/* $NetBSD: if_vmx.c,v 1.11 2022/09/16 07:55:34 knakahara Exp $ */
/* $OpenBSD: if_vmx.c,v 1.16 2014/01/22 06:04:17 brad Exp $ */
/*
* Copyright (c) 2013 Tsubai Masanari
* Copyright (c) 2013 Bryan Venteicher <bryanv@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vmx.c,v 1.11 2022/09/16 07:55:34 knakahara Exp $");
#ifdef _KERNEL_OPT
#include "opt_if_vmx.h"
#endif
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/bitops.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/sockio.h>
#include <sys/pcq.h>
#include <sys/workqueue.h>
#include <sys/interrupt.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h> /* for <netinet/ip.h> */
#include <netinet/in.h> /* for <netinet/ip.h> */
#include <netinet/ip.h> /* for struct ip */
#include <netinet/ip6.h> /* for struct ip6_hdr */
#include <netinet/tcp.h> /* for struct tcphdr */
#include <netinet/udp.h> /* for struct udphdr */
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_vmxreg.h>
#define VMXNET3_DRIVER_VERSION 0x00010000
/*
* Max descriptors per Tx packet. We must limit the size of the
* any TSO packets based on the number of segments.
*/
#define VMXNET3_TX_MAXSEGS 32
#define VMXNET3_TX_MAXSIZE (VMXNET3_TX_MAXSEGS * MCLBYTES)
/*
* Maximum support Tx segments size. The length field in the
* Tx descriptor is 14 bits.
*/
#define VMXNET3_TX_MAXSEGSIZE (1 << 14)
/*
* The maximum number of Rx segments we accept.
*/
#define VMXNET3_MAX_RX_SEGS 0 /* no segments */
/*
* Predetermined size of the multicast MACs filter table. If the
* number of multicast addresses exceeds this size, then the
* ALL_MULTI mode is use instead.
*/
#define VMXNET3_MULTICAST_MAX 32
/*
* Our Tx watchdog timeout.
*/
#define VMXNET3_WATCHDOG_TIMEOUT 5
/*
* Default value for vmx_intr_{rx,tx}_process_limit which is used for
* max number of packets to process for interrupt handler
*/
#define VMXNET3_RX_INTR_PROCESS_LIMIT 0U
#define VMXNET3_TX_INTR_PROCESS_LIMIT 256
/*
* Default value for vmx_{rx,tx}_process_limit which is used for
* max number of packets to process for deferred processing
*/
#define VMXNET3_RX_PROCESS_LIMIT 256
#define VMXNET3_TX_PROCESS_LIMIT 256
#define VMXNET3_WORKQUEUE_PRI PRI_SOFTNET
/*
* IP protocols that we can perform Tx checksum offloading of.
*/
#define VMXNET3_CSUM_OFFLOAD \
(M_CSUM_TCPv4 | M_CSUM_UDPv4)
#define VMXNET3_CSUM_OFFLOAD_IPV6 \
(M_CSUM_TCPv6 | M_CSUM_UDPv6)
#define VMXNET3_CSUM_ALL_OFFLOAD \
(VMXNET3_CSUM_OFFLOAD | VMXNET3_CSUM_OFFLOAD_IPV6 | M_CSUM_TSOv4 | M_CSUM_TSOv6)
#define VMXNET3_RXRINGS_PERQ 2
#define VMXNET3_CORE_LOCK(_sc) mutex_enter((_sc)->vmx_mtx)
#define VMXNET3_CORE_UNLOCK(_sc) mutex_exit((_sc)->vmx_mtx)
#define VMXNET3_CORE_LOCK_ASSERT(_sc) mutex_owned((_sc)->vmx_mtx)
#define VMXNET3_RXQ_LOCK(_rxq) mutex_enter((_rxq)->vxrxq_mtx)
#define VMXNET3_RXQ_UNLOCK(_rxq) mutex_exit((_rxq)->vxrxq_mtx)
#define VMXNET3_RXQ_LOCK_ASSERT(_rxq) \
mutex_owned((_rxq)->vxrxq_mtx)
#define VMXNET3_TXQ_LOCK(_txq) mutex_enter((_txq)->vxtxq_mtx)
#define VMXNET3_TXQ_TRYLOCK(_txq) mutex_tryenter((_txq)->vxtxq_mtx)
#define VMXNET3_TXQ_UNLOCK(_txq) mutex_exit((_txq)->vxtxq_mtx)
#define VMXNET3_TXQ_LOCK_ASSERT(_txq) \
mutex_owned((_txq)->vxtxq_mtx)
struct vmxnet3_dma_alloc {
bus_addr_t dma_paddr;
void *dma_vaddr;
bus_dmamap_t dma_map;
bus_size_t dma_size;
bus_dma_segment_t dma_segs[1];
};
struct vmxnet3_txbuf {
bus_dmamap_t vtxb_dmamap;
struct mbuf *vtxb_m;
};
struct vmxnet3_txring {
struct vmxnet3_txbuf *vxtxr_txbuf;
struct vmxnet3_txdesc *vxtxr_txd;
u_int vxtxr_head;
u_int vxtxr_next;
u_int vxtxr_ndesc;
int vxtxr_gen;
struct vmxnet3_dma_alloc vxtxr_dma;
};
struct vmxnet3_rxbuf {
bus_dmamap_t vrxb_dmamap;
struct mbuf *vrxb_m;
};
struct vmxnet3_rxring {
struct vmxnet3_rxbuf *vxrxr_rxbuf;
struct vmxnet3_rxdesc *vxrxr_rxd;
u_int vxrxr_fill;
u_int vxrxr_ndesc;
int vxrxr_gen;
int vxrxr_rid;
struct vmxnet3_dma_alloc vxrxr_dma;
bus_dmamap_t vxrxr_spare_dmap;
};
struct vmxnet3_comp_ring {
union {
struct vmxnet3_txcompdesc *txcd;
struct vmxnet3_rxcompdesc *rxcd;
} vxcr_u;
u_int vxcr_next;
u_int vxcr_ndesc;
int vxcr_gen;
struct vmxnet3_dma_alloc vxcr_dma;
};
struct vmxnet3_txq_stats {
uint64_t vmtxs_csum;
uint64_t vmtxs_tso;
uint64_t vmtxs_full;
uint64_t vmtxs_offload_failed;
};
struct vmxnet3_txqueue {
kmutex_t *vxtxq_mtx;
struct vmxnet3_softc *vxtxq_sc;
int vxtxq_watchdog;
pcq_t *vxtxq_interq;
struct vmxnet3_txring vxtxq_cmd_ring;
struct vmxnet3_comp_ring vxtxq_comp_ring;
struct vmxnet3_txq_stats vxtxq_stats;
struct vmxnet3_txq_shared *vxtxq_ts;
char vxtxq_name[16];
void *vxtxq_si;
struct evcnt vxtxq_intr;
struct evcnt vxtxq_defer;
struct evcnt vxtxq_deferreq;
struct evcnt vxtxq_pcqdrop;
struct evcnt vxtxq_transmitdef;
struct evcnt vxtxq_watchdogto;
struct evcnt vxtxq_defragged;
struct evcnt vxtxq_defrag_failed;
};
struct vmxnet3_rxqueue {
kmutex_t *vxrxq_mtx;
struct vmxnet3_softc *vxrxq_sc;
struct mbuf *vxrxq_mhead;
struct mbuf *vxrxq_mtail;
struct vmxnet3_rxring vxrxq_cmd_ring[VMXNET3_RXRINGS_PERQ];
struct vmxnet3_comp_ring vxrxq_comp_ring;
struct vmxnet3_rxq_shared *vxrxq_rs;
char vxrxq_name[16];
struct evcnt vxrxq_intr;
struct evcnt vxrxq_defer;
struct evcnt vxrxq_deferreq;
struct evcnt vxrxq_mgetcl_failed;
struct evcnt vxrxq_mbuf_load_failed;
};
struct vmxnet3_queue {
int vxq_id;
int vxq_intr_idx;
struct vmxnet3_txqueue vxq_txqueue;
struct vmxnet3_rxqueue vxq_rxqueue;
void *vxq_si;
bool vxq_workqueue;
bool vxq_wq_enqueued;
struct work vxq_wq_cookie;
};
struct vmxnet3_softc {
device_t vmx_dev;
struct ethercom vmx_ethercom;
struct ifmedia vmx_media;
struct vmxnet3_driver_shared *vmx_ds;
int vmx_flags;
#define VMXNET3_FLAG_NO_MSIX (1 << 0)
#define VMXNET3_FLAG_RSS (1 << 1)
#define VMXNET3_FLAG_ATTACHED (1 << 2)
struct vmxnet3_queue *vmx_queue;
struct pci_attach_args *vmx_pa;
pci_chipset_tag_t vmx_pc;
bus_space_tag_t vmx_iot0;
bus_space_tag_t vmx_iot1;
bus_space_handle_t vmx_ioh0;
bus_space_handle_t vmx_ioh1;
bus_size_t vmx_ios0;
bus_size_t vmx_ios1;
bus_dma_tag_t vmx_dmat;
int vmx_link_active;
int vmx_ntxqueues;
int vmx_nrxqueues;
int vmx_ntxdescs;
int vmx_nrxdescs;
int vmx_max_rxsegs;
struct evcnt vmx_event_intr;
struct evcnt vmx_event_link;
struct evcnt vmx_event_txqerror;
struct evcnt vmx_event_rxqerror;
struct evcnt vmx_event_dic;
struct evcnt vmx_event_debug;
int vmx_intr_type;
int vmx_intr_mask_mode;
int vmx_event_intr_idx;
int vmx_nintrs;
pci_intr_handle_t *vmx_intrs; /* legacy use vmx_intrs[0] */
void *vmx_ihs[VMXNET3_MAX_INTRS];
kmutex_t *vmx_mtx;
uint8_t *vmx_mcast;
void *vmx_qs;
struct vmxnet3_rss_shared *vmx_rss;
callout_t vmx_tick;
struct vmxnet3_dma_alloc vmx_ds_dma;
struct vmxnet3_dma_alloc vmx_qs_dma;
struct vmxnet3_dma_alloc vmx_mcast_dma;
struct vmxnet3_dma_alloc vmx_rss_dma;
int vmx_max_ntxqueues;
int vmx_max_nrxqueues;
uint8_t vmx_lladdr[ETHER_ADDR_LEN];
u_int vmx_rx_intr_process_limit;
u_int vmx_tx_intr_process_limit;
u_int vmx_rx_process_limit;
u_int vmx_tx_process_limit;
struct sysctllog *vmx_sysctllog;
bool vmx_txrx_workqueue;
struct workqueue *vmx_queue_wq;
};
#define VMXNET3_STAT
#ifdef VMXNET3_STAT
struct {
u_int txhead;
u_int txdone;
u_int maxtxlen;
u_int rxdone;
u_int rxfill;
u_int intr;
} vmxstat;
#endif
typedef enum {
VMXNET3_BARRIER_RD,
VMXNET3_BARRIER_WR,
} vmxnet3_barrier_t;
#define JUMBO_LEN (MCLBYTES - ETHER_ALIGN) /* XXX */
#define DMAADDR(map) ((map)->dm_segs[0].ds_addr)
#define vtophys(va) 0 /* XXX ok? */
static int vmxnet3_match(device_t, cfdata_t, void *);
static void vmxnet3_attach(device_t, device_t, void *);
static int vmxnet3_detach(device_t, int);
static int vmxnet3_alloc_pci_resources(struct vmxnet3_softc *);
static void vmxnet3_free_pci_resources(struct vmxnet3_softc *);
static int vmxnet3_check_version(struct vmxnet3_softc *);
static void vmxnet3_check_multiqueue(struct vmxnet3_softc *);
static int vmxnet3_alloc_msix_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_msi_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_legacy_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_interrupts(struct vmxnet3_softc *);
static void vmxnet3_free_interrupts(struct vmxnet3_softc *);
static int vmxnet3_setup_msix_interrupts(struct vmxnet3_softc *);
static int vmxnet3_setup_msi_interrupt(struct vmxnet3_softc *);
static int vmxnet3_setup_legacy_interrupt(struct vmxnet3_softc *);
static void vmxnet3_set_interrupt_idx(struct vmxnet3_softc *);
static int vmxnet3_setup_interrupts(struct vmxnet3_softc *);
static int vmxnet3_setup_sysctl(struct vmxnet3_softc *);
static int vmxnet3_setup_stats(struct vmxnet3_softc *);
static void vmxnet3_teardown_stats(struct vmxnet3_softc *);
static int vmxnet3_init_rxq(struct vmxnet3_softc *, int);
static int vmxnet3_init_txq(struct vmxnet3_softc *, int);
static int vmxnet3_alloc_rxtx_queues(struct vmxnet3_softc *);
static void vmxnet3_destroy_rxq(struct vmxnet3_rxqueue *);
static void vmxnet3_destroy_txq(struct vmxnet3_txqueue *);
static void vmxnet3_free_rxtx_queues(struct vmxnet3_softc *);
static int vmxnet3_alloc_shared_data(struct vmxnet3_softc *);
static void vmxnet3_free_shared_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_txq_data(struct vmxnet3_softc *);
static void vmxnet3_free_txq_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_rxq_data(struct vmxnet3_softc *);
static void vmxnet3_free_rxq_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_queue_data(struct vmxnet3_softc *);
static void vmxnet3_free_queue_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_mcast_table(struct vmxnet3_softc *);
static void vmxnet3_free_mcast_table(struct vmxnet3_softc *);
static void vmxnet3_init_shared_data(struct vmxnet3_softc *);
static void vmxnet3_reinit_rss_shared_data(struct vmxnet3_softc *);
static void vmxnet3_reinit_shared_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_data(struct vmxnet3_softc *);
static void vmxnet3_free_data(struct vmxnet3_softc *);
static int vmxnet3_setup_interface(struct vmxnet3_softc *);
static void vmxnet3_evintr(struct vmxnet3_softc *);
static bool vmxnet3_txq_eof(struct vmxnet3_txqueue *, u_int);
static int vmxnet3_newbuf(struct vmxnet3_softc *, struct vmxnet3_rxqueue *,
struct vmxnet3_rxring *);
static void vmxnet3_rxq_eof_discard(struct vmxnet3_rxqueue *,
struct vmxnet3_rxring *, int);
static void vmxnet3_rxq_discard_chain(struct vmxnet3_rxqueue *);
static void vmxnet3_rx_csum(struct vmxnet3_rxcompdesc *, struct mbuf *);
static void vmxnet3_rxq_input(struct vmxnet3_rxqueue *,
struct vmxnet3_rxcompdesc *, struct mbuf *);
static bool vmxnet3_rxq_eof(struct vmxnet3_rxqueue *, u_int);
static int vmxnet3_legacy_intr(void *);
static int vmxnet3_txrxq_intr(void *);
static void vmxnet3_handle_queue(void *);
static void vmxnet3_handle_queue_work(struct work *, void *);
static int vmxnet3_event_intr(void *);
static void vmxnet3_txstop(struct vmxnet3_softc *, struct vmxnet3_txqueue *);
static void vmxnet3_rxstop(struct vmxnet3_softc *, struct vmxnet3_rxqueue *);
static void vmxnet3_stop_locked(struct vmxnet3_softc *);
static void vmxnet3_stop_rendezvous(struct vmxnet3_softc *);
static void vmxnet3_stop(struct ifnet *, int);
static void vmxnet3_txinit(struct vmxnet3_softc *, struct vmxnet3_txqueue *);
static int vmxnet3_rxinit(struct vmxnet3_softc *, struct vmxnet3_rxqueue *);
static int vmxnet3_reinit_queues(struct vmxnet3_softc *);
static int vmxnet3_enable_device(struct vmxnet3_softc *);
static void vmxnet3_reinit_rxfilters(struct vmxnet3_softc *);
static int vmxnet3_reinit(struct vmxnet3_softc *);
static int vmxnet3_init_locked(struct vmxnet3_softc *);
static int vmxnet3_init(struct ifnet *);
static int vmxnet3_txq_offload_ctx(struct vmxnet3_txqueue *, struct mbuf *, int *, int *);
static int vmxnet3_txq_load_mbuf(struct vmxnet3_txqueue *, struct mbuf **, bus_dmamap_t);
static void vmxnet3_txq_unload_mbuf(struct vmxnet3_txqueue *, bus_dmamap_t);
static int vmxnet3_txq_encap(struct vmxnet3_txqueue *, struct mbuf **);
static void vmxnet3_start_locked(struct ifnet *);
static void vmxnet3_start(struct ifnet *);
static void vmxnet3_transmit_locked(struct ifnet *, struct vmxnet3_txqueue *);
static int vmxnet3_transmit(struct ifnet *, struct mbuf *);
static void vmxnet3_deferred_transmit(void *);
static void vmxnet3_set_rxfilter(struct vmxnet3_softc *);
static int vmxnet3_ioctl(struct ifnet *, u_long, void *);
static int vmxnet3_ifflags_cb(struct ethercom *);
static int vmxnet3_watchdog(struct vmxnet3_txqueue *);
static void vmxnet3_refresh_host_stats(struct vmxnet3_softc *);
static void vmxnet3_tick(void *);
static void vmxnet3_if_link_status(struct vmxnet3_softc *);
static bool vmxnet3_cmd_link_status(struct ifnet *);
static void vmxnet3_ifmedia_status(struct ifnet *, struct ifmediareq *);
static int vmxnet3_ifmedia_change(struct ifnet *);
static void vmxnet3_set_lladdr(struct vmxnet3_softc *);
static void vmxnet3_get_lladdr(struct vmxnet3_softc *);
static void vmxnet3_enable_all_intrs(struct vmxnet3_softc *);
static void vmxnet3_disable_all_intrs(struct vmxnet3_softc *);
static int vmxnet3_dma_malloc(struct vmxnet3_softc *, bus_size_t, bus_size_t,
struct vmxnet3_dma_alloc *);
static void vmxnet3_dma_free(struct vmxnet3_softc *, struct vmxnet3_dma_alloc *);
CFATTACH_DECL3_NEW(vmx, sizeof(struct vmxnet3_softc),
vmxnet3_match, vmxnet3_attach, vmxnet3_detach, NULL, NULL, NULL, 0);
/* round down to the nearest power of 2 */
static int
vmxnet3_calc_queue_size(int n)
{
if (__predict_false(n <= 0))
return 1;
return (1U << (fls32(n) - 1));
}
static inline void
vmxnet3_write_bar0(struct vmxnet3_softc *sc, bus_size_t r, uint32_t v)
{
bus_space_write_4(sc->vmx_iot0, sc->vmx_ioh0, r, v);
}
static inline uint32_t
vmxnet3_read_bar1(struct vmxnet3_softc *sc, bus_size_t r)
{
return (bus_space_read_4(sc->vmx_iot1, sc->vmx_ioh1, r));
}
static inline void
vmxnet3_write_bar1(struct vmxnet3_softc *sc, bus_size_t r, uint32_t v)
{
bus_space_write_4(sc->vmx_iot1, sc->vmx_ioh1, r, v);
}
static inline void
vmxnet3_write_cmd(struct vmxnet3_softc *sc, uint32_t cmd)
{
vmxnet3_write_bar1(sc, VMXNET3_BAR1_CMD, cmd);
}
static inline uint32_t
vmxnet3_read_cmd(struct vmxnet3_softc *sc, uint32_t cmd)
{
vmxnet3_write_cmd(sc, cmd);
return (vmxnet3_read_bar1(sc, VMXNET3_BAR1_CMD));
}
static inline void
vmxnet3_enable_intr(struct vmxnet3_softc *sc, int irq)
{
vmxnet3_write_bar0(sc, VMXNET3_BAR0_IMASK(irq), 0);
}
static inline void
vmxnet3_disable_intr(struct vmxnet3_softc *sc, int irq)
{
vmxnet3_write_bar0(sc, VMXNET3_BAR0_IMASK(irq), 1);
}
static inline void
vmxnet3_rxr_increment_fill(struct vmxnet3_rxring *rxr)
{
if (++rxr->vxrxr_fill == rxr->vxrxr_ndesc) {
rxr->vxrxr_fill = 0;
rxr->vxrxr_gen ^= 1;
}
}
static inline int
vmxnet3_txring_avail(struct vmxnet3_txring *txr)
{
int avail = txr->vxtxr_next - txr->vxtxr_head - 1;
return (avail < 0 ? (int)txr->vxtxr_ndesc + avail : avail);
}
/*
* Since this is a purely paravirtualized device, we do not have
* to worry about DMA coherency. But at times, we must make sure
* both the compiler and CPU do not reorder memory operations.
*/
static inline void
vmxnet3_barrier(struct vmxnet3_softc *sc, vmxnet3_barrier_t type)
{
switch (type) {
case VMXNET3_BARRIER_RD:
membar_consumer();
break;
case VMXNET3_BARRIER_WR:
membar_producer();
break;
default:
panic("%s: bad barrier type %d", __func__, type);
}
}
static int
vmxnet3_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VMWARE &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VMWARE_VMXNET3)
return 1;
return 0;
}
static void
vmxnet3_attach(device_t parent, device_t self, void *aux)
{
struct vmxnet3_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pcireg_t preg;
int error;
int candidate;
sc->vmx_dev = self;
sc->vmx_pa = pa;
sc->vmx_pc = pa->pa_pc;
if (pci_dma64_available(pa))
sc->vmx_dmat = pa->pa_dmat64;
else
sc->vmx_dmat = pa->pa_dmat;
pci_aprint_devinfo_fancy(pa, "Ethernet controller", "vmxnet3", 1);
preg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
preg |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
sc->vmx_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
callout_init(&sc->vmx_tick, CALLOUT_MPSAFE);
candidate = MIN(MIN(VMXNET3_MAX_TX_QUEUES, VMXNET3_MAX_RX_QUEUES),
ncpu);
sc->vmx_max_ntxqueues = sc->vmx_max_nrxqueues =
vmxnet3_calc_queue_size(candidate);
sc->vmx_ntxdescs = 512;
sc->vmx_nrxdescs = 256;
sc->vmx_max_rxsegs = VMXNET3_MAX_RX_SEGS;
error = vmxnet3_alloc_pci_resources(sc);
if (error)
return;
error = vmxnet3_check_version(sc);
if (error)
return;
error = vmxnet3_alloc_rxtx_queues(sc);
if (error)
return;
error = vmxnet3_alloc_interrupts(sc);
if (error)
return;
vmxnet3_check_multiqueue(sc);
error = vmxnet3_alloc_data(sc);
if (error)
return;
error = vmxnet3_setup_interface(sc);
if (error)
return;
error = vmxnet3_setup_interrupts(sc);
if (error)
return;
error = vmxnet3_setup_sysctl(sc);
if (error)
return;
error = vmxnet3_setup_stats(sc);
if (error)
return;
sc->vmx_flags |= VMXNET3_FLAG_ATTACHED;
}
static int
vmxnet3_detach(device_t self, int flags)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
sc = device_private(self);
ifp = &sc->vmx_ethercom.ec_if;
if (sc->vmx_flags & VMXNET3_FLAG_ATTACHED) {
VMXNET3_CORE_LOCK(sc);
vmxnet3_stop_locked(sc);
callout_halt(&sc->vmx_tick, sc->vmx_mtx);
callout_destroy(&sc->vmx_tick);
VMXNET3_CORE_UNLOCK(sc);
ether_ifdetach(ifp);
if_detach(ifp);
ifmedia_fini(&sc->vmx_media);
}
vmxnet3_teardown_stats(sc);
sysctl_teardown(&sc->vmx_sysctllog);
vmxnet3_free_interrupts(sc);
vmxnet3_free_data(sc);
vmxnet3_free_pci_resources(sc);
vmxnet3_free_rxtx_queues(sc);
if (sc->vmx_mtx)
mutex_obj_free(sc->vmx_mtx);
return (0);
}
static int
vmxnet3_alloc_pci_resources(struct vmxnet3_softc *sc)
{
struct pci_attach_args *pa = sc->vmx_pa;
pcireg_t memtype;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_BAR(0));
if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->vmx_iot0, &sc->vmx_ioh0,
NULL, &sc->vmx_ios0)) {
aprint_error_dev(sc->vmx_dev, "failed to map BAR0\n");
return (ENXIO);
}
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_BAR(1));
if (pci_mapreg_map(pa, PCI_BAR(1), memtype, 0, &sc->vmx_iot1, &sc->vmx_ioh1,
NULL, &sc->vmx_ios1)) {
aprint_error_dev(sc->vmx_dev, "failed to map BAR1\n");
return (ENXIO);
}
if (!pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, NULL, NULL)) {
sc->vmx_flags |= VMXNET3_FLAG_NO_MSIX;
return (0);
}
return (0);
}
static void
vmxnet3_free_pci_resources(struct vmxnet3_softc *sc)
{
if (sc->vmx_ios0) {
bus_space_unmap(sc->vmx_iot0, sc->vmx_ioh0, sc->vmx_ios0);
sc->vmx_ios0 = 0;
}
if (sc->vmx_ios1) {
bus_space_unmap(sc->vmx_iot1, sc->vmx_ioh1, sc->vmx_ios1);
sc->vmx_ios1 = 0;
}
}
static int
vmxnet3_check_version(struct vmxnet3_softc *sc)
{
u_int ver;
ver = vmxnet3_read_bar1(sc, VMXNET3_BAR1_VRRS);
if ((ver & 0x1) == 0) {
aprint_error_dev(sc->vmx_dev,
"unsupported hardware version 0x%x\n", ver);
return (ENOTSUP);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_VRRS, 1);
ver = vmxnet3_read_bar1(sc, VMXNET3_BAR1_UVRS);
if ((ver & 0x1) == 0) {
aprint_error_dev(sc->vmx_dev,
"incompatiable UPT version 0x%x\n", ver);
return (ENOTSUP);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_UVRS, 1);
return (0);
}
static void
vmxnet3_check_multiqueue(struct vmxnet3_softc *sc)
{
if (sc->vmx_intr_type != VMXNET3_IT_MSIX)
goto out;
/* Just use the maximum configured for now. */
sc->vmx_nrxqueues = sc->vmx_max_nrxqueues;
sc->vmx_ntxqueues = sc->vmx_max_ntxqueues;
if (sc->vmx_nrxqueues > 1)
sc->vmx_flags |= VMXNET3_FLAG_RSS;
return;
out:
sc->vmx_ntxqueues = 1;
sc->vmx_nrxqueues = 1;
}
static int
vmxnet3_alloc_msix_interrupts(struct vmxnet3_softc *sc)
{
int required;
struct pci_attach_args *pa = sc->vmx_pa;
if (sc->vmx_flags & VMXNET3_FLAG_NO_MSIX)
return (1);
/* Allocate an additional vector for the events interrupt. */
required = MIN(sc->vmx_max_ntxqueues, sc->vmx_max_nrxqueues) + 1;
if (pci_msix_count(pa->pa_pc, pa->pa_tag) < required)
return (1);
if (pci_msix_alloc_exact(pa, &sc->vmx_intrs, required) == 0) {
sc->vmx_nintrs = required;
return (0);
}
return (1);
}
static int
vmxnet3_alloc_msi_interrupts(struct vmxnet3_softc *sc)
{
int nmsi, required;
struct pci_attach_args *pa = sc->vmx_pa;
required = 1;
nmsi = pci_msi_count(pa->pa_pc, pa->pa_tag);
if (nmsi < required)
return (1);
if (pci_msi_alloc_exact(pa, &sc->vmx_intrs, required) == 0) {
sc->vmx_nintrs = required;
return (0);
}
return (1);
}
static int
vmxnet3_alloc_legacy_interrupts(struct vmxnet3_softc *sc)
{
if (pci_intx_alloc(sc->vmx_pa, &sc->vmx_intrs) == 0) {
sc->vmx_nintrs = 1;
return (0);
}
return (1);
}
static int
vmxnet3_alloc_interrupts(struct vmxnet3_softc *sc)
{
u_int config;
int error;
config = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_INTRCFG);
sc->vmx_intr_type = config & 0x03;
sc->vmx_intr_mask_mode = (config >> 2) & 0x03;
switch (sc->vmx_intr_type) {
case VMXNET3_IT_AUTO:
sc->vmx_intr_type = VMXNET3_IT_MSIX;
/* FALLTHROUGH */
case VMXNET3_IT_MSIX:
error = vmxnet3_alloc_msix_interrupts(sc);
if (error == 0)
break;
sc->vmx_intr_type = VMXNET3_IT_MSI;
/* FALLTHROUGH */
case VMXNET3_IT_MSI:
error = vmxnet3_alloc_msi_interrupts(sc);
if (error == 0)
break;
sc->vmx_intr_type = VMXNET3_IT_LEGACY;
/* FALLTHROUGH */
case VMXNET3_IT_LEGACY:
error = vmxnet3_alloc_legacy_interrupts(sc);
if (error == 0)
break;
/* FALLTHROUGH */
default:
sc->vmx_intr_type = -1;
aprint_error_dev(sc->vmx_dev, "cannot allocate any interrupt resources\n");
return (ENXIO);
}
return (error);
}
static void
vmxnet3_free_interrupts(struct vmxnet3_softc *sc)
{
pci_chipset_tag_t pc = sc->vmx_pc;
int i;
workqueue_destroy(sc->vmx_queue_wq);
for (i = 0; i < sc->vmx_ntxqueues; i++) {
struct vmxnet3_queue *vmxq = &sc->vmx_queue[i];
softint_disestablish(vmxq->vxq_si);
vmxq->vxq_si = NULL;
}
for (i = 0; i < sc->vmx_nintrs; i++) {
pci_intr_disestablish(pc, sc->vmx_ihs[i]);
}
pci_intr_release(pc, sc->vmx_intrs, sc->vmx_nintrs);
}
static int
vmxnet3_setup_msix_interrupts(struct vmxnet3_softc *sc)
{
pci_chipset_tag_t pc = sc->vmx_pa->pa_pc;
struct vmxnet3_queue *vmxq;
pci_intr_handle_t *intr;
void **ihs;
int intr_idx, i, use_queues, error;
kcpuset_t *affinity;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[32];
intr = sc->vmx_intrs;
intr_idx = 0;
ihs = sc->vmx_ihs;
/* See vmxnet3_alloc_msix_interrupts() */
use_queues = MIN(sc->vmx_max_ntxqueues, sc->vmx_max_nrxqueues);
for (i = 0; i < use_queues; i++, intr++, ihs++, intr_idx++) {
snprintf(xnamebuf, 32, "%s: txrx %d", device_xname(sc->vmx_dev), i);
vmxq = &sc->vmx_queue[i];
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
vmxnet3_txrxq_intr, vmxq, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(sc->vmx_dev,
"unable to establish txrx interrupt at %s\n", intrstr);
return (-1);
}
aprint_normal_dev(sc->vmx_dev, "txrx interrupting at %s\n", intrstr);
kcpuset_create(&affinity, true);
kcpuset_set(affinity, intr_idx % ncpu);
error = interrupt_distribute(*ihs, affinity, NULL);
if (error) {
aprint_normal_dev(sc->vmx_dev,
"%s cannot be changed affinity, use default CPU\n",
intrstr);
}
kcpuset_destroy(affinity);
vmxq->vxq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmxnet3_handle_queue, vmxq);
if (vmxq->vxq_si == NULL) {
aprint_error_dev(sc->vmx_dev,
"softint_establish for vxq_si failed\n");
return (-1);
}
vmxq->vxq_intr_idx = intr_idx;
}
snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(sc->vmx_dev));
error = workqueue_create(&sc->vmx_queue_wq, xnamebuf,
vmxnet3_handle_queue_work, sc, VMXNET3_WORKQUEUE_PRI, IPL_NET,
WQ_PERCPU | WQ_MPSAFE);
if (error) {
aprint_error_dev(sc->vmx_dev, "workqueue_create failed\n");
return (-1);
}
sc->vmx_txrx_workqueue = false;
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, 32, "%s: link", device_xname(sc->vmx_dev));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
vmxnet3_event_intr, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(sc->vmx_dev,
"unable to establish event interrupt at %s\n", intrstr);
return (-1);
}
aprint_normal_dev(sc->vmx_dev, "event interrupting at %s\n", intrstr);
sc->vmx_event_intr_idx = intr_idx;
return (0);
}
static int
vmxnet3_setup_msi_interrupt(struct vmxnet3_softc *sc)
{
pci_chipset_tag_t pc = sc->vmx_pa->pa_pc;
pci_intr_handle_t *intr;
void **ihs;
struct vmxnet3_queue *vmxq;
int i;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[32];
intr = &sc->vmx_intrs[0];
ihs = sc->vmx_ihs;
vmxq = &sc->vmx_queue[0];
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, 32, "%s: msi", device_xname(sc->vmx_dev));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
vmxnet3_legacy_intr, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(sc->vmx_dev,
"unable to establish interrupt at %s\n", intrstr);
return (-1);
}
aprint_normal_dev(sc->vmx_dev, "interrupting at %s\n", intrstr);
vmxq->vxq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmxnet3_handle_queue, vmxq);
if (vmxq->vxq_si == NULL) {
aprint_error_dev(sc->vmx_dev,
"softint_establish for vxq_si failed\n");
return (-1);
}
for (i = 0; i < MIN(sc->vmx_nrxqueues, sc->vmx_nrxqueues); i++)
sc->vmx_queue[i].vxq_intr_idx = 0;
sc->vmx_event_intr_idx = 0;
return (0);
}
static int
vmxnet3_setup_legacy_interrupt(struct vmxnet3_softc *sc)
{
pci_chipset_tag_t pc = sc->vmx_pa->pa_pc;
pci_intr_handle_t *intr;
void **ihs;
struct vmxnet3_queue *vmxq;
int i;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[32];
intr = &sc->vmx_intrs[0];
ihs = sc->vmx_ihs;
vmxq = &sc->vmx_queue[0];
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, 32, "%s:legacy", device_xname(sc->vmx_dev));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
vmxnet3_legacy_intr, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(sc->vmx_dev,
"unable to establish interrupt at %s\n", intrstr);
return (-1);
}
aprint_normal_dev(sc->vmx_dev, "interrupting at %s\n", intrstr);
vmxq->vxq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmxnet3_handle_queue, vmxq);
if (vmxq->vxq_si == NULL) {
aprint_error_dev(sc->vmx_dev,
"softint_establish for vxq_si failed\n");
return (-1);
}
for (i = 0; i < MIN(sc->vmx_nrxqueues, sc->vmx_nrxqueues); i++)
sc->vmx_queue[i].vxq_intr_idx = 0;
sc->vmx_event_intr_idx = 0;
return (0);
}
static void
vmxnet3_set_interrupt_idx(struct vmxnet3_softc *sc)
{
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txq_shared *txs;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxq_shared *rxs;
int i;
sc->vmx_ds->evintr = sc->vmx_event_intr_idx;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
vmxq = &sc->vmx_queue[i];
txq = &vmxq->vxq_txqueue;
txs = txq->vxtxq_ts;
txs->intr_idx = vmxq->vxq_intr_idx;
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
vmxq = &sc->vmx_queue[i];
rxq = &vmxq->vxq_rxqueue;
rxs = rxq->vxrxq_rs;
rxs->intr_idx = vmxq->vxq_intr_idx;
}
}
static int
vmxnet3_setup_interrupts(struct vmxnet3_softc *sc)
{
int error;
switch (sc->vmx_intr_type) {
case VMXNET3_IT_MSIX:
error = vmxnet3_setup_msix_interrupts(sc);
break;
case VMXNET3_IT_MSI:
error = vmxnet3_setup_msi_interrupt(sc);
break;
case VMXNET3_IT_LEGACY:
error = vmxnet3_setup_legacy_interrupt(sc);
break;
default:
panic("%s: invalid interrupt type %d", __func__,
sc->vmx_intr_type);
}
if (error == 0)
vmxnet3_set_interrupt_idx(sc);
return (error);
}
static int
vmxnet3_init_rxq(struct vmxnet3_softc *sc, int q)
{
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
int i;
rxq = &sc->vmx_queue[q].vxq_rxqueue;
snprintf(rxq->vxrxq_name, sizeof(rxq->vxrxq_name), "%s-rx%d",
device_xname(sc->vmx_dev), q);
rxq->vxrxq_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET /* XXX */);
rxq->vxrxq_sc = sc;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_rid = i;
rxr->vxrxr_ndesc = sc->vmx_nrxdescs;
rxr->vxrxr_rxbuf = kmem_zalloc(rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxbuf), KM_SLEEP);
rxq->vxrxq_comp_ring.vxcr_ndesc += sc->vmx_nrxdescs;
}
return (0);
}
static int
vmxnet3_init_txq(struct vmxnet3_softc *sc, int q)
{
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
txq = &sc->vmx_queue[q].vxq_txqueue;
txr = &txq->vxtxq_cmd_ring;
snprintf(txq->vxtxq_name, sizeof(txq->vxtxq_name), "%s-tx%d",
device_xname(sc->vmx_dev), q);
txq->vxtxq_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET /* XXX */);
txq->vxtxq_sc = sc;
txq->vxtxq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
vmxnet3_deferred_transmit, txq);
if (txq->vxtxq_si == NULL) {
mutex_obj_free(txq->vxtxq_mtx);
aprint_error_dev(sc->vmx_dev,
"softint_establish for vxtxq_si failed\n");
return ENOMEM;
}
txr->vxtxr_ndesc = sc->vmx_ntxdescs;
txr->vxtxr_txbuf = kmem_zalloc(txr->vxtxr_ndesc *
sizeof(struct vmxnet3_txbuf), KM_SLEEP);
txq->vxtxq_comp_ring.vxcr_ndesc = sc->vmx_ntxdescs;
txq->vxtxq_interq = pcq_create(sc->vmx_ntxdescs, KM_SLEEP);
return (0);
}
static int
vmxnet3_alloc_rxtx_queues(struct vmxnet3_softc *sc)
{
int i, error, max_nqueues;
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
/*
* Only attempt to create multiple queues if MSIX is available.
* This check prevents us from allocating queue structures that
* we will not use.
*
* FreeBSD:
* MSIX is disabled by default because its apparently broken for
* devices passed through by at least ESXi 5.1.
* The hw.pci.honor_msi_blacklist tunable must be set to zero for MSIX.
*/
if (sc->vmx_flags & VMXNET3_FLAG_NO_MSIX) {
sc->vmx_max_nrxqueues = 1;
sc->vmx_max_ntxqueues = 1;
}
max_nqueues = MAX(sc->vmx_max_ntxqueues, sc->vmx_max_nrxqueues);
sc->vmx_queue = kmem_zalloc(sizeof(struct vmxnet3_queue) * max_nqueues,
KM_SLEEP);
for (i = 0; i < max_nqueues; i++) {
struct vmxnet3_queue *vmxq = &sc->vmx_queue[i];
vmxq->vxq_id = i;
}
for (i = 0; i < sc->vmx_max_nrxqueues; i++) {
error = vmxnet3_init_rxq(sc, i);
if (error)
return (error);
}
for (i = 0; i < sc->vmx_max_ntxqueues; i++) {
error = vmxnet3_init_txq(sc, i);
if (error)
return (error);
}
return (0);
}
static void
vmxnet3_destroy_rxq(struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_rxring *rxr;
int i;
rxq->vxrxq_sc = NULL;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_rxbuf != NULL) {
kmem_free(rxr->vxrxr_rxbuf,
rxr->vxrxr_ndesc * sizeof(struct vmxnet3_rxbuf));
rxr->vxrxr_rxbuf = NULL;
}
}
if (rxq->vxrxq_mtx != NULL)
mutex_obj_free(rxq->vxrxq_mtx);
}
static void
vmxnet3_destroy_txq(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
struct mbuf *m;
txr = &txq->vxtxq_cmd_ring;
txq->vxtxq_sc = NULL;
softint_disestablish(txq->vxtxq_si);
while ((m = pcq_get(txq->vxtxq_interq)) != NULL)
m_freem(m);
pcq_destroy(txq->vxtxq_interq);
if (txr->vxtxr_txbuf != NULL) {
kmem_free(txr->vxtxr_txbuf,
txr->vxtxr_ndesc * sizeof(struct vmxnet3_txbuf));
txr->vxtxr_txbuf = NULL;
}
if (txq->vxtxq_mtx != NULL)
mutex_obj_free(txq->vxtxq_mtx);
}
static void
vmxnet3_free_rxtx_queues(struct vmxnet3_softc *sc)
{
int i;
if (sc->vmx_queue != NULL) {
int max_nqueues;
for (i = 0; i < sc->vmx_max_nrxqueues; i++)
vmxnet3_destroy_rxq(&sc->vmx_queue[i].vxq_rxqueue);
for (i = 0; i < sc->vmx_max_ntxqueues; i++)
vmxnet3_destroy_txq(&sc->vmx_queue[i].vxq_txqueue);
max_nqueues = MAX(sc->vmx_max_nrxqueues, sc->vmx_max_ntxqueues);
kmem_free(sc->vmx_queue,
sizeof(struct vmxnet3_queue) * max_nqueues);
}
}
static int
vmxnet3_alloc_shared_data(struct vmxnet3_softc *sc)
{
device_t dev;
uint8_t *kva;
size_t size;
int i, error;
dev = sc->vmx_dev;
size = sizeof(struct vmxnet3_driver_shared);
error = vmxnet3_dma_malloc(sc, size, 1, &sc->vmx_ds_dma);
if (error) {
device_printf(dev, "cannot alloc shared memory\n");
return (error);
}
sc->vmx_ds = (struct vmxnet3_driver_shared *) sc->vmx_ds_dma.dma_vaddr;
size = sc->vmx_ntxqueues * sizeof(struct vmxnet3_txq_shared) +
sc->vmx_nrxqueues * sizeof(struct vmxnet3_rxq_shared);
error = vmxnet3_dma_malloc(sc, size, 128, &sc->vmx_qs_dma);
if (error) {
device_printf(dev, "cannot alloc queue shared memory\n");
return (error);
}
sc->vmx_qs = (void *) sc->vmx_qs_dma.dma_vaddr;
kva = sc->vmx_qs;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
sc->vmx_queue[i].vxq_txqueue.vxtxq_ts =
(struct vmxnet3_txq_shared *) kva;
kva += sizeof(struct vmxnet3_txq_shared);
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
sc->vmx_queue[i].vxq_rxqueue.vxrxq_rs =
(struct vmxnet3_rxq_shared *) kva;
kva += sizeof(struct vmxnet3_rxq_shared);
}
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
size = sizeof(struct vmxnet3_rss_shared);
error = vmxnet3_dma_malloc(sc, size, 128, &sc->vmx_rss_dma);
if (error) {
device_printf(dev, "cannot alloc rss shared memory\n");
return (error);
}
sc->vmx_rss =
(struct vmxnet3_rss_shared *) sc->vmx_rss_dma.dma_vaddr;
}
return (0);
}
static void
vmxnet3_free_shared_data(struct vmxnet3_softc *sc)
{
if (sc->vmx_rss != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_rss_dma);
sc->vmx_rss = NULL;
}
if (sc->vmx_qs != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_qs_dma);
sc->vmx_qs = NULL;
}
if (sc->vmx_ds != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_ds_dma);
sc->vmx_ds = NULL;
}
}
static int
vmxnet3_alloc_txq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
size_t descsz, compsz;
u_int i;
int q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_ntxqueues; q++) {
txq = &sc->vmx_queue[q].vxq_txqueue;
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
descsz = txr->vxtxr_ndesc * sizeof(struct vmxnet3_txdesc);
compsz = txr->vxtxr_ndesc * sizeof(struct vmxnet3_txcompdesc);
error = vmxnet3_dma_malloc(sc, descsz, 512, &txr->vxtxr_dma);
if (error) {
device_printf(dev, "cannot alloc Tx descriptors for "
"queue %d error %d\n", q, error);
return (error);
}
txr->vxtxr_txd =
(struct vmxnet3_txdesc *) txr->vxtxr_dma.dma_vaddr;
error = vmxnet3_dma_malloc(sc, compsz, 512, &txc->vxcr_dma);
if (error) {
device_printf(dev, "cannot alloc Tx comp descriptors "
"for queue %d error %d\n", q, error);
return (error);
}
txc->vxcr_u.txcd =
(struct vmxnet3_txcompdesc *) txc->vxcr_dma.dma_vaddr;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
error = bus_dmamap_create(sc->vmx_dmat, VMXNET3_TX_MAXSIZE,
VMXNET3_TX_MAXSEGS, VMXNET3_TX_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txr->vxtxr_txbuf[i].vtxb_dmamap);
if (error) {
device_printf(dev, "unable to create Tx buf "
"dmamap for queue %d idx %d\n", q, i);
return (error);
}
}
}
return (0);
}
static void
vmxnet3_free_txq_data(struct vmxnet3_softc *sc)
{
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
struct vmxnet3_txbuf *txb;
u_int i;
int q;
for (q = 0; q < sc->vmx_ntxqueues; q++) {
txq = &sc->vmx_queue[q].vxq_txqueue;
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
txb = &txr->vxtxr_txbuf[i];
if (txb->vtxb_dmamap != NULL) {
bus_dmamap_destroy(sc->vmx_dmat,
txb->vtxb_dmamap);
txb->vtxb_dmamap = NULL;
}
}
if (txc->vxcr_u.txcd != NULL) {
vmxnet3_dma_free(sc, &txc->vxcr_dma);
txc->vxcr_u.txcd = NULL;
}
if (txr->vxtxr_txd != NULL) {
vmxnet3_dma_free(sc, &txr->vxtxr_dma);
txr->vxtxr_txd = NULL;
}
}
}
static int
vmxnet3_alloc_rxq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
int descsz, compsz;
u_int i, j;
int q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_nrxqueues; q++) {
rxq = &sc->vmx_queue[q].vxq_rxqueue;
rxc = &rxq->vxrxq_comp_ring;
compsz = 0;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
descsz = rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxdesc);
compsz += rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxcompdesc);
error = vmxnet3_dma_malloc(sc, descsz, 512,
&rxr->vxrxr_dma);
if (error) {
device_printf(dev, "cannot allocate Rx "
"descriptors for queue %d/%d error %d\n",
i, q, error);
return (error);
}
rxr->vxrxr_rxd =
(struct vmxnet3_rxdesc *) rxr->vxrxr_dma.dma_vaddr;
}
error = vmxnet3_dma_malloc(sc, compsz, 512, &rxc->vxcr_dma);
if (error) {
device_printf(dev, "cannot alloc Rx comp descriptors "
"for queue %d error %d\n", q, error);
return (error);
}
rxc->vxcr_u.rxcd =
(struct vmxnet3_rxcompdesc *) rxc->vxcr_dma.dma_vaddr;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
error = bus_dmamap_create(sc->vmx_dmat, JUMBO_LEN, 1,
JUMBO_LEN, 0, BUS_DMA_NOWAIT,
&rxr->vxrxr_spare_dmap);
if (error) {
device_printf(dev, "unable to create spare "
"dmamap for queue %d/%d error %d\n",
q, i, error);
return (error);
}
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
error = bus_dmamap_create(sc->vmx_dmat, JUMBO_LEN, 1,
JUMBO_LEN, 0, BUS_DMA_NOWAIT,
&rxr->vxrxr_rxbuf[j].vrxb_dmamap);
if (error) {
device_printf(dev, "unable to create "
"dmamap for queue %d/%d slot %d "
"error %d\n",
q, i, j, error);
return (error);
}
}
}
}
return (0);
}
static void
vmxnet3_free_rxq_data(struct vmxnet3_softc *sc)
{
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxbuf *rxb;
u_int i, j;
int q;
for (q = 0; q < sc->vmx_nrxqueues; q++) {
rxq = &sc->vmx_queue[q].vxq_rxqueue;
rxc = &rxq->vxrxq_comp_ring;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_spare_dmap != NULL) {
bus_dmamap_destroy(sc->vmx_dmat,
rxr->vxrxr_spare_dmap);
rxr->vxrxr_spare_dmap = NULL;
}
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
rxb = &rxr->vxrxr_rxbuf[j];
if (rxb->vrxb_dmamap != NULL) {
bus_dmamap_destroy(sc->vmx_dmat,
rxb->vrxb_dmamap);
rxb->vrxb_dmamap = NULL;
}
}
}
if (rxc->vxcr_u.rxcd != NULL) {
vmxnet3_dma_free(sc, &rxc->vxcr_dma);
rxc->vxcr_u.rxcd = NULL;
}
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_rxd != NULL) {
vmxnet3_dma_free(sc, &rxr->vxrxr_dma);
rxr->vxrxr_rxd = NULL;
}
}
}
}
static int
vmxnet3_alloc_queue_data(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_alloc_txq_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_rxq_data(sc);
if (error)
return (error);
return (0);
}
static void
vmxnet3_free_queue_data(struct vmxnet3_softc *sc)
{
if (sc->vmx_queue != NULL) {
vmxnet3_free_rxq_data(sc);
vmxnet3_free_txq_data(sc);
}
}
static int
vmxnet3_alloc_mcast_table(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_dma_malloc(sc, VMXNET3_MULTICAST_MAX * ETHER_ADDR_LEN,
32, &sc->vmx_mcast_dma);
if (error)
device_printf(sc->vmx_dev, "unable to alloc multicast table\n");
else
sc->vmx_mcast = sc->vmx_mcast_dma.dma_vaddr;
return (error);
}
static void
vmxnet3_free_mcast_table(struct vmxnet3_softc *sc)
{
if (sc->vmx_mcast != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_mcast_dma);
sc->vmx_mcast = NULL;
}
}
static void
vmxnet3_init_shared_data(struct vmxnet3_softc *sc)
{
struct vmxnet3_driver_shared *ds;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txq_shared *txs;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxq_shared *rxs;
int i;
ds = sc->vmx_ds;
/*
* Initialize fields of the shared data that remains the same across
* reinits. Note the shared data is zero'd when allocated.
*/
ds->magic = VMXNET3_REV1_MAGIC;
/* DriverInfo */
ds->version = VMXNET3_DRIVER_VERSION;
ds->guest = VMXNET3_GOS_FREEBSD |
#ifdef __LP64__
VMXNET3_GOS_64BIT;
#else
VMXNET3_GOS_32BIT;
#endif
ds->vmxnet3_revision = 1;
ds->upt_version = 1;
/* Misc. conf */
ds->driver_data = vtophys(sc);
ds->driver_data_len = sizeof(struct vmxnet3_softc);
ds->queue_shared = sc->vmx_qs_dma.dma_paddr;
ds->queue_shared_len = sc->vmx_qs_dma.dma_size;
ds->nrxsg_max = sc->vmx_max_rxsegs;
/* RSS conf */
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
ds->rss.version = 1;
ds->rss.paddr = sc->vmx_rss_dma.dma_paddr;
ds->rss.len = sc->vmx_rss_dma.dma_size;
}
/* Interrupt control. */
ds->automask = sc->vmx_intr_mask_mode == VMXNET3_IMM_AUTO;
ds->nintr = sc->vmx_nintrs;
ds->evintr = sc->vmx_event_intr_idx;
ds->ictrl = VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
ds->modlevel[i] = UPT1_IMOD_ADAPTIVE;
/* Receive filter. */
ds->mcast_table = sc->vmx_mcast_dma.dma_paddr;
ds->mcast_tablelen = sc->vmx_mcast_dma.dma_size;
/* Tx queues */
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_queue[i].vxq_txqueue;
txs = txq->vxtxq_ts;
txs->cmd_ring = txq->vxtxq_cmd_ring.vxtxr_dma.dma_paddr;
txs->cmd_ring_len = txq->vxtxq_cmd_ring.vxtxr_ndesc;
txs->comp_ring = txq->vxtxq_comp_ring.vxcr_dma.dma_paddr;
txs->comp_ring_len = txq->vxtxq_comp_ring.vxcr_ndesc;
txs->driver_data = vtophys(txq);
txs->driver_data_len = sizeof(struct vmxnet3_txqueue);
}
/* Rx queues */
for (i = 0; i < sc->vmx_nrxqueues; i++) {
rxq = &sc->vmx_queue[i].vxq_rxqueue;
rxs = rxq->vxrxq_rs;
rxs->cmd_ring[0] = rxq->vxrxq_cmd_ring[0].vxrxr_dma.dma_paddr;
rxs->cmd_ring_len[0] = rxq->vxrxq_cmd_ring[0].vxrxr_ndesc;
rxs->cmd_ring[1] = rxq->vxrxq_cmd_ring[1].vxrxr_dma.dma_paddr;
rxs->cmd_ring_len[1] = rxq->vxrxq_cmd_ring[1].vxrxr_ndesc;
rxs->comp_ring = rxq->vxrxq_comp_ring.vxcr_dma.dma_paddr;
rxs->comp_ring_len = rxq->vxrxq_comp_ring.vxcr_ndesc;
rxs->driver_data = vtophys(rxq);
rxs->driver_data_len = sizeof(struct vmxnet3_rxqueue);
}
}
static void
vmxnet3_reinit_rss_shared_data(struct vmxnet3_softc *sc)
{
/*
* Use the same key as the Linux driver until FreeBSD can do
* RSS (presumably Toeplitz) in software.
*/
static const uint8_t rss_key[UPT1_RSS_MAX_KEY_SIZE] = {
0x3b, 0x56, 0xd1, 0x56, 0x13, 0x4a, 0xe7, 0xac,
0xe8, 0x79, 0x09, 0x75, 0xe8, 0x65, 0x79, 0x28,
0x35, 0x12, 0xb9, 0x56, 0x7c, 0x76, 0x4b, 0x70,
0xd8, 0x56, 0xa3, 0x18, 0x9b, 0x0a, 0xee, 0xf3,
0x96, 0xa6, 0x9f, 0x8f, 0x9e, 0x8c, 0x90, 0xc9,
};
struct vmxnet3_rss_shared *rss;
int i;
rss = sc->vmx_rss;
rss->hash_type =
UPT1_RSS_HASH_TYPE_IPV4 | UPT1_RSS_HASH_TYPE_TCP_IPV4 |
UPT1_RSS_HASH_TYPE_IPV6 | UPT1_RSS_HASH_TYPE_TCP_IPV6;
rss->hash_func = UPT1_RSS_HASH_FUNC_TOEPLITZ;
rss->hash_key_size = UPT1_RSS_MAX_KEY_SIZE;
rss->ind_table_size = UPT1_RSS_MAX_IND_TABLE_SIZE;
memcpy(rss->hash_key, rss_key, UPT1_RSS_MAX_KEY_SIZE);
for (i = 0; i < UPT1_RSS_MAX_IND_TABLE_SIZE; i++)
rss->ind_table[i] = i % sc->vmx_nrxqueues;
}
static void
vmxnet3_reinit_shared_data(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
struct vmxnet3_driver_shared *ds;
ifp = &sc->vmx_ethercom.ec_if;
ds = sc->vmx_ds;
ds->mtu = ifp->if_mtu;
ds->ntxqueue = sc->vmx_ntxqueues;
ds->nrxqueue = sc->vmx_nrxqueues;
ds->upt_features = 0;
if (ifp->if_capenable &
(IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
ds->upt_features |= UPT1_F_CSUM;
if (sc->vmx_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
ds->upt_features |= UPT1_F_VLAN;
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
ds->upt_features |= UPT1_F_RSS;
vmxnet3_reinit_rss_shared_data(sc);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_DSL, sc->vmx_ds_dma.dma_paddr);
vmxnet3_write_bar1(sc, VMXNET3_BAR1_DSH,
(uint64_t) sc->vmx_ds_dma.dma_paddr >> 32);
}
static int
vmxnet3_alloc_data(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_alloc_shared_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_queue_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_mcast_table(sc);
if (error)
return (error);
vmxnet3_init_shared_data(sc);
return (0);
}
static void
vmxnet3_free_data(struct vmxnet3_softc *sc)
{
vmxnet3_free_mcast_table(sc);
vmxnet3_free_queue_data(sc);
vmxnet3_free_shared_data(sc);
}
static int
vmxnet3_setup_interface(struct vmxnet3_softc *sc)
{
struct ifnet *ifp = &sc->vmx_ethercom.ec_if;
vmxnet3_get_lladdr(sc);
aprint_normal_dev(sc->vmx_dev, "Ethernet address %s\n",
ether_sprintf(sc->vmx_lladdr));
vmxnet3_set_lladdr(sc);
strlcpy(ifp->if_xname, device_xname(sc->vmx_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX;
ifp->if_extflags = IFEF_MPSAFE;
ifp->if_ioctl = vmxnet3_ioctl;
ifp->if_start = vmxnet3_start;
ifp->if_transmit = vmxnet3_transmit;
ifp->if_watchdog = NULL;
ifp->if_init = vmxnet3_init;
ifp->if_stop = vmxnet3_stop;
sc->vmx_ethercom.ec_if.if_capabilities |=IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
ifp->if_capenable = ifp->if_capabilities;
sc->vmx_ethercom.ec_if.if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
sc->vmx_ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
sc->vmx_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
IFQ_SET_MAXLEN(&ifp->if_snd, sc->vmx_ntxdescs);
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures. */
sc->vmx_ethercom.ec_ifmedia = &sc->vmx_media;
ifmedia_init_with_lock(&sc->vmx_media, IFM_IMASK, vmxnet3_ifmedia_change,
vmxnet3_ifmedia_status, sc->vmx_mtx);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_10G_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_10G_T, 0, NULL);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_set(&sc->vmx_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->vmx_lladdr);
ether_set_ifflags_cb(&sc->vmx_ethercom, vmxnet3_ifflags_cb);
vmxnet3_cmd_link_status(ifp);
/* should set before setting interrupts */
sc->vmx_rx_intr_process_limit = VMXNET3_RX_INTR_PROCESS_LIMIT;
sc->vmx_rx_process_limit = VMXNET3_RX_PROCESS_LIMIT;
sc->vmx_tx_intr_process_limit = VMXNET3_TX_INTR_PROCESS_LIMIT;
sc->vmx_tx_process_limit = VMXNET3_TX_PROCESS_LIMIT;
return (0);
}
static int
vmxnet3_setup_sysctl(struct vmxnet3_softc *sc)
{
const char *devname;
struct sysctllog **log;
const struct sysctlnode *rnode, *rxnode, *txnode;
int error;
log = &sc->vmx_sysctllog;
devname = device_xname(sc->vmx_dev);
error = sysctl_createv(log, 0, NULL, &rnode,
0, CTLTYPE_NODE, devname,
SYSCTL_DESCR("vmxnet3 information and settings"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "txrx_workqueue",
SYSCTL_DESCR("Use workqueue for packet processing"),
NULL, 0, &sc->vmx_txrx_workqueue, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, &rxnode,
0, CTLTYPE_NODE, "rx",
SYSCTL_DESCR("vmxnet3 information and settings for Rx"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "intr_process_limit",
SYSCTL_DESCR("max number of Rx packets to process for interrupt processing"),
NULL, 0, &sc->vmx_rx_intr_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rxnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "process_limit",
SYSCTL_DESCR("max number of Rx packets to process for deferred processing"),
NULL, 0, &sc->vmx_rx_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &rnode, &txnode,
0, CTLTYPE_NODE, "tx",
SYSCTL_DESCR("vmxnet3 information and settings for Tx"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "intr_process_limit",
SYSCTL_DESCR("max number of Tx packets to process for interrupt processing"),
NULL, 0, &sc->vmx_tx_intr_process_limit, 0, CTL_CREATE, CTL_EOL);
if (error)
goto out;
error = sysctl_createv(log, 0, &txnode, NULL,
CTLFLAG_READWRITE, CTLTYPE_INT, "process_limit",
SYSCTL_DESCR("max number of Tx packets to process for deferred processing"),
NULL, 0, &sc->vmx_tx_process_limit, 0, CTL_CREATE, CTL_EOL);
out:
if (error) {
aprint_error_dev(sc->vmx_dev,
"unable to create sysctl node\n");
sysctl_teardown(log);
}
return error;
}
static int
vmxnet3_setup_stats(struct vmxnet3_softc *sc)
{
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
int i;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
vmxq = &sc->vmx_queue[i];
txq = &vmxq->vxq_txqueue;
evcnt_attach_dynamic(&txq->vxtxq_intr, EVCNT_TYPE_INTR,
NULL, txq->vxtxq_name, "Interrupt on queue");
evcnt_attach_dynamic(&txq->vxtxq_defer, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "Handled queue in softint/workqueue");
evcnt_attach_dynamic(&txq->vxtxq_deferreq, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "Requested in softint/workqueue");
evcnt_attach_dynamic(&txq->vxtxq_pcqdrop, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "Dropped in pcq");
evcnt_attach_dynamic(&txq->vxtxq_transmitdef, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "Deferred transmit");
evcnt_attach_dynamic(&txq->vxtxq_watchdogto, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "Watchdog timeout");
evcnt_attach_dynamic(&txq->vxtxq_defragged, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "m_defrag successed");
evcnt_attach_dynamic(&txq->vxtxq_defrag_failed, EVCNT_TYPE_MISC,
NULL, txq->vxtxq_name, "m_defrag failed");
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
vmxq = &sc->vmx_queue[i];
rxq = &vmxq->vxq_rxqueue;
evcnt_attach_dynamic(&rxq->vxrxq_intr, EVCNT_TYPE_INTR,
NULL, rxq->vxrxq_name, "Interrupt on queue");
evcnt_attach_dynamic(&rxq->vxrxq_defer, EVCNT_TYPE_MISC,
NULL, rxq->vxrxq_name, "Handled queue in softint/workqueue");
evcnt_attach_dynamic(&rxq->vxrxq_deferreq, EVCNT_TYPE_MISC,
NULL, rxq->vxrxq_name, "Requested in softint/workqueue");
evcnt_attach_dynamic(&rxq->vxrxq_mgetcl_failed, EVCNT_TYPE_MISC,
NULL, rxq->vxrxq_name, "MCLGET failed");
evcnt_attach_dynamic(&rxq->vxrxq_mbuf_load_failed, EVCNT_TYPE_MISC,
NULL, rxq->vxrxq_name, "bus_dmamap_load_mbuf failed");
}
evcnt_attach_dynamic(&sc->vmx_event_intr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->vmx_dev), "Interrupt for other events");
evcnt_attach_dynamic(&sc->vmx_event_link, EVCNT_TYPE_MISC,
NULL, device_xname(sc->vmx_dev), "Link status event");
evcnt_attach_dynamic(&sc->vmx_event_txqerror, EVCNT_TYPE_MISC,
NULL, device_xname(sc->vmx_dev), "Tx queue error event");
evcnt_attach_dynamic(&sc->vmx_event_rxqerror, EVCNT_TYPE_MISC,
NULL, device_xname(sc->vmx_dev), "Rx queue error event");
evcnt_attach_dynamic(&sc->vmx_event_dic, EVCNT_TYPE_MISC,
NULL, device_xname(sc->vmx_dev), "Device impl change event");
evcnt_attach_dynamic(&sc->vmx_event_debug, EVCNT_TYPE_MISC,
NULL, device_xname(sc->vmx_dev), "Debug event");
return 0;
}
static void
vmxnet3_teardown_stats(struct vmxnet3_softc *sc)
{
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
int i;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
vmxq = &sc->vmx_queue[i];
txq = &vmxq->vxq_txqueue;
evcnt_detach(&txq->vxtxq_intr);
evcnt_detach(&txq->vxtxq_defer);
evcnt_detach(&txq->vxtxq_deferreq);
evcnt_detach(&txq->vxtxq_pcqdrop);
evcnt_detach(&txq->vxtxq_transmitdef);
evcnt_detach(&txq->vxtxq_watchdogto);
evcnt_detach(&txq->vxtxq_defragged);
evcnt_detach(&txq->vxtxq_defrag_failed);
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
vmxq = &sc->vmx_queue[i];
rxq = &vmxq->vxq_rxqueue;
evcnt_detach(&rxq->vxrxq_intr);
evcnt_detach(&rxq->vxrxq_defer);
evcnt_detach(&rxq->vxrxq_deferreq);
evcnt_detach(&rxq->vxrxq_mgetcl_failed);
evcnt_detach(&rxq->vxrxq_mbuf_load_failed);
}
evcnt_detach(&sc->vmx_event_intr);
evcnt_detach(&sc->vmx_event_link);
evcnt_detach(&sc->vmx_event_txqerror);
evcnt_detach(&sc->vmx_event_rxqerror);
evcnt_detach(&sc->vmx_event_dic);
evcnt_detach(&sc->vmx_event_debug);
}
static void
vmxnet3_evintr(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_txq_shared *ts;
struct vmxnet3_rxq_shared *rs;
uint32_t event;
int reset;
dev = sc->vmx_dev;
reset = 0;
VMXNET3_CORE_LOCK(sc);
/* Clear events. */
event = sc->vmx_ds->event;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_EVENT, event);
if (event & VMXNET3_EVENT_LINK) {
sc->vmx_event_link.ev_count++;
vmxnet3_if_link_status(sc);
if (sc->vmx_link_active != 0)
if_schedule_deferred_start(&sc->vmx_ethercom.ec_if);
}
if (event & (VMXNET3_EVENT_TQERROR | VMXNET3_EVENT_RQERROR)) {
if (event & VMXNET3_EVENT_TQERROR)
sc->vmx_event_txqerror.ev_count++;
if (event & VMXNET3_EVENT_RQERROR)
sc->vmx_event_rxqerror.ev_count++;
reset = 1;
vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_STATUS);
ts = sc->vmx_queue[0].vxq_txqueue.vxtxq_ts;
if (ts->stopped != 0)
device_printf(dev, "Tx queue error %#x\n", ts->error);
rs = sc->vmx_queue[0].vxq_rxqueue.vxrxq_rs;
if (rs->stopped != 0)
device_printf(dev, "Rx queue error %#x\n", rs->error);
device_printf(dev, "Rx/Tx queue error event ... resetting\n");
}
if (event & VMXNET3_EVENT_DIC) {
sc->vmx_event_dic.ev_count++;
device_printf(dev, "device implementation change event\n");
}
if (event & VMXNET3_EVENT_DEBUG) {
sc->vmx_event_debug.ev_count++;
device_printf(dev, "debug event\n");
}
if (reset != 0)
vmxnet3_init_locked(sc);
VMXNET3_CORE_UNLOCK(sc);
}
static bool
vmxnet3_txq_eof(struct vmxnet3_txqueue *txq, u_int limit)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
struct vmxnet3_txcompdesc *txcd;
struct vmxnet3_txbuf *txb;
struct ifnet *ifp;
struct mbuf *m;
u_int sop;
bool more = false;
sc = txq->vxtxq_sc;
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
ifp = &sc->vmx_ethercom.ec_if;
VMXNET3_TXQ_LOCK_ASSERT(txq);
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
for (;;) {
if (limit-- == 0) {
more = true;
break;
}
txcd = &txc->vxcr_u.txcd[txc->vxcr_next];
if (txcd->gen != txc->vxcr_gen)
break;
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++txc->vxcr_next == txc->vxcr_ndesc) {
txc->vxcr_next = 0;
txc->vxcr_gen ^= 1;
}
sop = txr->vxtxr_next;
txb = &txr->vxtxr_txbuf[sop];
if ((m = txb->vtxb_m) != NULL) {
bus_dmamap_sync(sc->vmx_dmat, txb->vtxb_dmamap,
0, txb->vtxb_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vmx_dmat, txb->vtxb_dmamap);
if_statinc_ref(nsr, if_opackets);
if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
if (m->m_flags & M_MCAST)
if_statinc_ref(nsr, if_omcasts);
m_freem(m);
txb->vtxb_m = NULL;
}
txr->vxtxr_next = (txcd->eop_idx + 1) % txr->vxtxr_ndesc;
}
IF_STAT_PUTREF(ifp);
if (txr->vxtxr_head == txr->vxtxr_next)
txq->vxtxq_watchdog = 0;
return more;
}
static int
vmxnet3_newbuf(struct vmxnet3_softc *sc, struct vmxnet3_rxqueue *rxq,
struct vmxnet3_rxring *rxr)
{
struct mbuf *m;
struct vmxnet3_rxdesc *rxd;
struct vmxnet3_rxbuf *rxb;
bus_dma_tag_t tag;
bus_dmamap_t dmap;
int idx, btype, error;
tag = sc->vmx_dmat;
dmap = rxr->vxrxr_spare_dmap;
idx = rxr->vxrxr_fill;
rxd = &rxr->vxrxr_rxd[idx];
rxb = &rxr->vxrxr_rxbuf[idx];
/* Don't allocate buffers for ring 2 for now. */
if (rxr->vxrxr_rid != 0)
return -1;
btype = VMXNET3_BTYPE_HEAD;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
rxq->vxrxq_mgetcl_failed.ev_count++;
m_freem(m);
return (ENOBUFS);
}
m->m_pkthdr.len = m->m_len = JUMBO_LEN;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->vmx_dmat, dmap, m, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
rxq->vxrxq_mbuf_load_failed.ev_count++;
return (error);
}
if (rxb->vrxb_m != NULL) {
bus_dmamap_sync(tag, rxb->vrxb_dmamap,
0, rxb->vrxb_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(tag, rxb->vrxb_dmamap);
}
rxr->vxrxr_spare_dmap = rxb->vrxb_dmamap;
rxb->vrxb_dmamap = dmap;
rxb->vrxb_m = m;
rxd->addr = DMAADDR(dmap);
rxd->len = m->m_pkthdr.len;
rxd->btype = btype;
rxd->gen = rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
return (0);
}
static void
vmxnet3_rxq_eof_discard(struct vmxnet3_rxqueue *rxq,
struct vmxnet3_rxring *rxr, int idx)
{
struct vmxnet3_rxdesc *rxd;
rxd = &rxr->vxrxr_rxd[idx];
rxd->gen = rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
}
static void
vmxnet3_rxq_discard_chain(struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxcompdesc *rxcd;
int idx, eof;
sc = rxq->vxrxq_sc;
rxc = &rxq->vxrxq_comp_ring;
do {
rxcd = &rxc->vxcr_u.rxcd[rxc->vxcr_next];
if (rxcd->gen != rxc->vxcr_gen)
break; /* Not expected. */
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++rxc->vxcr_next == rxc->vxcr_ndesc) {
rxc->vxcr_next = 0;
rxc->vxcr_gen ^= 1;
}
idx = rxcd->rxd_idx;
eof = rxcd->eop;
if (rxcd->qid < sc->vmx_nrxqueues)
rxr = &rxq->vxrxq_cmd_ring[0];
else
rxr = &rxq->vxrxq_cmd_ring[1];
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
} while (!eof);
}
static void
vmxnet3_rx_csum(struct vmxnet3_rxcompdesc *rxcd, struct mbuf *m)
{
if (rxcd->no_csum)
return;
if (rxcd->ipv4) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (rxcd->ipcsum_ok == 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
}
if (rxcd->fragment)
return;
if (rxcd->tcp) {
m->m_pkthdr.csum_flags |=
rxcd->ipv4 ? M_CSUM_TCPv4 : M_CSUM_TCPv6;
if ((rxcd->csum_ok) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
if (rxcd->udp) {
m->m_pkthdr.csum_flags |=
rxcd->ipv4 ? M_CSUM_UDPv4 : M_CSUM_UDPv6 ;
if ((rxcd->csum_ok) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
}
static void
vmxnet3_rxq_input(struct vmxnet3_rxqueue *rxq,
struct vmxnet3_rxcompdesc *rxcd, struct mbuf *m)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
sc = rxq->vxrxq_sc;
ifp = &sc->vmx_ethercom.ec_if;
if (rxcd->error) {
if_statinc(ifp, if_ierrors);
m_freem(m);
return;
}
if (!rxcd->no_csum)
vmxnet3_rx_csum(rxcd, m);
if (rxcd->vlan)
vlan_set_tag(m, rxcd->vtag);
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
if_statinc_ref(nsr, if_ipackets);
if_statadd_ref(nsr, if_ibytes, m->m_pkthdr.len);
IF_STAT_PUTREF(ifp);
if_percpuq_enqueue(ifp->if_percpuq, m);
}
static bool
vmxnet3_rxq_eof(struct vmxnet3_rxqueue *rxq, u_int limit)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxdesc *rxd __diagused;
struct vmxnet3_rxcompdesc *rxcd;
struct mbuf *m, *m_head, *m_tail;
u_int idx, length;
bool more = false;
sc = rxq->vxrxq_sc;
ifp = &sc->vmx_ethercom.ec_if;
rxc = &rxq->vxrxq_comp_ring;
VMXNET3_RXQ_LOCK_ASSERT(rxq);
if ((ifp->if_flags & IFF_RUNNING) == 0)
return more;
m_head = rxq->vxrxq_mhead;
rxq->vxrxq_mhead = NULL;
m_tail = rxq->vxrxq_mtail;
rxq->vxrxq_mtail = NULL;
KASSERT(m_head == NULL || m_tail != NULL);
for (;;) {
if (limit-- == 0) {
more = true;
break;
}
rxcd = &rxc->vxcr_u.rxcd[rxc->vxcr_next];
if (rxcd->gen != rxc->vxcr_gen) {
rxq->vxrxq_mhead = m_head;
rxq->vxrxq_mtail = m_tail;
break;
}
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++rxc->vxcr_next == rxc->vxcr_ndesc) {
rxc->vxcr_next = 0;
rxc->vxcr_gen ^= 1;
}
idx = rxcd->rxd_idx;
length = rxcd->len;
if (rxcd->qid < sc->vmx_nrxqueues)
rxr = &rxq->vxrxq_cmd_ring[0];
else
rxr = &rxq->vxrxq_cmd_ring[1];
rxd = &rxr->vxrxr_rxd[idx];
m = rxr->vxrxr_rxbuf[idx].vrxb_m;
KASSERT(m != NULL);
/*
* The host may skip descriptors. We detect this when this
* descriptor does not match the previous fill index. Catch
* up with the host now.
*/
if (__predict_false(rxr->vxrxr_fill != idx)) {
while (rxr->vxrxr_fill != idx) {
rxr->vxrxr_rxd[rxr->vxrxr_fill].gen =
rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
}
}
if (rxcd->sop) {
/* start of frame w/o head buffer */
KASSERT(rxd->btype == VMXNET3_BTYPE_HEAD);
/* start of frame not in ring 0 */
KASSERT(rxr == &rxq->vxrxq_cmd_ring[0]);
/* duplicate start of frame? */
KASSERT(m_head == NULL);
if (length == 0) {
/* Just ignore this descriptor. */
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
goto nextp;
}
if (vmxnet3_newbuf(sc, rxq, rxr) != 0) {
if_statinc(ifp, if_iqdrops);
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
if (!rxcd->eop)
vmxnet3_rxq_discard_chain(rxq);
goto nextp;
}
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = length;
m->m_pkthdr.csum_flags = 0;
m_head = m_tail = m;
} else {
/* non start of frame w/o body buffer */
KASSERT(rxd->btype == VMXNET3_BTYPE_BODY);
/* frame not started? */
KASSERT(m_head != NULL);
if (vmxnet3_newbuf(sc, rxq, rxr) != 0) {
if_statinc(ifp, if_iqdrops);
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
if (!rxcd->eop)
vmxnet3_rxq_discard_chain(rxq);
m_freem(m_head);
m_head = m_tail = NULL;
goto nextp;
}
m->m_len = length;
m_head->m_pkthdr.len += length;
m_tail->m_next = m;
m_tail = m;
}
if (rxcd->eop) {
vmxnet3_rxq_input(rxq, rxcd, m_head);
m_head = m_tail = NULL;
/* Must recheck after dropping the Rx lock. */
if ((ifp->if_flags & IFF_RUNNING) == 0)
break;
}
nextp:
if (__predict_false(rxq->vxrxq_rs->update_rxhead)) {
int qid = rxcd->qid;
bus_size_t r;
idx = (idx + 1) % rxr->vxrxr_ndesc;
if (qid >= sc->vmx_nrxqueues) {
qid -= sc->vmx_nrxqueues;
r = VMXNET3_BAR0_RXH2(qid);
} else
r = VMXNET3_BAR0_RXH1(qid);
vmxnet3_write_bar0(sc, r, idx);
}
}
return more;
}
static inline void
vmxnet3_sched_handle_queue(struct vmxnet3_softc *sc, struct vmxnet3_queue *vmxq)
{
if (vmxq->vxq_workqueue) {
/*
* When this function is called, "vmxq" is owned by one CPU.
* so, atomic operation is not required here.
*/
if (!vmxq->vxq_wq_enqueued) {
vmxq->vxq_wq_enqueued = true;
workqueue_enqueue(sc->vmx_queue_wq,
&vmxq->vxq_wq_cookie, curcpu());
}
} else {
softint_schedule(vmxq->vxq_si);
}
}
static int
vmxnet3_legacy_intr(void *xsc)
{
struct vmxnet3_softc *sc;
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
u_int txlimit, rxlimit;
bool txmore, rxmore;
sc = xsc;
vmxq = &sc->vmx_queue[0];
txq = &vmxq->vxq_txqueue;
rxq = &vmxq->vxq_rxqueue;
txlimit = sc->vmx_tx_intr_process_limit;
rxlimit = sc->vmx_rx_intr_process_limit;
if (sc->vmx_intr_type == VMXNET3_IT_LEGACY) {
if (vmxnet3_read_bar1(sc, VMXNET3_BAR1_INTR) == 0)
return (0);
}
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_all_intrs(sc);
if (sc->vmx_ds->event != 0)
vmxnet3_evintr(sc);
VMXNET3_TXQ_LOCK(txq);
txmore = vmxnet3_txq_eof(txq, txlimit);
VMXNET3_TXQ_UNLOCK(txq);
VMXNET3_RXQ_LOCK(rxq);
rxmore = vmxnet3_rxq_eof(rxq, rxlimit);
VMXNET3_RXQ_UNLOCK(rxq);
if (txmore || rxmore)
vmxnet3_sched_handle_queue(sc, vmxq);
else {
if_schedule_deferred_start(&sc->vmx_ethercom.ec_if);
vmxnet3_enable_all_intrs(sc);
}
return (1);
}
static int
vmxnet3_txrxq_intr(void *xvmxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
u_int txlimit, rxlimit;
bool txmore, rxmore;
vmxq = xvmxq;
txq = &vmxq->vxq_txqueue;
rxq = &vmxq->vxq_rxqueue;
sc = txq->vxtxq_sc;
txlimit = sc->vmx_tx_intr_process_limit;
rxlimit = sc->vmx_rx_intr_process_limit;
vmxq->vxq_workqueue = sc->vmx_txrx_workqueue;
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_intr(sc, vmxq->vxq_intr_idx);
VMXNET3_TXQ_LOCK(txq);
txq->vxtxq_intr.ev_count++;
txmore = vmxnet3_txq_eof(txq, txlimit);
VMXNET3_TXQ_UNLOCK(txq);
VMXNET3_RXQ_LOCK(rxq);
rxq->vxrxq_intr.ev_count++;
rxmore = vmxnet3_rxq_eof(rxq, rxlimit);
VMXNET3_RXQ_UNLOCK(rxq);
if (txmore || rxmore)
vmxnet3_sched_handle_queue(sc, vmxq);
else {
/* for ALTQ */
if (vmxq->vxq_id == 0)
if_schedule_deferred_start(&sc->vmx_ethercom.ec_if);
softint_schedule(txq->vxtxq_si);
vmxnet3_enable_intr(sc, vmxq->vxq_intr_idx);
}
return (1);
}
static void
vmxnet3_handle_queue(void *xvmxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_queue *vmxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
u_int txlimit, rxlimit;
bool txmore, rxmore;
vmxq = xvmxq;
txq = &vmxq->vxq_txqueue;
rxq = &vmxq->vxq_rxqueue;
sc = txq->vxtxq_sc;
txlimit = sc->vmx_tx_process_limit;
rxlimit = sc->vmx_rx_process_limit;
VMXNET3_TXQ_LOCK(txq);
txq->vxtxq_defer.ev_count++;
txmore = vmxnet3_txq_eof(txq, txlimit);
if (txmore)
txq->vxtxq_deferreq.ev_count++;
/* for ALTQ */
if (vmxq->vxq_id == 0)
if_schedule_deferred_start(&sc->vmx_ethercom.ec_if);
softint_schedule(txq->vxtxq_si);
VMXNET3_TXQ_UNLOCK(txq);
VMXNET3_RXQ_LOCK(rxq);
rxq->vxrxq_defer.ev_count++;
rxmore = vmxnet3_rxq_eof(rxq, rxlimit);
if (rxmore)
rxq->vxrxq_deferreq.ev_count++;
VMXNET3_RXQ_UNLOCK(rxq);
if (txmore || rxmore)
vmxnet3_sched_handle_queue(sc, vmxq);
else
vmxnet3_enable_intr(sc, vmxq->vxq_intr_idx);
}
static void
vmxnet3_handle_queue_work(struct work *wk, void *context)
{
struct vmxnet3_queue *vmxq;
vmxq = container_of(wk, struct vmxnet3_queue, vxq_wq_cookie);
vmxq->vxq_wq_enqueued = false;
vmxnet3_handle_queue(vmxq);
}
static int
vmxnet3_event_intr(void *xsc)
{
struct vmxnet3_softc *sc;
sc = xsc;
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_intr(sc, sc->vmx_event_intr_idx);
sc->vmx_event_intr.ev_count++;
if (sc->vmx_ds->event != 0)
vmxnet3_evintr(sc);
vmxnet3_enable_intr(sc, sc->vmx_event_intr_idx);
return (1);
}
static void
vmxnet3_txstop(struct vmxnet3_softc *sc, struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
struct vmxnet3_txbuf *txb;
u_int i;
txr = &txq->vxtxq_cmd_ring;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
txb = &txr->vxtxr_txbuf[i];
if (txb->vtxb_m == NULL)
continue;
bus_dmamap_sync(sc->vmx_dmat, txb->vtxb_dmamap,
0, txb->vtxb_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vmx_dmat, txb->vtxb_dmamap);
m_freem(txb->vtxb_m);
txb->vtxb_m = NULL;
}
}
static void
vmxnet3_rxstop(struct vmxnet3_softc *sc, struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_rxring *rxr;
struct vmxnet3_rxbuf *rxb;
u_int i, j;
if (rxq->vxrxq_mhead != NULL) {
m_freem(rxq->vxrxq_mhead);
rxq->vxrxq_mhead = NULL;
rxq->vxrxq_mtail = NULL;
}
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
rxb = &rxr->vxrxr_rxbuf[j];
if (rxb->vrxb_m == NULL)
continue;
bus_dmamap_sync(sc->vmx_dmat, rxb->vrxb_dmamap,
0, rxb->vrxb_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vmx_dmat, rxb->vrxb_dmamap);
m_freem(rxb->vrxb_m);
rxb->vrxb_m = NULL;
}
}
}
static void
vmxnet3_stop_rendezvous(struct vmxnet3_softc *sc)
{
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_txqueue *txq;
struct vmxnet3_queue *vmxq;
int i;
for (i = 0; i < sc->vmx_nrxqueues; i++) {
rxq = &sc->vmx_queue[i].vxq_rxqueue;
VMXNET3_RXQ_LOCK(rxq);
VMXNET3_RXQ_UNLOCK(rxq);
}
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_queue[i].vxq_txqueue;
VMXNET3_TXQ_LOCK(txq);
VMXNET3_TXQ_UNLOCK(txq);
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
vmxq = &sc->vmx_queue[i];
workqueue_wait(sc->vmx_queue_wq, &vmxq->vxq_wq_cookie);
}
}
static void
vmxnet3_stop_locked(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
int q;
ifp = &sc->vmx_ethercom.ec_if;
VMXNET3_CORE_LOCK_ASSERT(sc);
ifp->if_flags &= ~IFF_RUNNING;
sc->vmx_link_active = 0;
callout_stop(&sc->vmx_tick);
/* Disable interrupts. */
vmxnet3_disable_all_intrs(sc);
vmxnet3_write_cmd(sc, VMXNET3_CMD_DISABLE);
vmxnet3_stop_rendezvous(sc);
for (q = 0; q < sc->vmx_ntxqueues; q++)
vmxnet3_txstop(sc, &sc->vmx_queue[q].vxq_txqueue);
for (q = 0; q < sc->vmx_nrxqueues; q++)
vmxnet3_rxstop(sc, &sc->vmx_queue[q].vxq_rxqueue);
vmxnet3_write_cmd(sc, VMXNET3_CMD_RESET);
}
static void
vmxnet3_stop(struct ifnet *ifp, int disable)
{
struct vmxnet3_softc *sc = ifp->if_softc;
VMXNET3_CORE_LOCK(sc);
vmxnet3_stop_locked(sc);
VMXNET3_CORE_UNLOCK(sc);
}
static void
vmxnet3_txinit(struct vmxnet3_softc *sc, struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
txr = &txq->vxtxq_cmd_ring;
txr->vxtxr_head = 0;
txr->vxtxr_next = 0;
txr->vxtxr_gen = VMXNET3_INIT_GEN;
memset(txr->vxtxr_txd, 0,
txr->vxtxr_ndesc * sizeof(struct vmxnet3_txdesc));
txc = &txq->vxtxq_comp_ring;
txc->vxcr_next = 0;
txc->vxcr_gen = VMXNET3_INIT_GEN;
memset(txc->vxcr_u.txcd, 0,
txc->vxcr_ndesc * sizeof(struct vmxnet3_txcompdesc));
}
static int
vmxnet3_rxinit(struct vmxnet3_softc *sc, struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
u_int i, populate, idx;
int error;
/* LRO and jumbo frame is not supported yet */
populate = 1;
for (i = 0; i < populate; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_fill = 0;
rxr->vxrxr_gen = VMXNET3_INIT_GEN;
memset(rxr->vxrxr_rxd, 0,
rxr->vxrxr_ndesc * sizeof(struct vmxnet3_rxdesc));
for (idx = 0; idx < rxr->vxrxr_ndesc; idx++) {
error = vmxnet3_newbuf(sc, rxq, rxr);
if (error)
return (error);
}
}
for (/**/; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_fill = 0;
rxr->vxrxr_gen = 0;
memset(rxr->vxrxr_rxd, 0,
rxr->vxrxr_ndesc * sizeof(struct vmxnet3_rxdesc));
}
rxc = &rxq->vxrxq_comp_ring;
rxc->vxcr_next = 0;
rxc->vxcr_gen = VMXNET3_INIT_GEN;
memset(rxc->vxcr_u.rxcd, 0,
rxc->vxcr_ndesc * sizeof(struct vmxnet3_rxcompdesc));
return (0);
}
static int
vmxnet3_reinit_queues(struct vmxnet3_softc *sc)
{
device_t dev;
int q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_ntxqueues; q++)
vmxnet3_txinit(sc, &sc->vmx_queue[q].vxq_txqueue);
for (q = 0; q < sc->vmx_nrxqueues; q++) {
error = vmxnet3_rxinit(sc, &sc->vmx_queue[q].vxq_rxqueue);
if (error) {
device_printf(dev, "cannot populate Rx queue %d\n", q);
return (error);
}
}
return (0);
}
static int
vmxnet3_enable_device(struct vmxnet3_softc *sc)
{
int q;
if (vmxnet3_read_cmd(sc, VMXNET3_CMD_ENABLE) != 0) {
device_printf(sc->vmx_dev, "device enable command failed!\n");
return (1);
}
/* Reset the Rx queue heads. */
for (q = 0; q < sc->vmx_nrxqueues; q++) {
vmxnet3_write_bar0(sc, VMXNET3_BAR0_RXH1(q), 0);
vmxnet3_write_bar0(sc, VMXNET3_BAR0_RXH2(q), 0);
}
return (0);
}
static void
vmxnet3_reinit_rxfilters(struct vmxnet3_softc *sc)
{
vmxnet3_set_rxfilter(sc);
memset(sc->vmx_ds->vlan_filter, 0, sizeof(sc->vmx_ds->vlan_filter));
vmxnet3_write_cmd(sc, VMXNET3_CMD_VLAN_FILTER);
}
static int
vmxnet3_reinit(struct vmxnet3_softc *sc)
{
vmxnet3_set_lladdr(sc);
vmxnet3_reinit_shared_data(sc);
if (vmxnet3_reinit_queues(sc) != 0)
return (ENXIO);
if (vmxnet3_enable_device(sc) != 0)
return (ENXIO);
vmxnet3_reinit_rxfilters(sc);
return (0);
}
static int
vmxnet3_init_locked(struct vmxnet3_softc *sc)
{
struct ifnet *ifp = &sc->vmx_ethercom.ec_if;
int error;
vmxnet3_stop_locked(sc);
error = vmxnet3_reinit(sc);
if (error) {
vmxnet3_stop_locked(sc);
return (error);
}
ifp->if_flags |= IFF_RUNNING;
vmxnet3_if_link_status(sc);
vmxnet3_enable_all_intrs(sc);
callout_reset(&sc->vmx_tick, hz, vmxnet3_tick, sc);
return (0);
}
static int
vmxnet3_init(struct ifnet *ifp)
{
struct vmxnet3_softc *sc = ifp->if_softc;
int error;
VMXNET3_CORE_LOCK(sc);
error = vmxnet3_init_locked(sc);
VMXNET3_CORE_UNLOCK(sc);
return (error);
}
static int
vmxnet3_txq_offload_ctx(struct vmxnet3_txqueue *txq, struct mbuf *m,
int *start, int *csum_start)
{
struct ether_header *eh;
struct mbuf *mp;
int offset, csum_off, iphl, offp;
bool v4;
eh = mtod(m, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
offset = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
m_freem(m);
return (EINVAL);
}
if ((m->m_pkthdr.csum_flags &
(M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)) != 0) {
iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
v4 = true;
} else {
iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
v4 = false;
}
*start = offset + iphl;
if (m->m_pkthdr.csum_flags &
(M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_TSOv4 | M_CSUM_TSOv6)) {
csum_off = offsetof(struct tcphdr, th_sum);
} else {
csum_off = offsetof(struct udphdr, uh_sum);
}
*csum_start = *start + csum_off;
mp = m_pulldown(m, 0, *csum_start + 2, &offp);
if (!mp) {
/* m is already freed */
return ENOBUFS;
}
if (m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) {
struct tcphdr *tcp;
txq->vxtxq_stats.vmtxs_tso++;
tcp = (void *)(mtod(mp, char *) + offp + *start);
if (v4) {
struct ip *ip;
ip = (void *)(mtod(mp, char *) + offp + offset);
tcp->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
} else {
struct ip6_hdr *ip6;
ip6 = (void *)(mtod(mp, char *) + offp + offset);
tcp->th_sum = in6_cksum_phdr(&ip6->ip6_src,
&ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
}
/*
* For TSO, the size of the protocol header is also
* included in the descriptor header size.
*/
*start += (tcp->th_off << 2);
} else
txq->vxtxq_stats.vmtxs_csum++;
return (0);
}
static int
vmxnet3_txq_load_mbuf(struct vmxnet3_txqueue *txq, struct mbuf **m0,
bus_dmamap_t dmap)
{
struct mbuf *m;
bus_dma_tag_t tag;
int error;
m = *m0;
tag = txq->vxtxq_sc->vmx_dmat;
error = bus_dmamap_load_mbuf(tag, dmap, m, BUS_DMA_NOWAIT);
if (error == 0 || error != EFBIG)
return (error);
m = m_defrag(m, M_NOWAIT);
if (m != NULL) {
*m0 = m;
error = bus_dmamap_load_mbuf(tag, dmap, m, BUS_DMA_NOWAIT);
} else
error = ENOBUFS;
if (error) {
m_freem(*m0);
*m0 = NULL;
txq->vxtxq_defrag_failed.ev_count++;
} else
txq->vxtxq_defragged.ev_count++;
return (error);
}
static void
vmxnet3_txq_unload_mbuf(struct vmxnet3_txqueue *txq, bus_dmamap_t dmap)
{
bus_dmamap_unload(txq->vxtxq_sc->vmx_dmat, dmap);
}
static int
vmxnet3_txq_encap(struct vmxnet3_txqueue *txq, struct mbuf **m0)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txring *txr;
struct vmxnet3_txdesc *txd, *sop;
struct mbuf *m;
bus_dmamap_t dmap;
bus_dma_segment_t *segs;
int i, gen, start, csum_start, nsegs, error;
sc = txq->vxtxq_sc;
start = 0;
txd = NULL;
txr = &txq->vxtxq_cmd_ring;
dmap = txr->vxtxr_txbuf[txr->vxtxr_head].vtxb_dmamap;
csum_start = 0; /* GCC */
error = vmxnet3_txq_load_mbuf(txq, m0, dmap);
if (error)
return (error);
nsegs = dmap->dm_nsegs;
segs = dmap->dm_segs;
m = *m0;
KASSERT(m->m_flags & M_PKTHDR);
KASSERT(nsegs <= VMXNET3_TX_MAXSEGS);
if (vmxnet3_txring_avail(txr) < nsegs) {
txq->vxtxq_stats.vmtxs_full++;
vmxnet3_txq_unload_mbuf(txq, dmap);
return (ENOSPC);
} else if (m->m_pkthdr.csum_flags & VMXNET3_CSUM_ALL_OFFLOAD) {
error = vmxnet3_txq_offload_ctx(txq, m, &start, &csum_start);
if (error) {
/* m is already freed */
txq->vxtxq_stats.vmtxs_offload_failed++;
vmxnet3_txq_unload_mbuf(txq, dmap);
*m0 = NULL;
return (error);
}
}
txr->vxtxr_txbuf[txr->vxtxr_head].vtxb_m = m;
sop = &txr->vxtxr_txd[txr->vxtxr_head];
gen = txr->vxtxr_gen ^ 1; /* Owned by cpu (yet) */
for (i = 0; i < nsegs; i++) {
txd = &txr->vxtxr_txd[txr->vxtxr_head];
txd->addr = segs[i].ds_addr;
txd->len = segs[i].ds_len;
txd->gen = gen;
txd->dtype = 0;
txd->offload_mode = VMXNET3_OM_NONE;
txd->offload_pos = 0;
txd->hlen = 0;
txd->eop = 0;
txd->compreq = 0;
txd->vtag_mode = 0;
txd->vtag = 0;
if (++txr->vxtxr_head == txr->vxtxr_ndesc) {
txr->vxtxr_head = 0;
txr->vxtxr_gen ^= 1;
}
gen = txr->vxtxr_gen;
}
txd->eop = 1;
txd->compreq = 1;
if (vlan_has_tag(m)) {
sop->vtag_mode = 1;
sop->vtag = vlan_get_tag(m);
}
if (m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) {
sop->offload_mode = VMXNET3_OM_TSO;
sop->hlen = start;
sop->offload_pos = m->m_pkthdr.segsz;
} else if (m->m_pkthdr.csum_flags & (VMXNET3_CSUM_OFFLOAD |
VMXNET3_CSUM_OFFLOAD_IPV6)) {
sop->offload_mode = VMXNET3_OM_CSUM;
sop->hlen = start;
sop->offload_pos = csum_start;
}
/* Finally, change the ownership. */
vmxnet3_barrier(sc, VMXNET3_BARRIER_WR);
sop->gen ^= 1;
txq->vxtxq_ts->npending += nsegs;
if (txq->vxtxq_ts->npending >= txq->vxtxq_ts->intr_threshold) {
struct vmxnet3_queue *vmxq;
vmxq = container_of(txq, struct vmxnet3_queue, vxq_txqueue);
txq->vxtxq_ts->npending = 0;
vmxnet3_write_bar0(sc, VMXNET3_BAR0_TXH(vmxq->vxq_id),
txr->vxtxr_head);
}
return (0);
}
#define VMXNET3_TX_START 1
#define VMXNET3_TX_TRANSMIT 2
static inline void
vmxnet3_tx_common_locked(struct ifnet *ifp, struct vmxnet3_txqueue *txq, int txtype)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txring *txr;
struct mbuf *m_head;
int tx;
sc = ifp->if_softc;
txr = &txq->vxtxq_cmd_ring;
tx = 0;
VMXNET3_TXQ_LOCK_ASSERT(txq);
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
sc->vmx_link_active == 0)
return;
for (;;) {
if (txtype == VMXNET3_TX_START)
IFQ_POLL(&ifp->if_snd, m_head);
else
m_head = pcq_peek(txq->vxtxq_interq);
if (m_head == NULL)
break;
if (vmxnet3_txring_avail(txr) < VMXNET3_TX_MAXSEGS)
break;
if (txtype == VMXNET3_TX_START)
IFQ_DEQUEUE(&ifp->if_snd, m_head);
else
m_head = pcq_get(txq->vxtxq_interq);
if (m_head == NULL)
break;
if (vmxnet3_txq_encap(txq, &m_head) != 0) {
if (m_head != NULL)
m_freem(m_head);
break;
}
tx++;
bpf_mtap(ifp, m_head, BPF_D_OUT);
}
if (tx > 0)
txq->vxtxq_watchdog = VMXNET3_WATCHDOG_TIMEOUT;
}
static void
vmxnet3_start_locked(struct ifnet *ifp)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
sc = ifp->if_softc;
txq = &sc->vmx_queue[0].vxq_txqueue;
vmxnet3_tx_common_locked(ifp, txq, VMXNET3_TX_START);
}
void
vmxnet3_start(struct ifnet *ifp)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
sc = ifp->if_softc;
txq = &sc->vmx_queue[0].vxq_txqueue;
VMXNET3_TXQ_LOCK(txq);
vmxnet3_start_locked(ifp);
VMXNET3_TXQ_UNLOCK(txq);
}
static int
vmxnet3_select_txqueue(struct ifnet *ifp, struct mbuf *m __unused)
{
struct vmxnet3_softc *sc;
u_int cpuid;
sc = ifp->if_softc;
cpuid = cpu_index(curcpu());
/*
* Furure work
* We should select txqueue to even up the load even if ncpu is
* different from sc->vmx_ntxqueues. Currently, the load is not
* even, that is, when ncpu is six and ntxqueues is four, the load
* of vmx_queue[0] and vmx_queue[1] is higher than vmx_queue[2] and
* vmx_queue[3] because CPU#4 always uses vmx_queue[0] and CPU#5 always
* uses vmx_queue[1].
* Furthermore, we should not use random value to select txqueue to
* avoid reordering. We should use flow information of mbuf.
*/
return cpuid % sc->vmx_ntxqueues;
}
static void
vmxnet3_transmit_locked(struct ifnet *ifp, struct vmxnet3_txqueue *txq)
{
vmxnet3_tx_common_locked(ifp, txq, VMXNET3_TX_TRANSMIT);
}
static int
vmxnet3_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
int qid;
qid = vmxnet3_select_txqueue(ifp, m);
sc = ifp->if_softc;
txq = &sc->vmx_queue[qid].vxq_txqueue;
if (__predict_false(!pcq_put(txq->vxtxq_interq, m))) {
VMXNET3_TXQ_LOCK(txq);
txq->vxtxq_pcqdrop.ev_count++;
VMXNET3_TXQ_UNLOCK(txq);
m_freem(m);
return ENOBUFS;
}
#ifdef VMXNET3_ALWAYS_TXDEFER
kpreempt_disable();
softint_schedule(txq->vxtxq_si);
kpreempt_enable();
#else
if (VMXNET3_TXQ_TRYLOCK(txq)) {
vmxnet3_transmit_locked(ifp, txq);
VMXNET3_TXQ_UNLOCK(txq);
} else {
kpreempt_disable();
softint_schedule(txq->vxtxq_si);
kpreempt_enable();
}
#endif
return 0;
}
static void
vmxnet3_deferred_transmit(void *arg)
{
struct vmxnet3_txqueue *txq = arg;
struct vmxnet3_softc *sc = txq->vxtxq_sc;
struct ifnet *ifp = &sc->vmx_ethercom.ec_if;
VMXNET3_TXQ_LOCK(txq);
txq->vxtxq_transmitdef.ev_count++;
if (pcq_peek(txq->vxtxq_interq) != NULL)
vmxnet3_transmit_locked(ifp, txq);
VMXNET3_TXQ_UNLOCK(txq);
}
static void
vmxnet3_set_rxfilter(struct vmxnet3_softc *sc)
{
struct ifnet *ifp = &sc->vmx_ethercom.ec_if;
struct ethercom *ec = &sc->vmx_ethercom;
struct vmxnet3_driver_shared *ds = sc->vmx_ds;
struct ether_multi *enm;
struct ether_multistep step;
u_int mode;
uint8_t *p;
ds->mcast_tablelen = 0;
ETHER_LOCK(ec);
CLR(ec->ec_flags, ETHER_F_ALLMULTI);
ETHER_UNLOCK(ec);
/*
* Always accept broadcast frames.
* Always accept frames destined to our station address.
*/
mode = VMXNET3_RXMODE_BCAST | VMXNET3_RXMODE_UCAST;
ETHER_LOCK(ec);
if (ISSET(ifp->if_flags, IFF_PROMISC) ||
ec->ec_multicnt > VMXNET3_MULTICAST_MAX)
goto allmulti;
p = sc->vmx_mcast;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
memcpy(p, enm->enm_addrlo, ETHER_ADDR_LEN);
p += ETHER_ADDR_LEN;
ETHER_NEXT_MULTI(step, enm);
}
if (ec->ec_multicnt > 0) {
SET(mode, VMXNET3_RXMODE_MCAST);
ds->mcast_tablelen = p - sc->vmx_mcast;
}
ETHER_UNLOCK(ec);
goto setit;
allmulti:
SET(ec->ec_flags, ETHER_F_ALLMULTI);
ETHER_UNLOCK(ec);
SET(mode, (VMXNET3_RXMODE_ALLMULTI | VMXNET3_RXMODE_MCAST));
if (ifp->if_flags & IFF_PROMISC)
SET(mode, VMXNET3_RXMODE_PROMISC);
setit:
vmxnet3_write_cmd(sc, VMXNET3_CMD_SET_FILTER);
ds->rxmode = mode;
vmxnet3_write_cmd(sc, VMXNET3_CMD_SET_RXMODE);
}
static int
vmxnet3_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct vmxnet3_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
switch (cmd) {
case SIOCSIFMTU: {
int nmtu = ifr->ifr_mtu;
if (nmtu < VMXNET3_MIN_MTU || nmtu > VMXNET3_MAX_MTU) {
error = EINVAL;
break;
}
if (ifp->if_mtu != (uint64_t)nmtu) {
s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
if (error == ENETRESET)
error = vmxnet3_init(ifp);
}
break;
}
default:
s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
}
if (error == ENETRESET) {
VMXNET3_CORE_LOCK(sc);
if (ifp->if_flags & IFF_RUNNING)
vmxnet3_set_rxfilter(sc);
VMXNET3_CORE_UNLOCK(sc);
error = 0;
}
return error;
}
static int
vmxnet3_ifflags_cb(struct ethercom *ec)
{
struct vmxnet3_softc *sc;
sc = ec->ec_if.if_softc;
VMXNET3_CORE_LOCK(sc);
vmxnet3_set_rxfilter(sc);
VMXNET3_CORE_UNLOCK(sc);
vmxnet3_if_link_status(sc);
return 0;
}
static int
vmxnet3_watchdog(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_queue *vmxq;
sc = txq->vxtxq_sc;
vmxq = container_of(txq, struct vmxnet3_queue, vxq_txqueue);
VMXNET3_TXQ_LOCK(txq);
if (txq->vxtxq_watchdog == 0 || --txq->vxtxq_watchdog) {
VMXNET3_TXQ_UNLOCK(txq);
return (0);
}
txq->vxtxq_watchdogto.ev_count++;
VMXNET3_TXQ_UNLOCK(txq);
device_printf(sc->vmx_dev, "watchdog timeout on queue %d\n",
vmxq->vxq_id);
return (1);
}
static void
vmxnet3_refresh_host_stats(struct vmxnet3_softc *sc)
{
vmxnet3_write_cmd(sc, VMXNET3_CMD_GET_STATS);
}
static void
vmxnet3_tick(void *xsc)
{
struct vmxnet3_softc *sc;
int i, timedout;
sc = xsc;
timedout = 0;
VMXNET3_CORE_LOCK(sc);
vmxnet3_refresh_host_stats(sc);
for (i = 0; i < sc->vmx_ntxqueues; i++)
timedout |= vmxnet3_watchdog(&sc->vmx_queue[i].vxq_txqueue);
if (timedout != 0)
vmxnet3_init_locked(sc);
else
callout_reset(&sc->vmx_tick, hz, vmxnet3_tick, sc);
VMXNET3_CORE_UNLOCK(sc);
}
/*
* update link state of ifnet and softc
*/
static void
vmxnet3_if_link_status(struct vmxnet3_softc *sc)
{
struct ifnet *ifp = &sc->vmx_ethercom.ec_if;
u_int link;
bool up;
up = vmxnet3_cmd_link_status(ifp);
if (up) {
sc->vmx_link_active = 1;
link = LINK_STATE_UP;
} else {
sc->vmx_link_active = 0;
link = LINK_STATE_DOWN;
}
if_link_state_change(ifp, link);
}
/*
* check vmx(4) state by VMXNET3_CMD and update ifp->if_baudrate
* returns
* - true: link up
* - flase: link down
*/
static bool
vmxnet3_cmd_link_status(struct ifnet *ifp)
{
struct vmxnet3_softc *sc = ifp->if_softc;
u_int x, speed;
x = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_LINK);
if ((x & 1) == 0)
return false;
speed = x >> 16;
ifp->if_baudrate = IF_Mbps(speed);
return true;
}
static void
vmxnet3_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
bool up;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
up = vmxnet3_cmd_link_status(ifp);
if (!up)
return;
ifmr->ifm_status |= IFM_ACTIVE;
if (ifp->if_baudrate >= IF_Gbps(10ULL))
ifmr->ifm_active |= IFM_10G_T;
}
static int
vmxnet3_ifmedia_change(struct ifnet *ifp)
{
return 0;
}
static void
vmxnet3_set_lladdr(struct vmxnet3_softc *sc)
{
uint32_t ml, mh;
ml = sc->vmx_lladdr[0];
ml |= sc->vmx_lladdr[1] << 8;
ml |= sc->vmx_lladdr[2] << 16;
ml |= sc->vmx_lladdr[3] << 24;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_MACL, ml);
mh = sc->vmx_lladdr[4];
mh |= sc->vmx_lladdr[5] << 8;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_MACH, mh);
}
static void
vmxnet3_get_lladdr(struct vmxnet3_softc *sc)
{
uint32_t ml, mh;
ml = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_MACL);
mh = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_MACH);
sc->vmx_lladdr[0] = ml;
sc->vmx_lladdr[1] = ml >> 8;
sc->vmx_lladdr[2] = ml >> 16;
sc->vmx_lladdr[3] = ml >> 24;
sc->vmx_lladdr[4] = mh;
sc->vmx_lladdr[5] = mh >> 8;
}
static void
vmxnet3_enable_all_intrs(struct vmxnet3_softc *sc)
{
int i;
sc->vmx_ds->ictrl &= ~VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
vmxnet3_enable_intr(sc, i);
}
static void
vmxnet3_disable_all_intrs(struct vmxnet3_softc *sc)
{
int i;
sc->vmx_ds->ictrl |= VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
vmxnet3_disable_intr(sc, i);
}
static int
vmxnet3_dma_malloc(struct vmxnet3_softc *sc, bus_size_t size, bus_size_t align,
struct vmxnet3_dma_alloc *dma)
{
bus_dma_tag_t t = sc->vmx_dmat;
bus_dma_segment_t *segs = dma->dma_segs;
int n, error;
memset(dma, 0, sizeof(*dma));
error = bus_dmamem_alloc(t, size, align, 0, segs, 1, &n, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->vmx_dev, "bus_dmamem_alloc failed: %d\n", error);
goto fail1;
}
KASSERT(n == 1);
error = bus_dmamem_map(t, segs, 1, size, &dma->dma_vaddr, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->vmx_dev, "bus_dmamem_map failed: %d\n", error);
goto fail2;
}
error = bus_dmamap_create(t, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map);
if (error) {
aprint_error_dev(sc->vmx_dev, "bus_dmamap_create failed: %d\n", error);
goto fail3;
}
error = bus_dmamap_load(t, dma->dma_map, dma->dma_vaddr, size, NULL,
BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->vmx_dev, "bus_dmamap_load failed: %d\n", error);
goto fail4;
}
memset(dma->dma_vaddr, 0, size);
dma->dma_paddr = DMAADDR(dma->dma_map);
dma->dma_size = size;
return (0);
fail4:
bus_dmamap_destroy(t, dma->dma_map);
fail3:
bus_dmamem_unmap(t, dma->dma_vaddr, size);
fail2:
bus_dmamem_free(t, segs, 1);
fail1:
return (error);
}
static void
vmxnet3_dma_free(struct vmxnet3_softc *sc, struct vmxnet3_dma_alloc *dma)
{
bus_dma_tag_t t = sc->vmx_dmat;
bus_dmamap_unload(t, dma->dma_map);
bus_dmamap_destroy(t, dma->dma_map);
bus_dmamem_unmap(t, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(t, dma->dma_segs, 1);
memset(dma, 0, sizeof(*dma));
}
MODULE(MODULE_CLASS_DRIVER, if_vmx, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_vmx_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_if_vmx,
cfattach_ioconf_if_vmx, cfdata_ioconf_if_vmx);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_if_vmx,
cfattach_ioconf_if_vmx, cfdata_ioconf_if_vmx);
#endif
return error;
default:
return ENOTTY;
}
}