Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*	$NetBSD: armadaxp_machdep.c,v 1.19 2023/04/21 15:04:47 skrll Exp $	*/
/*******************************************************************************
Copyright (C) Marvell International Ltd. and its affiliates

Developed by Semihalf

********************************************************************************
Marvell BSD License

If you received this File from Marvell, you may opt to use, redistribute and/or
modify this File under the following licensing terms.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    *   Redistributions of source code must retain the above copyright notice,
            this list of conditions and the following disclaimer.

    *   Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

    *   Neither the name of Marvell nor the names of its contributors may be
        used to endorse or promote products derived from this software without
        specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*******************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: armadaxp_machdep.c,v 1.19 2023/04/21 15:04:47 skrll Exp $");

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_machdep.h"
#include "opt_mvsoc.h"
#include "opt_evbarm_boardtype.h"
#include "opt_com.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pci.h"

#include <sys/bus.h>
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>

#include <uvm/uvm_extern.h>

#include <sys/conf.h>
#include <dev/cons.h>
#include <dev/md.h>

#include <dev/marvell/marvellreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/pci_machdep.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif

#include <machine/bootconfig.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/armreg.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/marvell/mvsocreg.h>
#include <arm/marvell/mvsocvar.h>
#include <arm/marvell/armadaxpreg.h>

#include <evbarm/marvell/marvellreg.h>
#include <evbarm/marvell/marvellvar.h>
#include <dev/marvell/marvellreg.h>

#include "mvpex.h"
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#include <net/if_ether.h>

/*
 * Address to call from cpu_reset() to reset the machine.
 * This is machine architecture dependent as it varies depending
 * on where the ROM appears when you turn the MMU off.
 */

BootConfig bootconfig;		/* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;

/*
 * U-Boot argument buffer
 */
extern unsigned int uboot_regs_pa[]; /* saved r0, r1, r2, r3 */
unsigned int *uboot_regs_va;
char boot_argbuf[MAX_BOOT_STRING];

extern int KERNEL_BASE_phys[];

/*
 * Put some bogus settings of the MEMSTART and MEMSIZE
 * if they are not defined in kernel configuration file.
 */
#ifndef MEMSTART
#define MEMSTART 0x00000000UL
#endif
#ifndef MEMSIZE
#define MEMSIZE 0x40000000UL
#endif

#ifndef STARTUP_PAGETABLE_ADDR
#define	STARTUP_PAGETABLE_ADDR 0x00000000UL
#endif

/* Physical offset of the kernel from MEMSTART */
#define KERNEL_OFFSET		(paddr_t)&KERNEL_BASE_phys
/* Kernel base virtual address */
#define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)

#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x40000000)
#define KERNEL_VM_SIZE		0x14000000

void consinit(void);
#ifdef KGDB
static void kgdb_port_init(void);
#endif

static void axp_device_register(device_t dev, void *aux);

static void
axp_system_reset(void)
{
	extern vaddr_t misc_base;

#define write_miscreg(r, v)	(*(volatile uint32_t *)(misc_base + (r)) = (v))

	cpu_reset_address = 0;

	/* Unmask soft reset */
	write_miscreg(ARMADAXP_MISC_RSTOUTNMASKR,
	    ARMADAXP_MISC_RSTOUTNMASKR_GLOBALSOFTRSTOUTEN);
	/* Assert soft reset */
	write_miscreg(ARMADAXP_MISC_SSRR, ARMADAXP_MISC_SSRR_GLOBALSOFTRST);

	while (1);
}

/*
 * Static device mappings. These peripheral registers are mapped at
 * fixed virtual addresses very early in initarm() so that we can use
 * them while booting the kernel, and stay at the same address
 * throughout whole kernel's life time.
 *
 * We use this table twice; once with bootstrap page table, and once
 * with kernel's page table which we build up in initarm().
 *
 * Since we map these registers into the bootstrap page table using
 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
 * registers segment-aligned and segment-rounded in order to avoid
 * using the 2nd page tables.
 */

static const struct pmap_devmap devmap[] = {
	DEVMAP_ENTRY(MARVELL_INTERREGS_VBASE,
		     MARVELL_INTERREGS_PBASE,
		     MVSOC_INTERREGS_SIZE),
	DEVMAP_ENTRY_END
};

static inline pd_entry_t *
read_ttb(void)
{
	return (pd_entry_t *)(armreg_ttbr_read() & ~((1<<14)-1));
}

static int
axp_pcie_free_win(void)
{
	/* Find first disabled window */
	for (size_t i = 0; i < ARMADAXP_MLMB_NWINDOW; i++) {
		if ((read_mlmbreg(MVSOC_MLMB_WCR(i)) &
		    MVSOC_MLMB_WCR_WINEN) == 0) {
			return i;
		}
	}
	/* If there is no free window, return erroneous value */
	return (-1);
}

static void
reset_axp_pcie_win(void)
{
	uint32_t target, attr;
	int memtag = 0, iotag = 0, window, i;
	uint32_t membase;
	uint32_t iobase;
	uint32_t tags[] = { ARMADAXP_TAG_PEX00_MEM, ARMADAXP_TAG_PEX00_IO,
			    ARMADAXP_TAG_PEX01_MEM, ARMADAXP_TAG_PEX01_IO,
			    ARMADAXP_TAG_PEX02_MEM, ARMADAXP_TAG_PEX02_IO,
			    ARMADAXP_TAG_PEX03_MEM, ARMADAXP_TAG_PEX03_IO,
			    ARMADAXP_TAG_PEX10_MEM, ARMADAXP_TAG_PEX10_IO,
			    ARMADAXP_TAG_PEX11_MEM, ARMADAXP_TAG_PEX11_IO,
			    ARMADAXP_TAG_PEX12_MEM, ARMADAXP_TAG_PEX12_IO,
			    ARMADAXP_TAG_PEX13_MEM, ARMADAXP_TAG_PEX13_IO,
			    ARMADAXP_TAG_PEX2_MEM, ARMADAXP_TAG_PEX2_IO,
			    ARMADAXP_TAG_PEX3_MEM, ARMADAXP_TAG_PEX3_IO
			};

	nwindow = ARMADAXP_MLMB_NWINDOW;
	nremap = ARMADAXP_MLMB_NREMAP;
	membase = MARVELL_PEXMEM_PBASE;
	iobase = MARVELL_PEXIO_PBASE;
	for (i = 0; i < __arraycount(tags) / 2; i++) {
		memtag = tags[2 * i];
		iotag = tags[(2 * i) + 1];

		/* Reset PCI-Express space to window register. */
		window = mvsoc_target(memtag, &target, &attr, NULL, NULL);

		/* Find free window if we've got spurious one */
		if (window >= nwindow) {
			window = axp_pcie_free_win();
			/* Just break if there is no free windows left */
			if (window < 0) {
				aprint_error(": no free windows for PEX MEM\n");
				break;
			}
		}
		write_mlmbreg(MVSOC_MLMB_WCR(window),
		    MVSOC_MLMB_WCR_WINEN |
		    MVSOC_MLMB_WCR_TARGET(target) |
		    MVSOC_MLMB_WCR_ATTR(attr) |
		    MVSOC_MLMB_WCR_SIZE(MARVELL_PEXMEM_SIZE));
		write_mlmbreg(MVSOC_MLMB_WBR(window),
		    membase & MVSOC_MLMB_WBR_BASE_MASK);
#ifdef PCI_NETBSD_CONFIGURE
		if (window < nremap) {
			write_mlmbreg(MVSOC_MLMB_WRLR(window),
			    membase & MVSOC_MLMB_WRLR_REMAP_MASK);
			write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
		}
#endif
		window = mvsoc_target(iotag, &target, &attr, NULL, NULL);

		/* Find free window if we've got spurious one */
		if (window >= nwindow) {
			window = axp_pcie_free_win();
			/* Just break if there is no free windows left */
			if (window < 0) {
				aprint_error(": no free windows for PEX I/O\n");
				break;
			}
		}
		write_mlmbreg(MVSOC_MLMB_WCR(window),
		    MVSOC_MLMB_WCR_WINEN |
		    MVSOC_MLMB_WCR_TARGET(target) |
		    MVSOC_MLMB_WCR_ATTR(attr) |
		    MVSOC_MLMB_WCR_SIZE(MARVELL_PEXIO_SIZE));
		write_mlmbreg(MVSOC_MLMB_WBR(window),
		    iobase & MVSOC_MLMB_WBR_BASE_MASK);
#ifdef PCI_NETBSD_CONFIGURE
		if (window < nremap) {
			write_mlmbreg(MVSOC_MLMB_WRLR(window),
			    iobase & MVSOC_MLMB_WRLR_REMAP_MASK);
			write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
		}
#endif
		membase += MARVELL_PEXMEM_SIZE;
		iobase += MARVELL_PEXIO_SIZE;
	}
}

/*
 * vaddr_t initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
vaddr_t
initarm(void *arg)
{
	cpu_reset_address = axp_system_reset;

	mvsoc_bootstrap(MARVELL_INTERREGS_VBASE);

	/* Set CPU functions */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/*
	 * Map devices into the initial page table
	 * in order to use early console during initialization process.
	 * consinit is going to use this mapping.
	 */
	pmap_devmap_bootstrap((vaddr_t)read_ttb(), devmap);

	/* Initialize system console */
	consinit();

	/* Reset PCI-Express space to window register. */
	reset_axp_pcie_win();

	/* Get CPU, system and timebase frequencies */
	armadaxp_bootstrap(
	    MARVELL_INTERREGS_VBASE,
	    MARVELL_INTERREGS_PBASE);

#ifdef KGDB
	kgdb_port_init();
#endif

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
#define	BDSTR(s)	_BDSTR(s)
#define	_BDSTR(s)	#s
	printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n");
#endif

#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
	const bool mapallmem_p = true;
#else
	const bool mapallmem_p = false;
#endif

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");
#endif
	psize_t memsize = MEMSIZE;
	if (mapallmem_p && memsize > KERNEL_VM_BASE - KERNEL_BASE) {
		printf("%s: dropping RAM size from %luMB to %uMB\n",
		    __func__, (unsigned long) (memsize >> 20),
		    (KERNEL_VM_BASE - KERNEL_BASE) >> 20);
		memsize = KERNEL_VM_BASE - KERNEL_BASE;
	}
	/* Fake bootconfig structure for the benefit of pmap.c. */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = MEMSTART;
	bootconfig.dram[0].pages = memsize / PAGE_SIZE;

        physical_start = bootconfig.dram[0].address;
        physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

	arm32_bootmem_init(0, physical_end, (uintptr_t) KERNEL_BASE_phys);
	arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0,
	    devmap, mapallmem_p);

	/* we've a specific device_register routine */
	evbarm_device_register = axp_device_register;

	/* copy U-Boot args from U-Boot heap to kernel memory */
	uboot_regs_va = (int *)((unsigned int)uboot_regs_pa + KERNEL_BASE);
	boot_args = (char *)(uboot_regs_va[3] + KERNEL_BASE);
	strlcpy(boot_argbuf, (char *)boot_args, sizeof(boot_argbuf));
	boot_args = boot_argbuf;
	parse_mi_bootargs(boot_args);

	return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0);
}

#ifndef CONSADDR
#error Specify the address of the UART with the CONSADDR option.
#endif
#ifndef CONSPEED
#define	CONSPEED B115200
#endif
#ifndef CONMODE
#define	CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
#ifndef CONSFREQ
#define	CONSFREQ 0
#endif
static const int	comcnspeed = CONSPEED;
static const int	comcnfreq  = CONSFREQ;
static const tcflag_t	comcnmode  = CONMODE;
static const bus_addr_t	comcnaddr  = (bus_addr_t)CONSADDR;

void
consinit(void)
{
	static bool consinit_called = false;

	if (consinit_called)
		return;
	consinit_called = true;

#if NCOM > 0
	extern int mvuart_cnattach(bus_space_tag_t, bus_addr_t, int,
	    uint32_t, int);

	if (mvuart_cnattach(&mvsoc_bs_tag, comcnaddr, comcnspeed,
			comcnfreq ? comcnfreq : mvTclk , comcnmode))
		panic("Serial console can not be initialized.");
#endif
}

#ifdef KGDB
#ifndef KGDB_DEVADDR
#error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
#endif
#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE B115200
#endif
#define MVUART_SIZE 0x20

#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
static const int comkgdbspeed = KGDB_DEVRATE;
static const int comkgdbmode = KGDB_DEVMODE;

void
static kgdb_port_init(void)
{
	static int kgdbsinit_called = 0;

	if (kgdbsinit_called != 0)
		return;
	kgdbsinit_called = 1;

	if (com_kgdb_attach(&mvsoc_bs_tag, comkgdbaddr, comkgdbspeed,
			MVUART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
		panic("KGDB uart can not be initialized.");
}
#endif

#if NMVPEX > 0
static void
marvell_startend_by_tag(int tag, uint64_t *start, uint64_t *end)
{

	uint32_t base, size;
	int win;

	win = mvsoc_target(tag, NULL, NULL, &base, &size);
	if (size != 0) {
		if (win < nremap)
			*start = read_mlmbreg(MVSOC_MLMB_WRLR(win)) |
			    ((read_mlmbreg(MVSOC_MLMB_WRHR(win)) << 16) << 16);
		else
			*start = base;
		*end = *start + size - 1;
	} else
		*start = *end = 0;
}
#endif

static void
axp_device_register(device_t dev, void *aux)
{
	prop_dictionary_t dict = device_properties(dev);

#if NCOM > 0
	if (device_is_a(dev, "com") &&
	    device_is_a(device_parent(dev), "mvsoc"))
		prop_dictionary_set_uint32(dict, "frequency", mvTclk);
#endif

#if NMVPEX > 0
	extern struct bus_space
	    armadaxp_pex00_io_bs_tag, armadaxp_pex00_mem_bs_tag,
	    armadaxp_pex01_io_bs_tag, armadaxp_pex01_mem_bs_tag,
	    armadaxp_pex02_io_bs_tag, armadaxp_pex02_mem_bs_tag,
	    armadaxp_pex03_io_bs_tag, armadaxp_pex03_mem_bs_tag,
	    armadaxp_pex10_io_bs_tag, armadaxp_pex10_mem_bs_tag,
	    armadaxp_pex2_io_bs_tag, armadaxp_pex2_mem_bs_tag,
	    armadaxp_pex3_io_bs_tag, armadaxp_pex3_mem_bs_tag;
	extern struct arm32_pci_chipset arm32_mvpex0_chipset,
	    arm32_mvpex1_chipset, arm32_mvpex2_chipset,
	    arm32_mvpex3_chipset, arm32_mvpex4_chipset,
	    arm32_mvpex5_chipset, arm32_mvpex6_chipset;

	struct marvell_attach_args *mva = aux;

	if (device_is_a(dev, "mvpex")) {
		struct bus_space *mvpex_io_bs_tag, *mvpex_mem_bs_tag;
		struct arm32_pci_chipset *arm32_mvpex_chipset;
		prop_data_t io_bs_tag, mem_bs_tag, pc;
		uint64_t start, end;
		int iotag, memtag;

		if (mva->mva_offset == MVSOC_PEX_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex00_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex00_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex0_chipset;
			iotag = ARMADAXP_TAG_PEX00_IO;
			memtag = ARMADAXP_TAG_PEX00_MEM;
		} else if (mva->mva_offset == ARMADAXP_PEX01_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex01_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex01_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex1_chipset;
			iotag = ARMADAXP_TAG_PEX01_IO;
			memtag = ARMADAXP_TAG_PEX01_MEM;
		} else if (mva->mva_offset == ARMADAXP_PEX02_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex02_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex02_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex2_chipset;
			iotag = ARMADAXP_TAG_PEX02_IO;
			memtag = ARMADAXP_TAG_PEX02_MEM;
		} else if (mva->mva_offset == ARMADAXP_PEX03_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex03_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex03_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex3_chipset;
			iotag = ARMADAXP_TAG_PEX03_IO;
			memtag = ARMADAXP_TAG_PEX03_MEM;
		} else if (mva->mva_offset == ARMADAXP_PEX10_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex10_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex10_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex4_chipset;
			iotag = ARMADAXP_TAG_PEX10_IO;
			memtag = ARMADAXP_TAG_PEX10_MEM;
		} else if (mva->mva_offset == ARMADAXP_PEX2_BASE) {
			mvpex_io_bs_tag = &armadaxp_pex2_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex2_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex5_chipset;
			iotag = ARMADAXP_TAG_PEX2_IO;
			memtag = ARMADAXP_TAG_PEX2_MEM;
		} else {
			mvpex_io_bs_tag = &armadaxp_pex3_io_bs_tag;
			mvpex_mem_bs_tag = &armadaxp_pex3_mem_bs_tag;
			arm32_mvpex_chipset = &arm32_mvpex6_chipset;
			iotag = ARMADAXP_TAG_PEX3_IO;
			memtag = ARMADAXP_TAG_PEX3_MEM;
		}

		arm32_mvpex_chipset->pc_conf_v = device_private(dev);
		arm32_mvpex_chipset->pc_intr_v = device_private(dev);

		io_bs_tag = prop_data_create_data_nocopy(
		    mvpex_io_bs_tag, sizeof(struct bus_space));
		KASSERT(io_bs_tag != NULL);
		prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
		prop_object_release(io_bs_tag);
		mem_bs_tag = prop_data_create_data_nocopy(
		    mvpex_mem_bs_tag, sizeof(struct bus_space));
		KASSERT(mem_bs_tag != NULL);
		prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
		prop_object_release(mem_bs_tag);

		pc = prop_data_create_data_nocopy(arm32_mvpex_chipset,
		    sizeof(struct arm32_pci_chipset));
		KASSERT(pc != NULL);
		prop_dictionary_set(dict, "pci-chipset", pc);
		prop_object_release(pc);

		marvell_startend_by_tag(iotag, &start, &end);
		prop_dictionary_set_uint64(dict, "iostart", start);
		prop_dictionary_set_uint64(dict, "ioend", end);
		marvell_startend_by_tag(memtag, &start, &end);
		prop_dictionary_set_uint64(dict, "memstart", start);
		prop_dictionary_set_uint64(dict, "memend", end);
		prop_dictionary_set_uint32(dict,
		    "cache-line-size", arm_dcache_align);
	}
	if (device_is_a(dev, "mvgbec")) {
		uint8_t enaddr[ETHER_ADDR_LEN];
		char optname[9];
		int unit = device_unit(dev);

		if (unit > 9)
			return;
		switch (unit) {
		case 0:
			strlcpy(optname, "ethaddr", sizeof(optname));
			break;
		default:
			/* eth1addr ... eth9addr */
			snprintf(optname, sizeof(optname),
			    "eth%daddr", unit);
			break;
		}
		if (get_bootconf_option(boot_args, optname,
		    BOOTOPT_TYPE_MACADDR, enaddr)) {
			prop_data_t pd =
			    prop_data_create_data(enaddr, sizeof(enaddr));

			prop_dictionary_set(dict, "mac-address", pd);
		}
	}
	if (device_is_a(dev, "mvxpe")) {
		uint8_t enaddr[ETHER_ADDR_LEN];
		char optname[9];
		int unit = device_unit(dev);

		if (unit > 9)
			return;
		switch (unit) {
		case 0:
			strlcpy(optname, "ethaddr", sizeof(optname));
			break;
		default:
			/* eth1addr ... eth9addr */
			snprintf(optname, sizeof(optname),
			    "eth%daddr", unit);
			break;
		}
		if (get_bootconf_option(boot_args, optname,
		    BOOTOPT_TYPE_MACADDR, enaddr)) {
			prop_data_t pd =
			    prop_data_create_data(enaddr, sizeof(enaddr));

			prop_dictionary_set(dict, "mac-address", pd);
		}
	}
#endif
}