Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
/*	$NetBSD: if_scx.c,v 1.43 2023/06/15 07:21:45 nisimura Exp $	*/

/*-
 * Copyright (c) 2020 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#define NOT_MP_SAFE	0

/*
 * Socionext SC2A11 SynQuacer NetSec GbE driver
 *
 * Multiple Tx and Rx queues exist inside and dedicated descriptor
 * fields specifies which queue is to use. Three internal micro-processors
 * to handle incoming frames, outgoing frames and packet data crypto
 * processing. uP programs are stored in an external flash memory and
 * have to be loaded by device driver.
 * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
 * reports 0x11056f37.
 *  <24> alternative/enhanced desc format
 *  <18> receive IP type 2 checksum offload
 *  <16> transmit checksum offload
 *  <11> event counter (mac management counter, MMC) 
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.43 2023/06/15 07:21:45 nisimura Exp $");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <sys/rndsource.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <net/bpf.h>

#include <dev/fdt/fdtvar.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_intr.h>

/* SC2A11 GbE has 64-bit paddr descriptor */
struct tdes {
	uint32_t t0, t1, t2, t3;
};
struct rdes {
	uint32_t r0, r1, r2, r3;
};
#define T0_OWN		(1U<<31)	/* desc is ready to Tx */
#define T0_LD		(1U<<30)	/* last descriptor in array */
#define T0_DRID		(24)		/* 29:24 desc ring id */
#define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
#define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
#define T0_CC		(1U<<15)	/* ??? */
#define T0_FS		(1U<<9)		/* first segment of frame */
#define T0_LS		(1U<<8)		/* last segment of frame */
#define T0_CSUM		(1U<<7)		/* enable check sum offload */
#define T0_TSO		(1U<<6)		/* enable TCP segment offload */
#define T0_TRS		(1U<<4)		/* 5:4 "TRS" ??? */
/* T1 frame segment address 63:32 */
/* T2 frame segment address 31:0 */
/* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
#define R0_OWN		(1U<<31)	/* desc is empty */
#define R0_LD		(1U<<30)	/* last descriptor in array */
#define R0_SDRID	(24)		/* 29:24 source desc ring id */
#define R0_FR		(1U<<23)	/* found fragmented */
#define R0_ER		(1U<<21)	/* Rx error indication */
#define R0_ERR		(3U<<16)	/* 18:16 receive error code */
#define R0_TDRID	(12)		/* 15:12 target desc ring id */
#define R0_FS		(1U<<9)		/* first segment of frame */
#define R0_LS		(1U<<8)		/* last segment of frame */
#define R0_CSUM		(3U<<6)		/* 7:6 checksum status, 0: undone */
#define R0_CERR		(2U<<6)		/* 2: found bad */
#define R0_COK		(1U<<6)		/* 1: found ok */
/* R1 frame address 63:32 */
/* R2 frame address 31:0 */
/* R3 31:16 received frame length, 15:0 buffer length to receive */

/*
 * SC2A11 registers. 0x100 - 1204
 */
#define SWRESET		0x104
#define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
#define COMINIT		0x120
#define  INIT_DB	(1U<<2)		/* ???; self clear when done */
#define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
#define xINTSR		0x200		/* aggregated interrupt status */
#define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
#define  IRQ_MAC	(1U<<19)	/* ??? */
#define  IRQ_PKT	(1U<<18)	/* ??? */
#define  IRQ_BOOTCODE	(1U<<5)		/* ??? */
#define  IRQ_XDONE	(1U<<4)		/* ??? mode change completed */
#define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
#define  IRQ_TX		(1U<<0)		/* top level Tx interrupt */
#define xINTAEN		0x204		/* INT_A enable */
#define xINTAE_SET	0x234		/* bit to set */
#define xINTAE_CLR	0x238		/* bit to clr */
#define xINTBEN		0x23c		/* INT_B enable */
#define xINTBE_SET	0x240		/* bit to set */
#define xINTBE_CLR	0x244		/* bit to clr */
#define TXISR		0x400		/* transmit status; W1C */
#define TXIEN		0x404		/* tx interrupt enable */
#define TXIE_SET	0x428		/* bit to set */
#define TXIE_CLR	0x42c		/* bit to clr */
#define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
#define  TXI_TR_ERR	(1U<<16)	/* xmit error detected */
#define  TXI_TXDONE	(1U<<15)	/* xmit completed */
#define  TXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
#define RXISR		0x440		/* receive status; W1C */
#define RXIEN		0x444		/* rx interrupt enable */
#define RXIE_SET	0x468		/* bit to set */
#define RXIE_CLR	0x46c		/* bit to clr */
#define  RXI_RC_ERR	(1U<<16)	/* recv error detected */
#define  RXI_PKTCNT	(1U<<15)	/* recv counter has new value */
#define  RXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
#define TDBA_LO		0x408		/* tdes array base addr 31:0 */
#define TDBA_HI		0x434		/* tdes array base addr 63:32 */
#define RDBA_LO		0x448		/* rdes array base addr 31:0 */
#define RDBA_HI		0x474		/* rdes array base addr 63:32 */
#define TXCONF		0x430		/* tdes config */
#define RXCONF		0x470		/* rdes config */
#define  DESCNF_UP	(1U<<31)	/* 'up-and-running' */
#define  DESCNF_CHRST	(1U<<30)	/* channel reset */
#define  DESCNF_TMR	(1U<<4)		/* coalesce timer unit select */
#define  DESCNF_LE	(1)		/* little endian desc format */
#define TXSUBMIT	0x410		/* submit frame(s) to transmit */
#define TXCOALESC	0x418		/* tx intr coalesce upper bound */
#define RXCOALESC	0x458		/* rx intr coalesce upper bound */
#define TCLSCTIME	0x420		/* tintr guard time usec */
#define RCLSCTIME	0x460		/* rintr guard time usec */
#define TXDONECNT	0x414		/* tx completed count, auto-zero */
#define RXAVAILCNT	0x454		/* rx available count, auto-zero */
#define DMACTL_TMR	0x20c		/* DMA cycle tick value */
#define PKTCTRL		0x140		/* pkt engine control */
#define  MODENRM	(1U<<28)	/* set operational mode to 'normal' */
#define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
#define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
#define  RPTHDCOMP	(1U<<2)		/* log header incomplete condition */
#define  RPTHDERR	(1U<<1)		/* log header error */
#define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
#define UCODE_PKT	0x0d0		/* packet engine ucode port */
#define UCODE_H2M	0x210		/* host2media engine ucode port */
#define UCODE_M2H	0x21c		/* media2host engine ucode port */
#define CORESTAT	0x218		/* engine run state */
#define  PKTSTOP	(1U<<2)		/* pkt engine stopped */
#define  M2HSTOP	(1U<<1)		/* M2H engine stopped */
#define  H2MSTOP	(1U<<0)		/* H2M engine stopped */
#define DMACTL_H2M	0x214		/* host2media engine control */
#define DMACTL_M2H	0x220		/* media2host engine control */
#define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
#define  M2H_MODE_TRANS	(1U<<20)	/* initiate M2H mode change */
#define MODE_TRANS	0x500		/* mode change completion status */
#define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
#define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
#define CLKEN		0x100		/* clock distribution enable */
#define  CLK_G		(1U<<5)		/* feed clk domain G */
#define  CLK_C		(1U<<1)		/* feed clk domain C */
#define  CLK_D		(1U<<0)		/* feed clk domain D */
#define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
#define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */

/* GMAC register indirect access. thru MACCMD/MACDATA operation */
#define MACDATA		0x11c0		/* gmac register rd/wr data */
#define MACCMD		0x11c4		/* gmac register operation */
#define  CMD_IOWR	(1U<<28)	/* write op */
#define  CMD_BUSY	(1U<<31)	/* busy bit */
#define MACSTAT		0x1024		/* mac interrupt status (unused) */
#define MACINTE		0x1028		/* mac interrupt enable (unused) */

#define FLOWTHR		0x11cc		/* flow control threshold */
/* 31:16 pause threshold, 15:0 resume threshold */
#define INTF_SEL	0x11d4		/* phy interface type */
#define  INTF_GMII	0
#define  INTF_RGMII	1
#define  INTF_RMII	4

#define MCVER		0x22c		/* micro controller version */
#define HWVER		0x230		/* hardware version */

/*
 * GMAC registers are mostly identical to Synopsys DesignWare Core
 * Ethernet. These must be handled by indirect access.
 */
#define GMACMCR		0x0000		/* MAC configuration */
#define  MCR_IBN	(1U<<30)	/* watch in-band-signal */
#define  MCR_CST	(1U<<25)	/* strip CRC */
#define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
#define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
#define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
#define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
#define  MCR_DCRS	(1U<<16)	/* ignore (G)MII HDX Tx error */
#define  MCR_PS		(1U<<15)	/* 1: MII 10/100, 0: GMII 1000 */
#define  MCR_FES	(1U<<14)	/* force speed 100 */
#define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
#define  MCR_LOOP	(1U<<12)	/* run loop back */
#define  MCR_USEFDX	(1U<<11)	/* force full duplex */
#define  MCR_IPCEN	(1U<<10)	/* handle checksum */
#define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
#define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
#define  MCR_ACS	(1U<<7)		/* auto pad auto strip CRC */
#define  MCR_DC		(1U<<4)		/* report excessive tx deferral */
#define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
#define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
#define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
#define GMACAFR		0x0004		/* frame DA/SA address filter */
#define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
#define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
#define  AFR_SAF	(1U<<9)		/* source address filter */
#define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
#define  AFR_PCF	(2U<<6)		/* 7:6 accept pause frame 0~3 */
#define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
#define  AFR_PM		(1U<<4)		/* accept all multicast frame */
#define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
#define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
#define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
#define  AFR_PR		(1U<<0)		/* run promisc mode */
#define GMACGAR		0x0010		/* MDIO operation */
#define  GAR_PHY	(11)		/* 15:11 mii phy */
#define  GAR_REG	(6)		/* 10:6 mii reg */
#define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
#define  GAR_IOWR	(1U<<1)		/* MDIO write op */
#define  GAR_BUSY	(1U<<0)		/* busy bit */
#define  GAR_MDIO_25_35MHZ	2
#define  GAR_MDIO_35_60MHZ	3
#define  GAR_MDIO_60_100MHZ	0
#define  GAR_MDIO_100_150MHZ	1
#define  GAR_MDIO_150_250MHZ	4
#define  GAR_MDIO_250_300MHZ	5
#define GMACGDR		0x0014		/* MDIO rd/wr data */
#define GMACFCR		0x0018		/* 802.3x flowcontrol */
/* 31:16 pause timer value, 5:4 pause timer threshold */
#define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
#define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
#define GMACIMPL	0x0020		/* implementation id */
#define GMACISR		0x0038		/* interrupt status indication */
#define GMACIMR		0x003c		/* interrupt mask to inhibit */
#define  ISR_TS		(1U<<9)		/* time stamp operation detected */
#define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
#define  ISR_TX		(1U<<6)		/* Tx completed */
#define  ISR_RX		(1U<<5)		/* Rx completed */
#define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
#define  ISR_LC		(1U<<0)		/* link status change detected */
#define GMACMAH0	0x0040		/* my own MAC address 47:32 */
#define GMACMAL0	0x0044		/* my own MAC address 31:0 */
#define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
#define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
/* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
#define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
#define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
/* supplimental MAH bit-31: slot in use, no other bit is effective */
#define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
#define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
#define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
#define GMACVTAG	0x001c		/* VLAN tag control */
#define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
#define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
#define  VTAG_INV	(1U<<17)	/* run inverse match logic */
#define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
/* 15:0 concat of PRIO+CFI+VID */
#define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
#define GMACMIISR	0x00d8		/* resolved RGMII/SGMII link status */
#define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
#define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
#define  MIISR_FDX	(1U<<0)		/* fdx detected */

#define GMACLPIS	0x0030		/* LPI control & status */
#define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
#define  LPIS_PLS	(1U<<17)
#define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
#define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
#define GMACLPIC	0x0034		/* LPI timer control */
#define  LPIC_LST	(5)		/* 16:5 ??? */
#define  LPIC_TWT	(0)		/* 15:0 ??? */
/* 0x700-764 Time Stamp control */

#define GMACBMR		0x1000		/* DMA bus mode control */
/* 24    8xPBL multiply by 8 for RPBL & PBL values
 * 23    USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
 * 22:17 RPBL
 * 16    FB fixed burst
 * 15:14 priority between Rx and Tx
 *  3    rxtx ratio 41
 *  2    rxtx ratio 31
 *  1    rxtx ratio 21
 *  0    rxtx ratio 11
 * 13:8  PBL possible DMA burst length
 *  7    ATDS select 32-byte descriptor format for advanced features
 *  6:2	 DSL descriptor skip length, 0 for adjuscent, counted on bus width
 *  0    MAC reset op. self-clear
 */
#define  BMR_RST	(1)		/* reset op. self clear when done */
#define GMACTPD		0x1004		/* write any to resume tdes */
#define GMACRPD		0x1008		/* write any to resume rdes */
#define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
#define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
#define GMACDSR		0x1014		/* DMA status detail report; W1C */
#define GMACDIE		0x101c		/* DMA interrupt enable */
#define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
#define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
#define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
#define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
#define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
#define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
#define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
#define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
#define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
#define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
#define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
#define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
#define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
#define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
#define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
#define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
#define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
#define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
#define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
#define  DMAI_TU	(1U<<2)		/* Tx descriptor not available */
#define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
#define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
#define GMACOMR		0x1018		/* DMA operation mode */
#define  OMR_DT		(1U<<26)	/* don't drop error frames */
#define  OMR_RSF	(1U<<25)	/* 1: Rx store&forward, 0: immed. */
#define  OMR_DFF	(1U<<24)	/* don't flush rx frames on shortage */
#define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
#define  OMR_FTF	(1U<<20)	/* initiate tx FIFO reset, SC */
#define  OMR_TTC	(14)		/* 16:14 Tx threshold */
#define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
#define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
#define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
#define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
#define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
#define GMACEVCS	0x1020		/* missed frame or ovf detected */
#define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
#define GMACAXIB	0x1028		/* AXI bus mode control */
#define GMACAXIS	0x102c		/* AXI status report */
/* 0x1048 current tx desc address */
/* 0x104c current rx desc address */
/* 0x1050 current tx buffer address */
/* 0x1054 current rx buffer address */
#define HWFEA		0x1058		/* DWC feature report */
#define  FEA_EXDESC	(1U<<24)	/* alternative/enhanced desc layout */
#define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
#define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
#define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
#define  FEA_MMC	(1U<<11)	/* RMON event counter */

#define GMACEVCTL	0x0100		/* event counter control */
#define  EVC_FHP	(1U<<5)		/* full-half preset */
#define  EVC_CP		(1U<<4)		/* counter preset */
#define  EVC_MCF	(1U<<3)		/* counter freeze */
#define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
#define  EVC_CSR	(1U<<1)		/* counter stop rollover */
#define  EVC_CR		(1U<<0)		/* reset counters */
#define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */

/* 0x400-4ac L3/L4 control */

/*
 * flash memory layout
 * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
 * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
 * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
 * 0x10 - 13	H2M program length in 4 byte count.
 * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
 * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
 * 0x1c - 13	M2H program length in 4 byte count.
 * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
 * 0x24 - 27	packet program length in 4 byte count.
 *
 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
 */

#define  _BMR		0x00412080	/* NetSec BMR value, magic spell */
/* NetSec uses local RAM to handle GMAC desc arrays */
#define  _RDLA		0x18000
#define  _TDLA		0x1c000
/* lower address region is used for intermediate frame data buffers */

/*
 * all below are software construction.
 */
#define MD_NTXDESC		128
#define MD_NRXDESC		64

#define MD_NTXSEGS		16
#define MD_TXQUEUELEN		8
#define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
#define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
#define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
#define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
#define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)

#define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
#define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)

struct control_data {
	struct tdes cd_txdescs[MD_NTXDESC];
	struct rdes cd_rxdescs[MD_NRXDESC];
};
#define SCX_CDOFF(x)		offsetof(struct control_data, x)
#define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
#define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])

struct scx_txsoft {
	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t txs_dmamap;	/* our DMA map */
	int txs_firstdesc;		/* first descriptor in packet */
	int txs_lastdesc;		/* last descriptor in packet */
	int txs_ndesc;			/* # of descriptors used */
};

struct scx_rxsoft {
	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t rxs_dmamap;	/* our DMA map */
};

struct scx_softc {
	device_t sc_dev;		/* generic device information */
	bus_space_tag_t sc_st;		/* bus space tag */
	bus_space_handle_t sc_sh;	/* bus space handle */
	bus_size_t sc_sz;		/* csr map size */
	bus_space_handle_t sc_eesh;	/* eeprom section handle */
	bus_size_t sc_eesz;		/* eeprom map size */
	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
	struct ethercom sc_ethercom;	/* Ethernet common data */
	struct mii_data sc_mii;		/* MII */
	callout_t sc_callout;		/* PHY monitor callout */
	bus_dma_segment_t sc_seg;	/* descriptor store seg */
	int sc_nseg;			/* descriptor store nseg */
	void *sc_ih;			/* interrupt cookie */
	int sc_phy_id;			/* PHY address */
	int sc_flowflags;		/* 802.3x PAUSE flow control */
	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
	int sc_miigmii;			/* 1: MII/GMII, 0: RGMII */
	int sc_phandle;			/* fdt phandle */
	uint64_t sc_freq;
	uint32_t sc_maxsize;

	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
#define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr

	struct control_data *sc_control_data;
#define sc_txdescs	sc_control_data->cd_txdescs
#define sc_rxdescs	sc_control_data->cd_rxdescs

	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
	int sc_txfree;			/* number of free Tx descriptors */
	int sc_txnext;			/* next ready Tx descriptor */
	int sc_txsfree;			/* number of free Tx jobs */
	int sc_txsnext;			/* next ready Tx job */
	int sc_txsdirty;		/* dirty Tx jobs */
	int sc_rxptr;			/* next ready Rx descriptor/descsoft */

	krndsource_t rnd_source;	/* random source */
#ifdef GMAC_EVENT_COUNTERS
	/* 80 event counters exist */
#endif
};

#define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
#define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))

#define SCX_CDTXSYNC(sc, x, n, ops)					\
do {									\
	int __x, __n;							\
									\
	__x = (x);							\
	__n = (n);							\
									\
	/* If it will wrap around, sync to the end of the ring. */	\
	if ((__x + __n) > MD_NTXDESC) {				\
		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
		    (MD_NTXDESC - __x), (ops));			\
		__n -= (MD_NTXDESC - __x);				\
		__x = 0;						\
	}								\
									\
	/* Now sync whatever is left. */				\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
} while (/*CONSTCOND*/0)

#define SCX_CDRXSYNC(sc, x, ops)					\
do {									\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
} while (/*CONSTCOND*/0)

#define SCX_INIT_RXDESC(sc, x)						\
do {									\
	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
	struct mbuf *__m = __rxs->rxs_mbuf;				\
	bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
	bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
	__m->m_data = __m->m_ext.ext_buf;				\
	__rxd->r3 = htole32(__z - 4);					\
	__rxd->r2 = htole32(BUS_ADDR_LO32(__p));			\
	__rxd->r1 = htole32(BUS_ADDR_HI32(__p));			\
	__rxd->r0 &= htole32(R0_LD);					\
	__rxd->r0 |= htole32(R0_OWN);					\
} while (/*CONSTCOND*/0)

/* memory mapped CSR register access */
#define CSR_READ(sc,off) \
	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
#define CSR_WRITE(sc,off,val) \
	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))

/* flash memory access */
#define EE_READ(sc,off) \
	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))

static int scx_fdt_match(device_t, cfdata_t, void *);
static void scx_fdt_attach(device_t, device_t, void *);
static int scx_acpi_match(device_t, cfdata_t, void *);
static void scx_acpi_attach(device_t, device_t, void *);

CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    scx_fdt_match, scx_fdt_attach, NULL, NULL);

CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    scx_acpi_match, scx_acpi_attach, NULL, NULL);

static void scx_attach_i(struct scx_softc *);
static void scx_reset(struct scx_softc *);
static void scx_stop(struct ifnet *, int);
static int scx_init(struct ifnet *);
static int scx_ioctl(struct ifnet *, u_long, void *);
static void scx_set_rcvfilt(struct scx_softc *);
static void scx_start(struct ifnet *);
static void scx_watchdog(struct ifnet *);
static int scx_intr(void *);
static void txreap(struct scx_softc *);
static void rxfill(struct scx_softc *);
static int add_rxbuf(struct scx_softc *, int);
static void rxdrain(struct scx_softc *sc);
static void mii_statchg(struct ifnet *);
static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int mii_readreg(device_t, int, int, uint16_t *);
static int mii_writereg(device_t, int, int, uint16_t);
static void phy_tick(void *);
static void dump_hwfeature(struct scx_softc *);

static void resetuengine(struct scx_softc *);
static void loaducode(struct scx_softc *);
static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
static void forcephyloopback(struct scx_softc *);
static void resetphytonormal(struct scx_softc *);

static int get_mdioclk(uint32_t);

#define WAIT_FOR_SET(sc, reg, set) \
	wait_for_bits(sc, reg, set, ~0, 0)
#define WAIT_FOR_CLR(sc, reg, clr) \
	wait_for_bits(sc, reg, 0, clr, 0)

static int
wait_for_bits(struct scx_softc *sc, int reg,
    uint32_t set, uint32_t clr, uint32_t fail)
{
	uint32_t val;
	int ntries;

	for (ntries = 0; ntries < 1000; ntries++) {
		val = CSR_READ(sc, reg);
		if ((val & set) || !(val & clr))
			return 0;
		if (val & fail)
			return 1;
		DELAY(1);
	}
	return 1;
}

/* GMAC register indirect access */
static int
mac_read(struct scx_softc *sc, int reg)
{

	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
	return CSR_READ(sc, MACDATA);
}

static void
mac_write(struct scx_softc *sc, int reg, int val)
{

	CSR_WRITE(sc, MACDATA, val);
	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
}

/* dig and decode "clock-frequency" value for a given clkname */
static int
get_clk_freq(int phandle, const char *clkname)
{
	u_int index, n, cells;
	const u_int *p;
	int err, len, resid;
	unsigned int freq = 0;

	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
	if (err == -1)
		return -1;
	p = fdtbus_get_prop(phandle, "clocks", &len);
	if (p == NULL)
		return -1;
	for (n = 0, resid = len; resid > 0; n++) {
		const int cc_phandle =
		    fdtbus_get_phandle_from_native(be32toh(p[0]));
		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
			return -1;
		if (n == index) {
			if (of_getprop_uint32(cc_phandle,
			    "clock-frequency", &freq))
				return -1;
			return freq;
		}
		resid -= (cells + 1) * 4;
		p += (cells + 1) * 4;
	}
	return -1;
}

#define ATTACH_DEBUG 1

static const struct device_compatible_entry compat_data[] = {
	{ .compat = "socionext,synquacer-netsec" },
	DEVICE_COMPAT_EOL
};
static const struct device_compatible_entry compatible[] = {
	{ .compat = "SCX0001" },
	DEVICE_COMPAT_EOL
};

static int
scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
{
	struct fdt_attach_args * const faa = aux;

	return of_compatible_match(faa->faa_phandle, compat_data);
}

static void
scx_fdt_attach(device_t parent, device_t self, void *aux)
{
	struct scx_softc * const sc = device_private(self);
	struct fdt_attach_args * const faa = aux;
	const int phandle = faa->faa_phandle;
	bus_space_handle_t bsh;
	bus_space_handle_t eebsh;
	bus_addr_t addr[2];
	bus_size_t size[2];
	void *intrh;
	char intrstr[128];
	int phy_phandle;
	const char *phy_mode;
	bus_addr_t phy_id;
	long ref_clk;

	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
		aprint_error(": unable to map registers\n");
		return;
	}
	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
		aprint_error(": unable to map device eeprom\n");
		goto fail;
	}
	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
		aprint_error(": failed to decode interrupt\n");
		goto fail;
	}

	phy_mode = fdtbus_get_string(phandle, "phy-mode");
	if (phy_mode == NULL)
		aprint_error(": missing 'phy-mode' property\n");
	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
	if (phy_phandle == -1
	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
		phy_id = MII_PHY_ANY;
	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
	if (ref_clk == -1)
		ref_clk = 250 * 1000 * 1000;

#if ATTACH_DEBUG == 1
aprint_normal("\n");
aprint_normal_dev(self,
    "[FDT] phy mode %s, phy id %d, freq %ld\n",
    phy_mode, (int)phy_id, ref_clk);
aprint_normal("%s", device_xname(self));
#endif

	intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
		NOT_MP_SAFE, scx_intr, sc);
	if (intrh == NULL) {
		aprint_error(": couldn't establish interrupt\n");
		goto fail;
	}
	aprint_normal(" interrupt on %s", intrstr);

	sc->sc_dev = self;
	sc->sc_st = faa->faa_bst;
	sc->sc_sh = bsh;
	sc->sc_sz = size[0];
	sc->sc_eesh = eebsh;
	sc->sc_eesz = size[1];
	sc->sc_ih = intrh;
	sc->sc_dmat = faa->faa_dmat;
	sc->sc_phandle = phandle;
	sc->sc_phy_id = phy_id;
	sc->sc_freq = ref_clk;

	scx_attach_i(sc);

	return;
 fail:
	if (sc->sc_eesz)
		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
	if (sc->sc_sz)
		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
	return;
}

static int
scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
{
	struct acpi_attach_args *aa = aux;

	return acpi_compatible_match(aa, compatible);
}

#define HWFEA_DEBUG 1

static void
scx_acpi_attach(device_t parent, device_t self, void *aux)
{
	struct scx_softc * const sc = device_private(self);
	struct acpi_attach_args * const aa = aux;
	ACPI_HANDLE handle = aa->aa_node->ad_handle;
	bus_space_handle_t bsh, eebsh;
	struct acpi_resources res;
	struct acpi_mem *mem, *mem1;
	struct acpi_irq *irq;
	ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
	ACPI_STATUS rv;
	void *intrh;

	rv = acpi_resource_parse(self, handle, "_CRS",
	    &res, &acpi_resource_parse_ops_default);
	if (ACPI_FAILURE(rv))
		return;
	mem = acpi_res_mem(&res, 0);
	irq = acpi_res_irq(&res, 0);
	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
		aprint_error(": incomplete crs resources\n");
		goto done;
	}
	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
	    &bsh) != 0) {
		aprint_error(": unable to map registers\n");
		goto done;
	}
	mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
	if (mem1 == NULL || mem1->ar_length == 0) {
		aprint_error(": incomplete eeprom resources\n");
		goto fail_0;
	}
	if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
	    &eebsh)) {
		aprint_error(": unable to map device eeprom\n");
		goto fail_0;
	}
	rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
	if (ACPI_FAILURE(rv))
		max_spd = 1000;
	rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
	if (ACPI_FAILURE(rv))
		max_frame = 2048;
	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
	if (ACPI_FAILURE(rv))
		phy_id = MII_PHY_ANY;
	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
			&phy_freq);
	if (ACPI_FAILURE(rv))
		phy_freq = 250 * 1000 * 1000;

#if ATTACH_DEBUG == 1
aprint_normal_dev(self,
    "[ACPI] max-speed %d, phy id %d, freq %ld\n",
    (int)max_spd, (int)phy_id, phy_freq);
aprint_normal("%s", device_xname(self));
#endif

	intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
	    IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
	if (intrh == NULL) {
		aprint_error(": couldn't establish interrupt\n");
		goto fail_1;
	}

	sc->sc_dev = self;
	sc->sc_st = aa->aa_memt;
	sc->sc_sh = bsh;
	sc->sc_sz = mem->ar_length;
	sc->sc_eesh = eebsh;
	sc->sc_eesz = mem1->ar_length;
	sc->sc_ih = intrh;
	sc->sc_dmat =
	    BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
	sc->sc_phy_id = (int)phy_id;
	sc->sc_freq = phy_freq;
	sc->sc_maxsize = max_frame;

	scx_attach_i(sc);
 done:
	acpi_resource_cleanup(&res);
	return;
 fail_1:
	bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
 fail_0:
	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
	acpi_resource_cleanup(&res);
	return;
}

static void
scx_attach_i(struct scx_softc *sc)
{
	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
	struct mii_data * const mii = &sc->sc_mii;
	struct ifmedia * const ifm = &mii->mii_media;
	uint32_t which, dwimp, dwfea;
	uint8_t enaddr[ETHER_ADDR_LEN];
	bus_dma_segment_t seg;
	paddr_t p, q;
	uint32_t csr;
	int i, nseg, error = 0;

	which = CSR_READ(sc, HWVER);	/* Socionext version 5.xx */
	dwimp = mac_read(sc, GMACIMPL);	/* DWC implementation XX.YY */
	dwfea = mac_read(sc, HWFEA);	/* DWC feature bits */

	aprint_naive("\n");
	aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
	    "%x.%x\n", which >> 16, which & 0xffff);

	aprint_normal_dev(sc->sc_dev,
	    "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
	    dwimp & 0xff, dwimp >> 8, dwfea);
	dump_hwfeature(sc);

	/* detected PHY type */
	sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);

	/* fetch MAC address in flash 0:7, stored in big endian order */
	csr = EE_READ(sc, 0x00);
	enaddr[0] = csr >> 24;
	enaddr[1] = csr >> 16;
	enaddr[2] = csr >> 8;
	enaddr[3] = csr;
	csr = EE_READ(sc, 0x04);
	enaddr[4] = csr >> 24;
	enaddr[5] = csr >> 16;
	aprint_normal_dev(sc->sc_dev,
	    "Ethernet address %s\n", ether_sprintf(enaddr));

	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */

	mii->mii_ifp = ifp;
	mii->mii_readreg = mii_readreg;
	mii->mii_writereg = mii_writereg;
	mii->mii_statchg = mii_statchg;

	sc->sc_ethercom.ec_mii = mii;
	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
	    MII_OFFSET_ANY, MIIF_DOPAUSE);
	if (LIST_FIRST(&mii->mii_phys) == NULL) {
		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
	} else
		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */

	/*
	 * Allocate the control data structures, and create and load the
	 * DMA map for it.
	 */
	error = bus_dmamem_alloc(sc->sc_dmat,
	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
	if (error != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to allocate control data, error = %d\n", error);
		goto fail_0;
	}
	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
	    sizeof(struct control_data), (void **)&sc->sc_control_data,
	    BUS_DMA_COHERENT);
	if (error != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to map control data, error = %d\n", error);
		goto fail_1;
	}
	error = bus_dmamap_create(sc->sc_dmat,
	    sizeof(struct control_data), 1,
	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
	if (error != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to create control data DMA map, "
		    "error = %d\n", error);
		goto fail_2;
	}
	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
	if (error != 0) {
		aprint_error_dev(sc->sc_dev,
		    "unable to load control data DMA map, error = %d\n",
		    error);
		goto fail_3;
	}
	for (i = 0; i < MD_TXQUEUELEN; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    MD_NTXSEGS, MCLBYTES, 0, 0,
		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
			aprint_error_dev(sc->sc_dev,
			    "unable to create tx DMA map %d, error = %d\n",
			    i, error);
			goto fail_4;
		}
	}
	for (i = 0; i < MD_NRXDESC; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
			aprint_error_dev(sc->sc_dev,
			    "unable to create rx DMA map %d, error = %d\n",
			    i, error);
			goto fail_5;
		}
		sc->sc_rxsoft[i].rxs_mbuf = NULL;
	}
	sc->sc_seg = seg;
	sc->sc_nseg = nseg;
#if 0
aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
#endif
	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = scx_ioctl;
	ifp->if_start = scx_start;
	ifp->if_watchdog = scx_watchdog;
	ifp->if_init = scx_init;
	ifp->if_stop = scx_stop;
	IFQ_SET_READY(&ifp->if_snd);

	/* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
	/* sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; not yet */

	sc->sc_flowflags = 0; /* track PAUSE flow caps */

	if_attach(ifp);
	if_deferred_start_init(ifp, NULL);
	ether_ifattach(ifp, enaddr);

	callout_init(&sc->sc_callout, 0);
	callout_setfunc(&sc->sc_callout, phy_tick, sc);

	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
	    RND_TYPE_NET, RND_FLAG_DEFAULT);

	resetuengine(sc);
	loaducode(sc);

	/* feed NetSec descriptor array base addresses and timer value */
	p = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
	q = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
	CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p));
	CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p));
	CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q));
	CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q));
	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
	CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);

	forcephyloopback(sc);/* make PHY loopback mode for uengine init */

	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* pre-cautional W1C */
	CSR_WRITE(sc, CORESTAT, 0);	  /* start uengine to reprogram */
	error = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE);
	if (error) {
		aprint_error_dev(sc->sc_dev, "uengine start failed\n");
	}
	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* W1C load complete report */

	resetphytonormal(sc); /* take back PHY to normal mode */

	CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS);
	CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */
	error = WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE);
	if (error) {
		aprint_error_dev(sc->sc_dev, "uengine mode change failed\n");
	}

	CSR_WRITE(sc, TXISR, ~0);	/* clear pending emtpry/error irq */
	CSR_WRITE(sc, xINTAE_CLR, ~0);	/* disable tx / rx interrupts */

	return;

  fail_5:
	for (i = 0; i < MD_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_rxsoft[i].rxs_dmamap);
	}
  fail_4:
	for (i = 0; i < MD_TXQUEUELEN; i++) {
		if (sc->sc_txsoft[i].txs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_txsoft[i].txs_dmamap);
	}
	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
  fail_3:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
  fail_2:
	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
	    sizeof(struct control_data));
  fail_1:
	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
  fail_0:
	if (sc->sc_phandle)
		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
	else
		acpi_intr_disestablish(sc->sc_ih);
	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
	return;
}

static void
scx_reset(struct scx_softc *sc)
{
	int loop = 0, busy;

	mac_write(sc, GMACOMR, 0);
	mac_write(sc, GMACBMR, BMR_RST);
	do {
		DELAY(1);
		busy = mac_read(sc, GMACBMR) & BMR_RST;
	} while (++loop < 3000 && busy);
	mac_write(sc, GMACBMR, _BMR);
	mac_write(sc, GMACAFR, 0);
}

static void
scx_stop(struct ifnet *ifp, int disable)
{
	struct scx_softc *sc = ifp->if_softc;
	uint32_t csr;

	/* Stop the one second clock. */
	callout_stop(&sc->sc_callout);

	/* Down the MII. */
	mii_down(&sc->sc_mii);

	/* Mark the interface down and cancel the watchdog timer. */
	ifp->if_flags &= ~IFF_RUNNING;
	ifp->if_timer = 0;

	CSR_WRITE(sc, RXIE_CLR, ~0);
	CSR_WRITE(sc, TXIE_CLR, ~0);
	CSR_WRITE(sc, xINTAE_CLR, ~0);
	CSR_WRITE(sc, TXISR, ~0);
	CSR_WRITE(sc, RXISR, ~0);

	csr = mac_read(sc, GMACOMR);
	mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST));
}

static int
scx_init(struct ifnet *ifp)
{
	struct scx_softc *sc = ifp->if_softc;
	const uint8_t *ea = CLLADDR(ifp->if_sadl);
	uint32_t csr;
	int i, error;

	/* Cancel pending I/O. */
	scx_stop(ifp, 0);

	/* Reset the chip to a known state. */
	scx_reset(sc);

	/* build sane Tx */
	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
	sc->sc_txdescs[MD_NTXDESC - 1].t0 = htole32(T0_LD); /* tie off */
	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	sc->sc_txfree = MD_NTXDESC;
	sc->sc_txnext = 0;
	for (i = 0; i < MD_TXQUEUELEN; i++)
		sc->sc_txsoft[i].txs_mbuf = NULL;
	sc->sc_txsfree = MD_TXQUEUELEN;
	sc->sc_txsnext = 0;
	sc->sc_txsdirty = 0;

	/* load Rx descriptors with fresh mbuf */
	for (i = 0; i < MD_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
			if ((error = add_rxbuf(sc, i)) != 0) {
				aprint_error_dev(sc->sc_dev,
				    "unable to allocate or map rx "
				    "buffer %d, error = %d\n",
				    i, error);
				rxdrain(sc);
				goto out;
			}
		}
		else
			SCX_INIT_RXDESC(sc, i);
	}
	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = htole32(R0_LD); /* tie off */
	sc->sc_rxptr = 0;

	/* set my address in perfect match slot 0. little endian order */
	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
	mac_write(sc, GMACMAL0, csr);
	csr = (ea[5] << 8) | ea[4];
	mac_write(sc, GMACMAH0, csr);

	/* accept multicast frame or run promisc mode */
	scx_set_rcvfilt(sc);

	/* set current media */
	if ((error = ether_mediachange(ifp)) != 0)
		goto out;

	CSR_WRITE(sc, DESC_SRST, 01);
	WAIT_FOR_CLR(sc, DESC_SRST, 01);

	CSR_WRITE(sc, DESC_INIT, 01);
	WAIT_FOR_CLR(sc, DESC_INIT, 01);

	/* feed local memory descriptor array base addresses */
	mac_write(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
	mac_write(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */

	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */

	CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII);

	CSR_WRITE(sc, RXCOALESC, 8);		/* Rx coalesce bound */
	CSR_WRITE(sc, TXCOALESC, 8);		/* Tx coalesce bound */
	CSR_WRITE(sc, RCLSCTIME, 500);		/* Rx co. guard time usec */
	CSR_WRITE(sc, TCLSCTIME, 500);		/* Tx co. guard time usec */

	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
#if 1
	/* clear event counters, auto-zero after every read */
	mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
#endif
	/* kick to start GMAC engine */
	csr = mac_read(sc, GMACOMR);
	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);

	ifp->if_flags |= IFF_RUNNING;

	/* start one second timer */
	callout_schedule(&sc->sc_callout, hz);
 out:
	return error;
}

static int
scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
	struct scx_softc *sc = ifp->if_softc;
	struct ifreq *ifr = (struct ifreq *)data;
	struct ifmedia *ifm = &sc->sc_mii.mii_media;
	int s, error;

	s = splnet();

	switch (cmd) {
	case SIOCSIFMEDIA:
		/* Flow control requires full-duplex mode. */
		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
		    (ifr->ifr_media & IFM_FDX) == 0)
			ifr->ifr_media &= ~IFM_ETH_FMASK;
		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
				/* We can do both TXPAUSE and RXPAUSE. */
				ifr->ifr_media |=
				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
			}
			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
		}
		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
		break;
	default:
		error = ether_ioctl(ifp, cmd, data);
		if (error != ENETRESET)
			break;
		error = 0;
		if (cmd == SIOCSIFCAP)
			error = if_init(ifp);
		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
			;
		else if (ifp->if_flags & IFF_RUNNING) {
			/*
			 * Multicast list has changed; set the hardware filter
			 * accordingly.
			 */
			scx_set_rcvfilt(sc);
		}
		break;
	}

	splx(s);
	return error;
}

static uint32_t
bit_reverse_32(uint32_t x)
{
	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
	return (x >> 16) | (x << 16);
}

#define MCAST_DEBUG 0

static void
scx_set_rcvfilt(struct scx_softc *sc)
{
	struct ethercom * const ec = &sc->sc_ethercom;
	struct ifnet * const ifp = &ec->ec_if;
	struct ether_multistep step;
	struct ether_multi *enm;
	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
	uint32_t csr, crc;
	int i;

	csr = mac_read(sc, GMACAFR);
	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
	mac_write(sc, GMACAFR, csr);

	/* clear 15 entry supplemental perfect match filter */
	for (i = 1; i < 16; i++)
		 mac_write(sc, GMACMAH(i), 0);
	/* build 64 bit multicast hash filter */
	crc = mchash[1] = mchash[0] = 0;

	ETHER_LOCK(ec);
	if (ifp->if_flags & IFF_PROMISC) {
		ec->ec_flags |= ETHER_F_ALLMULTI;
		ETHER_UNLOCK(ec);
		/* run promisc. mode */
		csr |= AFR_PR;
		goto update;
	}
	ec->ec_flags &= ~ETHER_F_ALLMULTI;
	ETHER_FIRST_MULTI(step, ec, enm);
	i = 1; /* slot 0 is occupied */
	while (enm != NULL) {
		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
			/*
			 * We must listen to a range of multicast addresses.
			 * For now, just accept all multicasts, rather than
			 * trying to set only those filter bits needed to match
			 * the range.  (At this time, the only use of address
			 * ranges is for IP multicast routing, for which the
			 * range is big enough to require all bits set.)
			 */
			ec->ec_flags |= ETHER_F_ALLMULTI;
			ETHER_UNLOCK(ec);
			/* accept all multi */
			csr |= AFR_PM;
			goto update;
		}
#if MCAST_DEBUG == 1
aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
#endif
		if (i < 16) {
			/* use 15 entry perfect match filter */
			uint32_t addr;
			uint8_t *ep = enm->enm_addrlo;
			addr = (ep[3] << 24) | (ep[2] << 16)
			     | (ep[1] <<  8) |  ep[0];
			mac_write(sc, GMACMAL(i), addr);
			addr = (ep[5] << 8) | ep[4];
			mac_write(sc, GMACMAH(i), addr | 1U<<31);
		} else {
			/* use hash table when too many */
			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
			crc = bit_reverse_32(~crc);
			/* 1(31) 5(30:26) bit sampling */
			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
		}
		ETHER_NEXT_MULTI(step, enm);
		i++;
	}
	ETHER_UNLOCK(ec);
	if (crc)
		csr |= AFR_MHTE; /* use mchash[] */
	csr |= AFR_HPF; /* use perfect match as well */
 update:
	mac_write(sc, GMACMHTH, mchash[1]);
	mac_write(sc, GMACMHTL, mchash[0]);
	mac_write(sc, GMACAFR, csr);
	return;
}

static void
scx_start(struct ifnet *ifp)
{
	struct scx_softc *sc = ifp->if_softc;
	struct mbuf *m0;
	struct scx_txsoft *txs;
	bus_dmamap_t dmamap;
	int error, nexttx, lasttx, ofree, seg;
	uint32_t tdes0;

	if ((ifp->if_flags & IFF_RUNNING) == 0)
		return;

	/* Remember the previous number of free descriptors. */
	ofree = sc->sc_txfree;
	/*
	 * Loop through the send queue, setting up transmit descriptors
	 * until we drain the queue, or use up all available transmit
	 * descriptors.
	 */
	for (;;) {
		IFQ_POLL(&ifp->if_snd, m0);
		if (m0 == NULL)
			break;
		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
			txreap(sc);
			if (sc->sc_txsfree == 0)
				break;
		}
		txs = &sc->sc_txsoft[sc->sc_txsnext];
		dmamap = txs->txs_dmamap;
		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
		if (error) {
			if (error == EFBIG) {
				aprint_error_dev(sc->sc_dev,
				    "Tx packet consumes too many "
				    "DMA segments, dropping...\n");
				IFQ_DEQUEUE(&ifp->if_snd, m0);
				m_freem(m0);
				if_statinc_ref(ifp, if_oerrors);
				continue;
			}
			/* Short on resources, just stop for now. */
			break;
		}
		if (dmamap->dm_nsegs > sc->sc_txfree) {
			/*
			 * Not enough free descriptors to transmit this
			 * packet.  We haven't committed anything yet,
			 * so just unload the DMA map, put the packet
			 * back on the queue, and punt.
			 */
			bus_dmamap_unload(sc->sc_dmat, dmamap);
			break;
		}

		IFQ_DEQUEUE(&ifp->if_snd, m0);
		/*
		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
		 */
		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
		    BUS_DMASYNC_PREWRITE);

		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
		lasttx = -1;
		for (nexttx = sc->sc_txnext, seg = 0;
		     seg < dmamap->dm_nsegs;
		     seg++, nexttx = MD_NEXTTX(nexttx)) {
			struct tdes *tdes = &sc->sc_txdescs[nexttx];
			bus_addr_t p = dmamap->dm_segs[seg].ds_addr;
			bus_size_t z = dmamap->dm_segs[seg].ds_len;
			/*
			 * If this is the first descriptor we're
			 * enqueueing, don't set the OWN bit just
			 * yet.	 That could cause a race condition.
			 * We'll do it below.
			 */
			tdes->t3 = htole32(z);
			tdes->t2 = htole32(BUS_ADDR_LO32(p));
			tdes->t1 = htole32(BUS_ADDR_HI32(p));
			tdes->t0 &= htole32(T0_LD);
			tdes->t0 |= htole32(tdes0 |
					(15 << T0_TDRID) | T0_PT |
					sc->sc_t0cotso | T0_TRS);
			tdes0 = T0_OWN; /* 2nd and other segments */
			/* NB; t0 DRID field contains zero */
			lasttx = nexttx;
		}

		/* HW lacks of per-frame xmit done interrupt control */

		/* Write deferred 1st segment T0_OWN at the final stage */
		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		/* submit one frame to xmit */
		CSR_WRITE(sc, TXSUBMIT, 1);

		txs->txs_mbuf = m0;
		txs->txs_firstdesc = sc->sc_txnext;
		txs->txs_lastdesc = lasttx;
		txs->txs_ndesc = dmamap->dm_nsegs;
		sc->sc_txfree -= txs->txs_ndesc;
		sc->sc_txnext = nexttx;
		sc->sc_txsfree--;
		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
		/*
		 * Pass the packet to any BPF listeners.
		 */
		bpf_mtap(ifp, m0, BPF_D_OUT);
	}
	if (sc->sc_txfree != ofree) {
		/* Set a watchdog timer in case the chip flakes out. */
		ifp->if_timer = 5;
	}
}

#define EVENT_DEBUG 1

static void
scx_watchdog(struct ifnet *ifp)
{
	struct scx_softc *sc = ifp->if_softc;

	/*
	 * Since we're not interrupting every packet, sweep
	 * up before we report an error.
	 */
	txreap(sc);

	if (sc->sc_txfree != MD_NTXDESC) {
		aprint_error_dev(sc->sc_dev,
		    "device timeout (txfree %d txsfree %d txnext %d)\n",
		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
		if_statinc(ifp, if_oerrors);
#if EVENT_DEBUG == 1
aprint_error_dev(sc->sc_dev,
    "tx frames %d, octects %d, bcast %d, mcast %d\n",
    mac_read(sc, GMACEVCNT(1)),
    mac_read(sc, GMACEVCNT(0)),
    mac_read(sc, GMACEVCNT(2)),
    mac_read(sc, GMACEVCNT(3)));
aprint_error_dev(sc->sc_dev,
    "rx frames %d, octects %d, bcast %d, mcast %d\n",
    mac_read(sc, GMACEVCNT(27)),
    mac_read(sc, GMACEVCNT(28)),
    mac_read(sc, GMACEVCNT(30)),
    mac_read(sc, GMACEVCNT(31)));
aprint_error_dev(sc->sc_dev,
    "current tdes addr %x, buf addr %x\n",
    mac_read(sc, 0x1048), mac_read(sc, 0x1050));
aprint_error_dev(sc->sc_dev,
    "current rdes addr %x, buf addr %x\n",
    mac_read(sc, 0x104c), mac_read(sc, 0x1054));
#endif
		/* Reset the interface. */
		scx_init(ifp);
	}

	scx_start(ifp);
}

static int
scx_intr(void *arg)
{
	struct scx_softc *sc = arg;
	uint32_t enable, status;

	status = CSR_READ(sc, xINTSR); /* not W1C */
	enable = CSR_READ(sc, xINTAEN);
	if ((status & enable) == 0)
		return 0;
	if (status & (IRQ_TX | IRQ_RX)) {
		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));

		status = CSR_READ(sc, RXISR);
		CSR_WRITE(sc, RXISR, status);
		if (status & RXI_RC_ERR)
			aprint_error_dev(sc->sc_dev, "Rx error\n");
		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
			rxfill(sc);
			(void)CSR_READ(sc, RXAVAILCNT); /* clear IRQ_RX ? */
		}

		status = CSR_READ(sc, TXISR);
		CSR_WRITE(sc, TXISR, status);
		if (status & TXI_TR_ERR)
			aprint_error_dev(sc->sc_dev, "Tx error\n");
		if (status & (TXI_TXDONE | TXI_TMREXP)) {
			txreap(sc);
			(void)CSR_READ(sc, TXDONECNT); /* clear IRQ_TX ? */
		}

		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
	}
	return 1;
}

static void
txreap(struct scx_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct scx_txsoft *txs;
	uint32_t txstat;
	int i;

	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
		txs = &sc->sc_txsoft[i];

		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
		if (txstat & T0_OWN) /* desc is still in use */
			break;

		/* There is no way to tell transmission status per frame */

		if_statinc(ifp, if_opackets);

		sc->sc_txfree += txs->txs_ndesc;
		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
		m_freem(txs->txs_mbuf);
		txs->txs_mbuf = NULL;
	}
	sc->sc_txsdirty = i;
	if (sc->sc_txsfree == MD_TXQUEUELEN)
		ifp->if_timer = 0;
}

static void
rxfill(struct scx_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct scx_rxsoft *rxs;
	struct mbuf *m;
	uint32_t rxstat, rlen;
	int i;

	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
		SCX_CDRXSYNC(sc, i,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		rxstat = le32toh(sc->sc_rxdescs[i].r0);
		if (rxstat & R0_OWN) /* desc is left empty */
			break;

		/* received frame length in R3 31:16 */
		rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16;

		/* R0_FS | R0_LS must have been marked for this desc */
		rxs = &sc->sc_rxsoft[i];
		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);

		/* dispense new storage to receive frame */
		m = rxs->rxs_mbuf;
		if (add_rxbuf(sc, i) != 0) {
			if_statinc(ifp, if_ierrors);	/* resource shortage */
			SCX_INIT_RXDESC(sc, i);		/* then reuse */
			bus_dmamap_sync(sc->sc_dmat,
			    rxs->rxs_dmamap, 0,
			    rxs->rxs_dmamap->dm_mapsize,
			    BUS_DMASYNC_PREREAD);
			continue;
		}
		/* complete mbuf */
		m_set_rcvif(m, ifp);
		m->m_pkthdr.len = m->m_len = rlen;
		m->m_flags |= M_HASFCS;
		if (rxstat & R0_CSUM) {
			uint32_t csum = M_CSUM_IPv4;
			if (rxstat & R0_CERR)
				csum |= M_CSUM_IPv4_BAD;
			m->m_pkthdr.csum_flags |= csum;
		}
		/* and pass to upper layer */
		if_percpuq_enqueue(ifp->if_percpuq, m);
	}
	sc->sc_rxptr = i;
}

static int
add_rxbuf(struct scx_softc *sc, int i)
{
	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
	struct mbuf *m;
	int error;

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL)
		return ENOBUFS;
	MCLGET(m, M_DONTWAIT);
	if ((m->m_flags & M_EXT) == 0) {
		m_freem(m);
		return ENOBUFS;
	}
	if (rxs->rxs_mbuf != NULL)
		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
	rxs->rxs_mbuf = m;
	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "can't load rx DMA map %d, error = %d\n", i, error);
		panic("add_rxbuf");
	}
	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
	SCX_INIT_RXDESC(sc, i);

	return 0;
}

static void
rxdrain(struct scx_softc *sc)
{
	struct scx_rxsoft *rxs;
	int i;

	for (i = 0; i < MD_NRXDESC; i++) {
		rxs = &sc->sc_rxsoft[i];
		if (rxs->rxs_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
			m_freem(rxs->rxs_mbuf);
			rxs->rxs_mbuf = NULL;
		}
	}
}

#define LINK_DEBUG 0

static void
mii_statchg(struct ifnet *ifp)
{
	struct scx_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;
	const int Mbps[4] = { 10, 100, 1000, 0 };
	uint32_t miisr, mcr, fcr;
	int spd;

	/* decode MIISR register value */
	miisr = mac_read(sc, GMACMIISR);
	spd = Mbps[(miisr & MIISR_SPD) >> 1];
#if LINK_DEBUG == 1
	static uint32_t oldmiisr = 0;
	if (miisr != oldmiisr) {
		printf("MII link status (0x%x) %s",
		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
		if (miisr & MIISR_LUP) {
			printf(" spd%d", spd);
			if (miisr & MIISR_FDX)
				printf(",full-duplex");
		}
		printf("\n");
	}
#endif
	/* Get flow control negotiation result. */
	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;

	/* Adjust speed 1000/100/10. */
	mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
	if (sc->sc_miigmii) {
		if (spd != 1000)
			mcr |= MCR_PS;
	} else {
		if (spd == 100)
			mcr |= MCR_FES;
	}
	mcr |= MCR_CST | MCR_JE;
	if (sc->sc_miigmii == 0)
		mcr |= MCR_IBN;

	/* Adjust duplexity and PAUSE flow control. */
	mcr &= ~MCR_USEFDX;
	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
	if (miisr & MIISR_FDX) {
		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
			fcr |= FCR_TFE;
		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
			fcr |= FCR_RFE;
		mcr |= MCR_USEFDX;
	}
	mac_write(sc, GMACMCR, mcr);
	mac_write(sc, GMACFCR, fcr);
#if LINK_DEBUG == 1
	if (miisr != oldmiisr) {
		printf("%ctxfe, %crxfe\n",
		    (fcr & FCR_TFE) ? '+' : '-',
		    (fcr & FCR_RFE) ? '+' : '-');
	}
	oldmiisr = miisr;
#endif
}

static void
scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct scx_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;

	mii_pollstat(mii);
	ifmr->ifm_status = mii->mii_media_status;
	ifmr->ifm_active = sc->sc_flowflags |
	    (mii->mii_media_active & ~IFM_ETH_FMASK);
}

static int
mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
	struct scx_softc *sc = device_private(self);
	uint32_t miia;
	int ntries;

	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
	mac_write(sc, GMACGAR, miia | GAR_BUSY);
	for (ntries = 0; ntries < 1000; ntries++) {
		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
			goto unbusy;
		DELAY(1);
	}
	return ETIMEDOUT;
 unbusy:
	*val = mac_read(sc, GMACGDR);
	return 0;
}

static int
mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
	struct scx_softc *sc = device_private(self);
	uint32_t miia;
	uint16_t dummy;
	int ntries;

	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
	mac_write(sc, GMACGDR, val);
	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
	for (ntries = 0; ntries < 1000; ntries++) {
		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
			goto unbusy;
		DELAY(1);
	}
	return ETIMEDOUT;	
  unbusy:
	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
	return 0;
}

static void
phy_tick(void *arg)
{
	struct scx_softc *sc = arg;
	struct mii_data *mii = &sc->sc_mii;
	int s;

	s = splnet();
	mii_tick(mii);
	splx(s);
#ifdef GMAC_EVENT_COUNTERS
	/* 80 event counters exist */
#endif
	callout_schedule(&sc->sc_callout, hz);
}

static void
resetuengine(struct scx_softc *sc)
{

	if (CSR_READ(sc, CORESTAT) == 0) {
		/* make sure to stop */
		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP);
		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP);
	}
	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS));
}

#define UCODE_DEBUG 0

/*
 * 3 independent uengines exist to process host2media, media2host and
 * packet data flows.
 */
static void
loaducode(struct scx_softc *sc)
{
	uint32_t up, lo, sz;
	uint64_t addr;

	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
	sz = EE_READ(sc, 0x10); /* H->M ucode size */
	sz *= 4;
	addr = ((uint64_t)up << 32) | lo;
	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
#if UCODE_DEBUG == 1
aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
#endif

	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
	sz *= 4;
	addr = ((uint64_t)up << 32) | lo;
	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
#if UCODE_DEBUG == 1
aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
#endif

	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
	sz = EE_READ(sc, 0x24); /* PKT ucode size */
	sz *= 4;
	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
#if UCODE_DEBUG == 1
aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
#endif
}

static void
injectucode(struct scx_softc *sc, int port,
	bus_addr_t addr, bus_size_t size)
{
	bus_space_handle_t bsh;
	bus_size_t off;
	uint32_t ucode;

	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
		aprint_error_dev(sc->sc_dev,
		    "eeprom map failure for ucode port 0x%x\n", port);
		return;
	}
	for (off = 0; off < size; off += 4) {
		ucode = bus_space_read_4(sc->sc_st, bsh, off);
		CSR_WRITE(sc, port, ucode);
	}
	bus_space_unmap(sc->sc_st, bsh, size);
}

static void
forcephyloopback(struct scx_softc *sc)
{
	struct device *d = sc->sc_dev;
	uint16_t val;
	int loop, err;

	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
	if (err) {
		aprint_error_dev(d, "forcephyloopback() failed\n");
		return;
	}
	if (val & BMCR_PDOWN)
		val &=  ~BMCR_PDOWN;
	val |= BMCR_ISO;
	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
	loop = 100;
	do {
		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
	} while (loop-- > 0 && (val & (BMCR_PDOWN | BMCR_ISO)) != 0);
	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_LOOP);
	loop = 100;
	do {
		(void)mii_readreg(d, sc->sc_phy_id, MII_BMSR, &val);
	} while (loop-- > 0 && (val & BMSR_LINK) != 0);
}

static void
resetphytonormal(struct scx_softc *sc)
{
	struct device *d = sc->sc_dev;
	uint16_t val;
	int loop, err;

	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
	if (err) {
		aprint_error_dev(d, "resetphytonormal() failed\n");
	}
	val &= ~BMCR_LOOP;
	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
	loop = 100;
	do {
		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
	} while (loop-- > 0 && (val & BMCR_LOOP) != 0);
	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_RESET);
	loop = 100;
	do {
		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
	} while (loop-- > 0 && (val & BMCR_RESET) != 0);
}

/* GAR 5:2 MDIO frequency selection */
static int
get_mdioclk(uint32_t freq)
{

	freq /= 1000 * 1000;
	if (freq < 35)
		return GAR_MDIO_25_35MHZ;
	if (freq < 60)
		return GAR_MDIO_35_60MHZ;
	if (freq < 100)
		return GAR_MDIO_60_100MHZ;
	if (freq < 150)
		return GAR_MDIO_100_150MHZ;
	if (freq < 250)
		return GAR_MDIO_150_250MHZ;
	return GAR_MDIO_250_300MHZ;
}

#define HWFEA_DEBUG 1

static void
dump_hwfeature(struct scx_softc *sc)
{
#if HWFEA_DEBUG == 1
	struct {
		uint32_t bit;
		const char *des;
	} field[] = {
		{ 27, "SA/VLAN insertion replacement enabled" },
		{ 26, "flexible PPS enabled" },
		{ 25, "time stamping with internal system enabled" },
		{ 24, "alternate/enhanced descriptor enabled" },
		{ 19, "rx FIFO >2048 enabled" },
		{ 18, "type 2 IP checksum offload enabled" },
		{ 17, "type 1 IP checksum offload enabled" },
		{ 16, "Tx checksum offload enabled" },
		{ 15, "AV feature enabled" },
		{ 14, "EEE energy save feature enabled" },
		{ 13, "1588-2008 version 2 advanced feature enabled" },
		{ 12, "only 1588-2002 version 1 feature enabled" },
		{ 11, "RMON event counter enabled" },
		{ 10, "PMT magic packet enabled" },
		{ 9,  "PMT remote wakeup enabled" },
		{ 8,  "MDIO enabled", },
		{ 7,  "L3/L4 filter enabled" },
		{ 6,  "TBI/SGMII/RTBI support enabled" },
		{ 5,  "supplimental MAC address enabled" },
		{ 4,  "receive hash filter enabled" },
		{ 3,  "hash size is expanded" },
		{ 2,  "Half Duplex enabled" },
		{ 1,  "1000 Mbps enabled" },
		{ 0,  "10/100 Mbps enabled" },
	};
	const char *nameofmii[] = {
		"GMII or MII",
		"RGMII",
		"SGMII",
		"TBI",
		"RMII",
		"RTBI",
		"SMII",
		"RevMII"
	};
	uint32_t hwfea, mtype, txchan, rxchan;

	hwfea = CSR_READ(sc, HWFEA);
	mtype = (hwfea & __BITS(30,28)) >> 28;
	aprint_normal("HWFEA 0x%08x\n", hwfea);
	aprint_normal("%s <30:28>\n", nameofmii[mtype]);
	for (unsigned i = 0; i < __arraycount(field); i++) {
		if ((hwfea & (1U << field[i].bit)) == 0)
			continue;
		aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
	}
	if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
		aprint_normal("+%d tx channel available <23,22>\n", txchan);
	if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
		aprint_normal("+%d rx channel available <21:20>\n", rxchan);
	return;
#endif
}