternative superblock.
 */
static void
write_sbs(void)
{
	uint32_t i;

	if (newsb->fs_magic == FS_UFS1_MAGIC &&
	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
		newsb->fs_old_time = newsb->fs_time;
	    	newsb->fs_old_size = newsb->fs_size;
	    	/* we don't update fs_csaddr */
	    	newsb->fs_old_dsize = newsb->fs_dsize;
		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
	}
	/* copy newsb back to oldsb, so we can use it for offsets if
	   newsb has been swapped for writing to disk */
	memcpy(oldsb, newsb, SBLOCKSIZE);
	if (needswap)
		ffs_sb_swap(newsb,newsb);
	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
	for (i = 0; i < oldsb->fs_ncg; i++) {
		progress_bar(special, "write sb",
		    i, oldsb->fs_ncg - 1);
		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
	}

	progress_done();
}

/*
 * Check to see whether new size changes the filesystem
 *  return exit code
 */
static int
checkonly(void)
{
	if (makegeometry(0)) {
		if (verbose) {
			printf("Wouldn't change: already %" PRId64
			    " blocks\n", (int64_t)oldsb->fs_size);
		}
		return 1;
	}

	if (verbose) {
		printf("Would change: newsize: %" PRId64 " oldsize: %"
		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
		    (int64_t)oldsb->fs_size,
		    (int64_t)oldsb->fs_fsbtodb);
	}
	return 0;
}

static off_t
get_dev_size(const char *dev_name)
{
	struct dkwedge_info dkw;
	struct partition *pp;
	struct disklabel lp;
	struct stat st;
	size_t ptn;

	/* Get info about partition/wedge */
	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
		return dkw.dkw_size;
	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
		ptn = strchr(dev_name, '\0')[-1] - 'a';
		if (ptn >= lp.d_npartitions)
			return 0;
		pp = &lp.d_partitions[ptn];
		return pp->p_size;
	}
	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
		return st.st_size / DEV_BSIZE;

	return 0;
}

/*
 * main().
 */
int
main(int argc, char **argv)
{
	int ch;
	int CheckOnlyFlag;
	int ExpertFlag;
	int SFlag;
	size_t i;
	char specname[MAXPATHLEN];
	char rawname[MAXPATHLEN];
	const char *raw;

	char reply[5];

	newsize = 0;
	ExpertFlag = 0;
	SFlag = 0;
        CheckOnlyFlag = 0;

	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
		switch (ch) {
                case 'c':
			CheckOnlyFlag = 1;
			break;
		case 'p':
			progress = 1;
			break;
		case 's':
			SFlag = 1;
			newsize = strtoll(optarg, NULL, 10);
			if(newsize < 1) {
				usage();
			}
			break;
		case 'v':
			verbose = 1;
			break;
		case 'y':
			ExpertFlag = 1;
			break;
		case '?':
			/* FALLTHROUGH */
		default:
			usage();
		}
	}
	argc -= optind;
	argv += optind;

	if (argc != 1) {
		usage();
	}

	special = getfsspecname(specname, sizeof(specname), argv[0]);
	if (special == NULL)
		err(EXIT_FAILURE, "%s: %s", argv[0], specname);
	raw = getdiskrawname(rawname, sizeof(rawname), special);
	if (raw != NULL)
		special = raw;

	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
		printf("It's required to manually run fsck on file system "
		    "before you can resize it\n\n"
		    " Did you run fsck on your disk (Yes/No) ? ");
		fgets(reply, (int)sizeof(reply), stdin);
		if (strcasecmp(reply, "Yes\n")) {
			printf("\n Nothing done \n");
			exit(EXIT_SUCCESS);
		}
	}

	fd = open(special, O_RDWR, 0);
	if (fd < 0)
		err(EXIT_FAILURE, "Can't open `%s'", special);
	checksmallio();

	if (SFlag == 0) {
		newsize = get_dev_size(special);
		if (newsize == 0)
			err(EXIT_FAILURE,
			    "Can't resize file system, newsize not known.");
	}

	oldsb = (struct fs *) & sbbuf;
	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
		switch (oldsb->fs_magic) {
		case FS_UFS2_MAGIC:
		case FS_UFS2EA_MAGIC:
			is_ufs2 = 1;
			/* FALLTHROUGH */
		case FS_UFS1_MAGIC:
			needswap = 0;
			break;
		case FS_UFS2_MAGIC_SWAPPED:
		case FS_UFS2EA_MAGIC_SWAPPED:
 			is_ufs2 = 1;
			/* FALLTHROUGH */
		case FS_UFS1_MAGIC_SWAPPED:
			needswap = 1;
			break;
		default:
			continue;
		}
		if (!is_ufs2 && where == SBLOCK_UFS2)
			continue;
		break;
	}
	if (where == (off_t)-1)
		errx(EXIT_FAILURE, "Bad magic number");
	if (needswap)
		ffs_sb_swap(oldsb,oldsb);
	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
		oldsb->fs_size = oldsb->fs_old_size;
		oldsb->fs_dsize = oldsb->fs_old_dsize;
		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
		/* any others? */
		printf("Resizing with ffsv1 superblock\n");
	}

	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
	/* The superblock is bigger than struct fs (there are trailing
	 * tables, of non-fixed size); make sure we copy the whole
	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
	 * just once, so being generous is cheap. */
	memcpy(newsb, oldsb, SBLOCKSIZE);

	if (progress) {
		progress_ttywidth(0);
		signal(SIGWINCH, progress_ttywidth);
	}

	loadcgs();

	if (progress && !CheckOnlyFlag) {
		progress_switch(progress);
		progress_init();
	}

	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
		if (CheckOnlyFlag)
			exit(checkonly());
		grow();
	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
		if (is_ufs2)
			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
		if (CheckOnlyFlag)
			exit(checkonly());
		shrink();
	} else {
		if (CheckOnlyFlag)
			exit(checkonly());
		if (verbose)
			printf("No change requested: already %" PRId64
			    " blocks\n", (int64_t)oldsb->fs_size);
	}

	flush_cgs();
	write_sbs();
	if (isplainfile())
		ftruncate(fd,newsize * DEV_BSIZE);
	return 0;
}

static void
usage(void)
{

	(void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n",
	    getprogname());
	exit(EXIT_FAILURE);
}