/* $NetBSD: xmm7360.c,v 1.17 2022/10/27 00:01:07 riastradh Exp $ */
/*
* Device driver for Intel XMM7360 LTE modems, eg. Fibocom L850-GL.
* Written by James Wah
* james@laird-wah.net
*
* Development of this driver was supported by genua GmbH
*
* Copyright (c) 2020 genua GmbH <info@genua.de>
* Copyright (c) 2020 James Wah <james@laird-wah.net>
*
* The OpenBSD and NetBSD support was written by Jaromir Dolecek for
* Moritz Systems Technology Company Sp. z o.o.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES ON
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGE
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef __linux__
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/cdev.h>
#include <linux/wait.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/poll.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if.h>
#include <linux/if_arp.h>
#include <net/rtnetlink.h>
#include <linux/hrtimer.h>
#include <linux/workqueue.h>
MODULE_LICENSE("Dual BSD/GPL");
static const struct pci_device_id xmm7360_ids[] = {
{ PCI_DEVICE(0x8086, 0x7360), },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, xmm7360_ids);
/* Actually this ioctl not used for xmm0/rpc device by python code */
#define XMM7360_IOCTL_GET_PAGE_SIZE _IOC(_IOC_READ, 'x', 0xc0, sizeof(u32))
#define xmm7360_os_msleep(msec) msleep(msec)
#define __unused /* nothing */
#endif
#if defined(__OpenBSD__) || defined(__NetBSD__)
#ifdef __OpenBSD__
#include "bpfilter.h"
#endif
#ifdef __NetBSD__
#include "opt_inet.h"
#include "opt_gateway.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: xmm7360.c,v 1.17 2022/10/27 00:01:07 riastradh Exp $");
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/mutex.h>
#include <sys/tty.h>
#include <sys/conf.h>
#include <sys/kthread.h>
#include <sys/poll.h>
#include <sys/fcntl.h> /* for FREAD/FWRITE */
#include <sys/vnode.h>
#include <uvm/uvm_param.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <net/if.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#ifdef __OpenBSD__
#include <netinet/if_ether.h>
#include <sys/timeout.h>
#include <machine/bus.h>
#endif
#if NBPFILTER > 0 || defined(__NetBSD__)
#include <net/bpf.h>
#endif
#ifdef __NetBSD__
#include "ioconf.h"
#include <sys/cpu.h>
#endif
#ifdef INET
#include <netinet/in_var.h>
#endif
#ifdef INET6
#include <netinet6/in6_var.h>
#endif
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef bus_addr_t dma_addr_t;
typedef void * wait_queue_head_t; /* just address for tsleep() */
#define WWAN_BAR0 PCI_MAPREG_START
#define WWAN_BAR1 (PCI_MAPREG_START + 4)
#define WWAN_BAR2 (PCI_MAPREG_START + 8)
#define BUG_ON(never_true) KASSERT(!(never_true))
#define WARN_ON(x) /* nothing */
#ifdef __OpenBSD__
typedef struct mutex spinlock_t;
#define dev_err(devp, fmt, ...) \
printf("%s: " fmt, device_xname(devp), ##__VA_ARGS__)
#define dev_info(devp, fmt, ...) \
printf("%s: " fmt, device_xname(devp), ##__VA_ARGS__)
#define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
#define kfree(addr) free(addr, M_DEVBUF, 0)
#define mutex_init(lock) mtx_init(lock, IPL_TTY)
#define mutex_lock(lock) mtx_enter(lock)
#define mutex_unlock(lock) mtx_leave(lock)
/* In OpenBSD every mutex is spin mutex, and it must not be held on sleep */
#define spin_lock_irqsave(lock, flags) mtx_enter(lock)
#define spin_unlock_irqrestore(lock, flags) mtx_leave(lock)
/* Compat defines for NetBSD API */
#define curlwp curproc
#define LINESW(tp) (linesw[(tp)->t_line])
#define selnotify(sel, band, note) selwakeup(sel)
#define cfdata_t void *
#define device_lookup_private(cdp, unit) \
(unit < (*cdp).cd_ndevs) ? (*cdp).cd_devs[unit] : NULL
#define IFQ_SET_READY(ifq) /* nothing */
#define device_private(devt) (void *)devt;
#define if_deferred_start_init(ifp, arg) /* nothing */
#define IF_OUTPUT_CONST /* nothing */
#define knote_set_eof(kn, f) (kn)->kn_flags |= EV_EOF | (f)
#define tty_lock(tp) int s = spltty()
#define tty_unlock(tp) splx(s)
#define tty_locked(tp) /* nothing */
#define pmf_device_deregister(dev) /* nothing */
#if NBPFILTER > 0
#define BPF_MTAP_OUT(ifp, m) \
if (ifp->if_bpf) { \
bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family, \
m, BPF_DIRECTION_OUT); \
}
#else
#define BPF_MTAP_OUT(ifp, m) /* nothing */
#endif
/* Copied from NetBSD <lib/libkern/libkern.h> */
#define __validate_container_of(PTR, TYPE, FIELD) \
(0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) - \
offsetof(TYPE, FIELD)))->FIELD))
#define container_of(PTR, TYPE, FIELD) \
((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD)) \
+ __validate_container_of(PTR, TYPE, FIELD))
/* Copied from NetBSD <sys/cdefs.h> */
#define __UNVOLATILE(a) ((void *)(unsigned long)(volatile void *)(a))
#if OpenBSD <= 201911
/* Backward compat with OpenBSD 6.6 */
#define klist_insert(klist, kn) \
SLIST_INSERT_HEAD(klist, kn, kn_selnext)
#define klist_remove(klist, kn) \
SLIST_REMOVE(klist, kn, knote, kn_selnext)
#define XMM_KQ_ISFD_INITIALIZER .f_isfd = 1
#else
#define XMM_KQ_ISFD_INITIALIZER .f_flags = FILTEROP_ISFD
#endif /* OpenBSD <= 201911 */
#define selrecord_knote(si, kn) \
klist_insert(&(si)->si_note, (kn))
#define selremove_knote(si, kn) \
klist_remove(&(si)->si_note, (kn))
#endif
#ifdef __NetBSD__
typedef struct kmutex spinlock_t;
#define dev_err aprint_error_dev
#define dev_info aprint_normal_dev
#define mutex kmutex
#define kzalloc(size, flags) malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
#define kfree(addr) free(addr, M_DEVBUF)
#define mutex_init(lock) mutex_init(lock, MUTEX_DEFAULT, IPL_TTY)
#define mutex_lock(lock) mutex_enter(lock)
#define mutex_unlock(lock) mutex_exit(lock)
#define spin_lock_irqsave(lock, flags) mutex_enter(lock)
#define spin_unlock_irqrestore(lock, flags) mutex_exit(lock)
/* Compat defines with OpenBSD API */
#define caddr_t void *
#define proc lwp
#define LINESW(tp) (*tp->t_linesw)
#define ttymalloc(speed) tty_alloc()
#define ttyfree(tp) tty_free(tp)
#define l_open(dev, tp, p) l_open(dev, tp)
#define l_close(tp, flag, p) l_close(tp, flag)
#define ttkqfilter(dev, kn) ttykqfilter(dev, kn)
#define msleep(ident, lock, prio, wmesg, timo) \
mtsleep(ident, prio, wmesg, timo, lock)
#define pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp, maxsize) \
pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp)
#define pci_intr_establish(pc, ih, lvl, func, arg, name) \
pci_intr_establish_xname(pc, ih, lvl, func, arg, name)
#define suser(l) \
kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)
#define kthread_create(func, arg, lwpp, name) \
kthread_create(0, 0, NULL, func, arg, lwpp, "%s", name)
#define MUTEX_ASSERT_LOCKED(lock) KASSERT(mutex_owned(lock))
#define MCLGETI(m, how, m0, sz) MCLGET(m, how)
#define m_copyback(m, off, sz, buf, how) \
m_copyback(m, off, sz, buf)
#define ifq_deq_begin(ifq) ({ \
struct mbuf *m0; \
IFQ_DEQUEUE(ifq, m0); \
m0; \
})
#define ifq_deq_rollback(ifq, m) m_freem(m)
#define ifq_deq_commit(ifq, m) /* nothing to do */
#define ifq_is_oactive(ifq) true /* always restart queue */
#define ifq_clr_oactive(ifq) /* nothing to do */
#define ifq_empty(ifq) IFQ_IS_EMPTY(ifq)
#define ifq_purge(ifq) IF_PURGE(ifq)
#define if_enqueue(ifp, m) ifq_enqueue(ifp, m)
#define if_ih_insert(ifp, func, arg) (ifp)->_if_input = (func)
#define if_ih_remove(ifp, func, arg) /* nothing to do */
#define if_hardmtu if_mtu
#define IF_OUTPUT_CONST const
#define XMM_KQ_ISFD_INITIALIZER .f_flags = FILTEROP_ISFD
#define tty_lock(tp) ttylock(tp)
#define tty_unlock(tp) ttyunlock(tp)
#define tty_locked(tp) KASSERT(ttylocked(tp))
#define bpfattach(bpf, ifp, dlt, sz) bpf_attach(ifp, dlt, sz)
#define NBPFILTER 1
#define BPF_MTAP_OUT(ifp, m) bpf_mtap(ifp, m, BPF_D_OUT)
#endif /* __NetBSD__ */
#define __user /* nothing */
#define copy_from_user(kbuf, userbuf, sz) \
({ \
int __ret = 0; \
int error = copyin(userbuf, kbuf, sz); \
if (error != 0) \
return -error; \
__ret; \
})
#define copy_to_user(kbuf, userbuf, sz) \
({ \
int __ret = 0; \
int error = copyout(userbuf, kbuf, sz); \
if (error != 0) \
return -error; \
__ret; \
})
#define xmm7360_os_msleep(msec) \
do { \
KASSERT(!cold); \
tsleep(xmm, 0, "wwancsl", msec * hz / 1000); \
} while (0)
static pktq_rps_hash_func_t xmm7360_pktq_rps_hash_p;
static void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, int);
static void dma_free_coherent(struct device *, size_t, volatile void *, dma_addr_t);
#ifndef PCI_PRODUCT_INTEL_XMM7360
#define PCI_PRODUCT_INTEL_XMM7360 0x7360
#endif
#define init_waitqueue_head(wqp) *(wqp) = (wqp)
#define wait_event_interruptible(wq, cond) \
({ \
int __ret = 1; \
while (!(cond)) { \
KASSERT(!cold); \
int error = tsleep(wq, PCATCH, "xmmwq", 0); \
if (error) { \
__ret = (cond) ? 1 \
: ((error != ERESTART) ? -error : error); \
break; \
} \
} \
__ret; \
})
#define msecs_to_jiffies(msec) \
({ \
KASSERT(hz < 1000); \
KASSERT(msec > (1000 / hz)); \
msec * hz / 1000; \
})
#define wait_event_interruptible_timeout(wq, cond, jiffies) \
({ \
int __ret = 1; \
while (!(cond)) { \
if (cold) { \
for (int loop = 0; loop < 10; loop++) { \
delay(jiffies * 1000 * 1000 / hz / 10); \
if (cond) \
break; \
} \
__ret = (cond) ? 1 : 0; \
break; \
} \
int error = tsleep(wq, PCATCH, "xmmwq", jiffies); \
if (error) { \
__ret = (cond) ? 1 \
: ((error != ERESTART) ? -error : error); \
break; \
} \
} \
__ret; \
})
#define GFP_KERNEL 0
#endif /* __OpenBSD__ || __NetBSD__ */
/*
* The XMM7360 communicates via DMA ring buffers. It has one
* command ring, plus sixteen transfer descriptor (TD)
* rings. The command ring is mainly used to configure and
* deconfigure the TD rings.
*
* The 16 TD rings form 8 queue pairs (QP). For example, QP
* 0 uses ring 0 for host->device, and ring 1 for
* device->host.
*
* The known queue pair functions are as follows:
*
* 0: Mux (Raw IP packets, amongst others)
* 1: RPC (funky command protocol based in part on ASN.1 BER)
* 2: AT trace? port; does not accept commands after init
* 4: AT command port
* 7: AT command port
*
*/
/* Command ring, which is used to configure the queue pairs */
struct cmd_ring_entry {
dma_addr_t ptr;
u16 len;
u8 parm;
u8 cmd;
u32 extra;
u32 unk, flags;
};
#define CMD_RING_OPEN 1
#define CMD_RING_CLOSE 2
#define CMD_RING_FLUSH 3
#define CMD_WAKEUP 4
#define CMD_FLAG_DONE 1
#define CMD_FLAG_READY 2
/* Transfer descriptors used on the Tx and Rx rings of each queue pair */
struct td_ring_entry {
dma_addr_t addr;
u16 length;
u16 flags;
u32 unk;
};
#define TD_FLAG_COMPLETE 0x200
/* Root configuration object. This contains pointers to all of the control
* structures that the modem will interact with.
*/
struct control {
dma_addr_t status;
dma_addr_t s_wptr, s_rptr;
dma_addr_t c_wptr, c_rptr;
dma_addr_t c_ring;
u16 c_ring_size;
u16 unk;
};
struct status {
u32 code;
u32 mode;
u32 asleep;
u32 pad;
};
#define CMD_RING_SIZE 0x80
/* All of the control structures can be packed into one page of RAM. */
struct control_page {
struct control ctl;
// Status words - written by modem.
volatile struct status status;
// Slave ring write/read pointers.
volatile u32 s_wptr[16], s_rptr[16];
// Command ring write/read pointers.
volatile u32 c_wptr, c_rptr;
// Command ring entries.
volatile struct cmd_ring_entry c_ring[CMD_RING_SIZE];
};
#define BAR0_MODE 0x0c
#define BAR0_DOORBELL 0x04
#define BAR0_WAKEUP 0x14
#define DOORBELL_TD 0
#define DOORBELL_CMD 1
#define BAR2_STATUS 0x00
#define BAR2_MODE 0x18
#define BAR2_CONTROL 0x19
#define BAR2_CONTROLH 0x1a
#define BAR2_BLANK0 0x1b
#define BAR2_BLANK1 0x1c
#define BAR2_BLANK2 0x1d
#define BAR2_BLANK3 0x1e
#define XMM_MODEM_BOOTING 0xfeedb007
#define XMM_MODEM_READY 0x600df00d
#define XMM_TAG_ACBH 0x41434248 // 'ACBH'
#define XMM_TAG_CMDH 0x434d4448 // 'CMDH'
#define XMM_TAG_ADBH 0x41444248 // 'ADBH'
#define XMM_TAG_ADTH 0x41445448 // 'ADTH'
/* There are 16 TD rings: a Tx and Rx ring for each queue pair */
struct td_ring {
u8 depth;
u8 last_handled;
u16 page_size;
struct td_ring_entry *tds;
dma_addr_t tds_phys;
// One page of page_size per td
void **pages;
dma_addr_t *pages_phys;
};
#define TD_MAX_PAGE_SIZE 16384
struct queue_pair {
struct xmm_dev *xmm;
u8 depth;
u16 page_size;
int tty_index;
int tty_needs_wake;
#ifdef __linux__
struct device dev;
#endif
int num;
int open;
struct mutex lock;
unsigned char user_buf[TD_MAX_PAGE_SIZE];
wait_queue_head_t wq;
#ifdef __linux__
struct cdev cdev;
struct tty_port port;
#endif
#if defined(__OpenBSD__) || defined(__NetBSD__)
struct selinfo selr, selw;
#endif
};
#define XMM_QP_COUNT 8
struct xmm_dev {
struct device *dev;
volatile uint32_t *bar0, *bar2;
volatile struct control_page *cp;
dma_addr_t cp_phys;
struct td_ring td_ring[2 * XMM_QP_COUNT];
struct queue_pair qp[XMM_QP_COUNT];
struct xmm_net *net;
struct net_device *netdev;
int error;
int card_num;
int num_ttys;
wait_queue_head_t wq;
#ifdef __linux__
struct pci_dev *pci_dev;
int irq;
struct work_struct init_work; // XXX work not actually scheduled
#endif
};
struct mux_bounds {
uint32_t offset;
uint32_t length;
};
struct mux_first_header {
uint32_t tag;
uint16_t unknown;
uint16_t sequence;
uint16_t length;
uint16_t extra;
uint16_t next;
uint16_t pad;
};
struct mux_next_header {
uint32_t tag;
uint16_t length;
uint16_t extra;
uint16_t next;
uint16_t pad;
};
#define MUX_MAX_PACKETS 64
struct mux_frame {
int n_packets, n_bytes, max_size, sequence;
uint16_t *last_tag_length, *last_tag_next;
struct mux_bounds bounds[MUX_MAX_PACKETS];
uint8_t data[TD_MAX_PAGE_SIZE];
};
struct xmm_net {
struct xmm_dev *xmm;
struct queue_pair *qp;
int channel;
#ifdef __linux__
struct sk_buff_head queue;
struct hrtimer deadline;
#endif
int queued_packets, queued_bytes;
int sequence;
spinlock_t lock;
struct mux_frame frame;
};
static void xmm7360_os_handle_net_frame(struct xmm_dev *, const u8 *, size_t);
static void xmm7360_os_handle_net_dequeue(struct xmm_net *, struct mux_frame *);
static void xmm7360_os_handle_net_txwake(struct xmm_net *);
static void xmm7360_os_handle_tty_idata(struct queue_pair *, const u8 *, size_t);
static void xmm7360_poll(struct xmm_dev *xmm)
{
if (xmm->cp->status.code == 0xbadc0ded) {
dev_err(xmm->dev, "crashed but dma up\n");
xmm->error = -ENODEV;
}
if (xmm->bar2[BAR2_STATUS] != XMM_MODEM_READY) {
dev_err(xmm->dev, "bad status %x\n",xmm->bar2[BAR2_STATUS]);
xmm->error = -ENODEV;
}
}
static void xmm7360_ding(struct xmm_dev *xmm, int bell)
{
if (xmm->cp->status.asleep)
xmm->bar0[BAR0_WAKEUP] = 1;
xmm->bar0[BAR0_DOORBELL] = bell;
xmm7360_poll(xmm);
}
static int xmm7360_cmd_ring_wait(struct xmm_dev *xmm)
{
// Wait for all commands to complete
// XXX locking?
int ret = wait_event_interruptible_timeout(xmm->wq, (xmm->cp->c_rptr == xmm->cp->c_wptr) || xmm->error, msecs_to_jiffies(1000));
if (ret == 0)
return -ETIMEDOUT;
if (ret < 0)
return ret;
return xmm->error;
}
static int xmm7360_cmd_ring_execute(struct xmm_dev *xmm, u8 cmd, u8 parm, u16 len, dma_addr_t ptr, u32 extra)
{
u8 wptr = xmm->cp->c_wptr;
u8 new_wptr = (wptr + 1) % CMD_RING_SIZE;
if (xmm->error)
return xmm->error;
if (new_wptr == xmm->cp->c_rptr) // ring full
return -EAGAIN;
xmm->cp->c_ring[wptr].ptr = ptr;
xmm->cp->c_ring[wptr].cmd = cmd;
xmm->cp->c_ring[wptr].parm = parm;
xmm->cp->c_ring[wptr].len = len;
xmm->cp->c_ring[wptr].extra = extra;
xmm->cp->c_ring[wptr].unk = 0;
xmm->cp->c_ring[wptr].flags = CMD_FLAG_READY;
xmm->cp->c_wptr = new_wptr;
xmm7360_ding(xmm, DOORBELL_CMD);
return xmm7360_cmd_ring_wait(xmm);
}
static int xmm7360_cmd_ring_init(struct xmm_dev *xmm) {
int timeout;
int ret;
xmm->cp = dma_alloc_coherent(xmm->dev, sizeof(struct control_page), &xmm->cp_phys, GFP_KERNEL);
BUG_ON(xmm->cp == NULL);
xmm->cp->ctl.status = xmm->cp_phys + offsetof(struct control_page, status);
xmm->cp->ctl.s_wptr = xmm->cp_phys + offsetof(struct control_page, s_wptr);
xmm->cp->ctl.s_rptr = xmm->cp_phys + offsetof(struct control_page, s_rptr);
xmm->cp->ctl.c_wptr = xmm->cp_phys + offsetof(struct control_page, c_wptr);
xmm->cp->ctl.c_rptr = xmm->cp_phys + offsetof(struct control_page, c_rptr);
xmm->cp->ctl.c_ring = xmm->cp_phys + offsetof(struct control_page, c_ring);
xmm->cp->ctl.c_ring_size = CMD_RING_SIZE;
xmm->bar2[BAR2_CONTROL] = xmm->cp_phys;
xmm->bar2[BAR2_CONTROLH] = xmm->cp_phys >> 32;
xmm->bar0[BAR0_MODE] = 1;
timeout = 100;
while (xmm->bar2[BAR2_MODE] == 0 && --timeout)
xmm7360_os_msleep(10);
if (!timeout)
return -ETIMEDOUT;
xmm->bar2[BAR2_BLANK0] = 0;
xmm->bar2[BAR2_BLANK1] = 0;
xmm->bar2[BAR2_BLANK2] = 0;
xmm->bar2[BAR2_BLANK3] = 0;
xmm->bar0[BAR0_MODE] = 2; // enable intrs?
timeout = 100;
while (xmm->bar2[BAR2_MODE] != 2 && --timeout)
xmm7360_os_msleep(10);
if (!timeout)
return -ETIMEDOUT;
// enable going to sleep when idle
ret = xmm7360_cmd_ring_execute(xmm, CMD_WAKEUP, 0, 1, 0, 0);
if (ret)
return ret;
return 0;
}
static void xmm7360_cmd_ring_free(struct xmm_dev *xmm) {
if (xmm->bar0)
xmm->bar0[BAR0_MODE] = 0;
if (xmm->cp)
dma_free_coherent(xmm->dev, sizeof(struct control_page), (volatile void *)xmm->cp, xmm->cp_phys);
xmm->cp = NULL;
return;
}
static void xmm7360_td_ring_activate(struct xmm_dev *xmm, u8 ring_id)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
int ret __diagused;
xmm->cp->s_rptr[ring_id] = xmm->cp->s_wptr[ring_id] = 0;
ring->last_handled = 0;
ret = xmm7360_cmd_ring_execute(xmm, CMD_RING_OPEN, ring_id, ring->depth, ring->tds_phys, 0x60);
BUG_ON(ret);
}
static void xmm7360_td_ring_create(struct xmm_dev *xmm, u8 ring_id, u8 depth, u16 page_size)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
int i;
BUG_ON(ring->depth);
BUG_ON(depth & (depth-1));
BUG_ON(page_size > TD_MAX_PAGE_SIZE);
memset(ring, 0, sizeof(struct td_ring));
ring->depth = depth;
ring->page_size = page_size;
ring->tds = dma_alloc_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, &ring->tds_phys, GFP_KERNEL);
ring->pages = kzalloc(sizeof(void*)*depth, GFP_KERNEL);
ring->pages_phys = kzalloc(sizeof(dma_addr_t)*depth, GFP_KERNEL);
for (i=0; i<depth; i++) {
ring->pages[i] = dma_alloc_coherent(xmm->dev, ring->page_size, &ring->pages_phys[i], GFP_KERNEL);
ring->tds[i].addr = ring->pages_phys[i];
}
xmm7360_td_ring_activate(xmm, ring_id);
}
static void xmm7360_td_ring_deactivate(struct xmm_dev *xmm, u8 ring_id)
{
xmm7360_cmd_ring_execute(xmm, CMD_RING_CLOSE, ring_id, 0, 0, 0);
}
static void xmm7360_td_ring_destroy(struct xmm_dev *xmm, u8 ring_id)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
int i, depth=ring->depth;
if (!depth) {
WARN_ON(1);
dev_err(xmm->dev, "Tried destroying empty ring!\n");
return;
}
xmm7360_td_ring_deactivate(xmm, ring_id);
for (i=0; i<depth; i++) {
dma_free_coherent(xmm->dev, ring->page_size, ring->pages[i], ring->pages_phys[i]);
}
kfree(ring->pages_phys);
kfree(ring->pages);
dma_free_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, ring->tds, ring->tds_phys);
ring->depth = 0;
}
static void xmm7360_td_ring_write(struct xmm_dev *xmm, u8 ring_id, const void *buf, int len)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
u8 wptr = xmm->cp->s_wptr[ring_id];
BUG_ON(!ring->depth);
BUG_ON(len > ring->page_size);
BUG_ON(ring_id & 1);
memcpy(ring->pages[wptr], buf, len);
ring->tds[wptr].length = len;
ring->tds[wptr].flags = 0;
ring->tds[wptr].unk = 0;
wptr = (wptr + 1) & (ring->depth - 1);
BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
xmm->cp->s_wptr[ring_id] = wptr;
}
static int xmm7360_td_ring_full(struct xmm_dev *xmm, u8 ring_id)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
u8 wptr = xmm->cp->s_wptr[ring_id];
wptr = (wptr + 1) & (ring->depth - 1);
return wptr == xmm->cp->s_rptr[ring_id];
}
static void xmm7360_td_ring_read(struct xmm_dev *xmm, u8 ring_id)
{
struct td_ring *ring = &xmm->td_ring[ring_id];
u8 wptr = xmm->cp->s_wptr[ring_id];
if (!ring->depth) {
dev_err(xmm->dev, "read on disabled ring\n");
WARN_ON(1);
return;
}
if (!(ring_id & 1)) {
dev_err(xmm->dev, "read on write ring\n");
WARN_ON(1);
return;
}
ring->tds[wptr].length = ring->page_size;
ring->tds[wptr].flags = 0;
ring->tds[wptr].unk = 0;
wptr = (wptr + 1) & (ring->depth - 1);
BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
xmm->cp->s_wptr[ring_id] = wptr;
}
static struct queue_pair * xmm7360_init_qp(struct xmm_dev *xmm, int num, u8 depth, u16 page_size)
{
struct queue_pair *qp = &xmm->qp[num];
qp->xmm = xmm;
qp->num = num;
qp->open = 0;
qp->depth = depth;
qp->page_size = page_size;
mutex_init(&qp->lock);
init_waitqueue_head(&qp->wq);
return qp;
}
static void xmm7360_qp_arm(struct xmm_dev *xmm, struct queue_pair *qp)
{
while (!xmm7360_td_ring_full(xmm, qp->num*2+1))
xmm7360_td_ring_read(xmm, qp->num*2+1);
xmm7360_ding(xmm, DOORBELL_TD);
}
static int xmm7360_qp_start(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
int ret;
mutex_lock(&qp->lock);
if (qp->open) {
ret = -EBUSY;
} else {
ret = 0;
qp->open = 1;
}
mutex_unlock(&qp->lock);
if (ret == 0) {
xmm7360_td_ring_create(xmm, qp->num*2, qp->depth, qp->page_size);
xmm7360_td_ring_create(xmm, qp->num*2+1, qp->depth, qp->page_size);
xmm7360_qp_arm(xmm, qp);
}
return ret;
}
static void xmm7360_qp_resume(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
BUG_ON(!qp->open);
xmm7360_td_ring_activate(xmm, qp->num*2);
xmm7360_td_ring_activate(xmm, qp->num*2+1);
xmm7360_qp_arm(xmm, qp);
}
static int xmm7360_qp_stop(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
int ret = 0;
mutex_lock(&qp->lock);
if (!qp->open) {
ret = -ENODEV;
} else {
ret = 0;
/* still holding qp->open to prevent concurrent access */
}
mutex_unlock(&qp->lock);
if (ret == 0) {
xmm7360_td_ring_destroy(xmm, qp->num*2);
xmm7360_td_ring_destroy(xmm, qp->num*2+1);
mutex_lock(&qp->lock);
qp->open = 0;
mutex_unlock(&qp->lock);
}
return ret;
}
static void xmm7360_qp_suspend(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
BUG_ON(!qp->open);
xmm7360_td_ring_deactivate(xmm, qp->num*2);
}
static int xmm7360_qp_can_write(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
return !xmm7360_td_ring_full(xmm, qp->num*2);
}
static ssize_t xmm7360_qp_write(struct queue_pair *qp, const char *buf, size_t size)
{
struct xmm_dev *xmm = qp->xmm;
int page_size = qp->xmm->td_ring[qp->num*2].page_size;
if (xmm->error)
return xmm->error;
if (!xmm7360_qp_can_write(qp))
return 0;
if (size > page_size)
size = page_size;
xmm7360_td_ring_write(xmm, qp->num*2, buf, size);
xmm7360_ding(xmm, DOORBELL_TD);
return size;
}
static ssize_t xmm7360_qp_write_user(struct queue_pair *qp, const char __user *buf, size_t size)
{
int page_size = qp->xmm->td_ring[qp->num*2].page_size;
int ret;
if (size > page_size)
size = page_size;
ret = copy_from_user(qp->user_buf, buf, size);
size = size - ret;
if (!size)
return 0;
return xmm7360_qp_write(qp, qp->user_buf, size);
}
static int xmm7360_qp_has_data(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
return (xmm->cp->s_rptr[qp->num*2+1] != ring->last_handled);
}
static ssize_t xmm7360_qp_read_user(struct queue_pair *qp, char __user *buf, size_t size)
{
struct xmm_dev *xmm = qp->xmm;
struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
int idx, nread, ret;
// XXX locking?
ret = wait_event_interruptible(qp->wq, xmm7360_qp_has_data(qp) || xmm->error);
if (ret < 0)
return ret;
if (xmm->error)
return xmm->error;
idx = ring->last_handled;
nread = ring->tds[idx].length;
if (nread > size)
nread = size;
ret = copy_to_user(buf, ring->pages[idx], nread);
nread -= ret;
if (nread == 0)
return 0;
// XXX all data not fitting into buf+size is discarded
xmm7360_td_ring_read(xmm, qp->num*2+1);
xmm7360_ding(xmm, DOORBELL_TD);
ring->last_handled = (idx + 1) & (ring->depth - 1);
return nread;
}
static void xmm7360_tty_poll_qp(struct queue_pair *qp)
{
struct xmm_dev *xmm = qp->xmm;
struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
int idx, nread;
while (xmm7360_qp_has_data(qp)) {
idx = ring->last_handled;
nread = ring->tds[idx].length;
xmm7360_os_handle_tty_idata(qp, ring->pages[idx], nread);
xmm7360_td_ring_read(xmm, qp->num*2+1);
xmm7360_ding(xmm, DOORBELL_TD);
ring->last_handled = (idx + 1) & (ring->depth - 1);
}
}
#ifdef __linux__
static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
{
tty_insert_flip_string(&qp->port, data, nread);
tty_flip_buffer_push(&qp->port);
}
int xmm7360_cdev_open (struct inode *inode, struct file *file)
{
struct queue_pair *qp = container_of(inode->i_cdev, struct queue_pair, cdev);
file->private_data = qp;
return xmm7360_qp_start(qp);
}
int xmm7360_cdev_release (struct inode *inode, struct file *file)
{
struct queue_pair *qp = file->private_data;
return xmm7360_qp_stop(qp);
}
ssize_t xmm7360_cdev_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
struct queue_pair *qp = file->private_data;
int ret;
ret = xmm7360_qp_write_user(qp, buf, size);
if (ret < 0)
return ret;
*offset += ret;
return ret;
}
ssize_t xmm7360_cdev_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
struct queue_pair *qp = file->private_data;
int ret;
ret = xmm7360_qp_read_user(qp, buf, size);
if (ret < 0)
return ret;
*offset += ret;
return ret;
}
static unsigned int xmm7360_cdev_poll(struct file *file, poll_table *wait)
{
struct queue_pair *qp = file->private_data;
unsigned int mask = 0;
poll_wait(file, &qp->wq, wait);
if (qp->xmm->error)
return POLLHUP;
if (xmm7360_qp_has_data(qp))
mask |= POLLIN | POLLRDNORM;
if (xmm7360_qp_can_write(qp))
mask |= POLLOUT | POLLWRNORM;
return mask;
}
static long xmm7360_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct queue_pair *qp = file->private_data;
u32 val;
switch (cmd) {
case XMM7360_IOCTL_GET_PAGE_SIZE:
val = qp->xmm->td_ring[qp->num*2].page_size;
if (copy_to_user((u32*)arg, &val, sizeof(u32)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static struct file_operations xmm7360_fops = {
.read = xmm7360_cdev_read,
.write = xmm7360_cdev_write,
.poll = xmm7360_cdev_poll,
.unlocked_ioctl = xmm7360_cdev_ioctl,
.open = xmm7360_cdev_open,
.release = xmm7360_cdev_release
};
#endif /* __linux__ */
static void xmm7360_mux_frame_init(struct xmm_net *xn, struct mux_frame *frame, int sequence)
{
frame->sequence = xn->sequence;
frame->max_size = xn->xmm->td_ring[0].page_size;
frame->n_packets = 0;
frame->n_bytes = 0;
frame->last_tag_next = NULL;
frame->last_tag_length = NULL;
}
static void xmm7360_mux_frame_add_tag(struct mux_frame *frame, uint32_t tag, uint16_t extra, void *data, int data_len)
{
int total_length;
if (frame->n_bytes == 0)
total_length = sizeof(struct mux_first_header) + data_len;
else
total_length = sizeof(struct mux_next_header) + data_len;
while (frame->n_bytes & 3)
frame->n_bytes++;
BUG_ON(frame->n_bytes + total_length > frame->max_size);
if (frame->last_tag_next)
*frame->last_tag_next = frame->n_bytes;
if (frame->n_bytes == 0) {
struct mux_first_header *hdr = (struct mux_first_header *)frame->data;
memset(hdr, 0, sizeof(struct mux_first_header));
hdr->tag = htonl(tag);
hdr->sequence = frame->sequence;
hdr->length = total_length;
hdr->extra = extra;
frame->last_tag_length = &hdr->length;
frame->last_tag_next = &hdr->next;
frame->n_bytes += sizeof(struct mux_first_header);
} else {
struct mux_next_header *hdr = (struct mux_next_header *)(&frame->data[frame->n_bytes]);
memset(hdr, 0, sizeof(struct mux_next_header));
hdr->tag = htonl(tag);
hdr->length = total_length;
hdr->extra = extra;
frame->last_tag_length = &hdr->length;
frame->last_tag_next = &hdr->next;
frame->n_bytes += sizeof(struct mux_next_header);
}
if (data_len) {
memcpy(&frame->data[frame->n_bytes], data, data_len);
frame->n_bytes += data_len;
}
}
static void xmm7360_mux_frame_append_data(struct mux_frame *frame, const void *data, int data_len)
{
BUG_ON(frame->n_bytes + data_len > frame->max_size);
BUG_ON(!frame->last_tag_length);
memcpy(&frame->data[frame->n_bytes], data, data_len);
*frame->last_tag_length += data_len;
frame->n_bytes += data_len;
}
static int xmm7360_mux_frame_append_packet(struct mux_frame *frame, const void *data, int data_len)
{
int expected_adth_size = sizeof(struct mux_next_header) + 4 + (frame->n_packets+1)*sizeof(struct mux_bounds);
uint8_t pad[16];
if (frame->n_packets >= MUX_MAX_PACKETS)
return -1;
if (frame->n_bytes + data_len + 16 + expected_adth_size > frame->max_size)
return -1;
BUG_ON(!frame->last_tag_length);
frame->bounds[frame->n_packets].offset = frame->n_bytes;
frame->bounds[frame->n_packets].length = data_len + 16;
frame->n_packets++;
memset(pad, 0, sizeof(pad));
xmm7360_mux_frame_append_data(frame, pad, 16);
xmm7360_mux_frame_append_data(frame, data, data_len);
return 0;
}
static int xmm7360_mux_frame_push(struct xmm_dev *xmm, struct mux_frame *frame)
{
struct mux_first_header *hdr = (void*)&frame->data[0];
int ret;
hdr->length = frame->n_bytes;
ret = xmm7360_qp_write(xmm->net->qp, frame->data, frame->n_bytes);
if (ret < 0)
return ret;
return 0;
}
static int xmm7360_mux_control(struct xmm_net *xn, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
{
struct mux_frame *frame = &xn->frame;
int ret;
uint32_t cmdh_args[] = {arg1, arg2, arg3, arg4};
unsigned long flags __unused;
spin_lock_irqsave(&xn->lock, flags);
xmm7360_mux_frame_init(xn, frame, 0);
xmm7360_mux_frame_add_tag(frame, XMM_TAG_ACBH, 0, NULL, 0);
xmm7360_mux_frame_add_tag(frame, XMM_TAG_CMDH, xn->channel, cmdh_args, sizeof(cmdh_args));
ret = xmm7360_mux_frame_push(xn->xmm, frame);
spin_unlock_irqrestore(&xn->lock, flags);
return ret;
}
static void xmm7360_net_flush(struct xmm_net *xn)
{
struct mux_frame *frame = &xn->frame;
int ret;
u32 unknown = 0;
#ifdef __linux__
/* Never called with empty queue */
BUG_ON(skb_queue_empty(&xn->queue));
#endif
BUG_ON(!xmm7360_qp_can_write(xn->qp));
xmm7360_mux_frame_init(xn, frame, xn->sequence++);
xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADBH, 0, NULL, 0);
xmm7360_os_handle_net_dequeue(xn, frame);
xn->queued_packets = xn->queued_bytes = 0;
xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADTH, xn->channel, &unknown, sizeof(uint32_t));
xmm7360_mux_frame_append_data(frame, &frame->bounds[0], sizeof(struct mux_bounds)*frame->n_packets);
ret = xmm7360_mux_frame_push(xn->xmm, frame);
if (ret)
goto drop;
return;
drop:
dev_err(xn->xmm->dev, "Failed to ship coalesced frame");
}
static int xmm7360_base_init(struct xmm_dev *xmm)
{
int ret, i;
u32 status;
xmm->error = 0;
xmm->num_ttys = 0;
status = xmm->bar2[BAR2_STATUS];
if (status == XMM_MODEM_BOOTING) {
dev_info(xmm->dev, "modem still booting, waiting...\n");
for (i=0; i<100; i++) {
status = xmm->bar2[BAR2_STATUS];
if (status != XMM_MODEM_BOOTING)
break;
xmm7360_os_msleep(200);
}
}
if (status != XMM_MODEM_READY) {
dev_err(xmm->dev, "unknown modem status: 0x%08x\n", status);
return -EINVAL;
}
dev_info(xmm->dev, "modem is ready\n");
ret = xmm7360_cmd_ring_init(xmm);
if (ret) {
dev_err(xmm->dev, "Could not bring up command ring %d\n",
ret);
return ret;
}
return 0;
}
static void xmm7360_net_mux_handle_frame(struct xmm_net *xn, u8 *data, int len)
{
struct mux_first_header *first;
struct mux_next_header *adth;
int n_packets, i;
struct mux_bounds *bounds;
first = (void*)data;
if (ntohl(first->tag) == XMM_TAG_ACBH)
return;
if (ntohl(first->tag) != XMM_TAG_ADBH) {
dev_info(xn->xmm->dev, "Unexpected tag %x\n", first->tag);
return;
}
adth = (void*)(&data[first->next]);
if (ntohl(adth->tag) != XMM_TAG_ADTH) {
dev_err(xn->xmm->dev, "Unexpected tag %x, expected ADTH\n", adth->tag);
return;
}
n_packets = (adth->length - sizeof(struct mux_next_header) - 4) / sizeof(struct mux_bounds);
bounds = (void*)&data[first->next + sizeof(struct mux_next_header) + 4];
for (i=0; i<n_packets; i++) {
if (!bounds[i].length)
continue;
xmm7360_os_handle_net_frame(xn->xmm,
&data[bounds[i].offset], bounds[i].length);
}
}
static void xmm7360_net_poll(struct xmm_dev *xmm)
{
struct queue_pair *qp;
struct td_ring *ring;
int idx, nread;
struct xmm_net *xn = xmm->net;
unsigned long flags __unused;
BUG_ON(!xn);
qp = xn->qp;
ring = &xmm->td_ring[qp->num*2+1];
spin_lock_irqsave(&xn->lock, flags);
if (xmm7360_qp_can_write(qp))
xmm7360_os_handle_net_txwake(xn);
while (xmm7360_qp_has_data(qp)) {
idx = ring->last_handled;
nread = ring->tds[idx].length;
xmm7360_net_mux_handle_frame(xn, ring->pages[idx], nread);
xmm7360_td_ring_read(xmm, qp->num*2+1);
xmm7360_ding(xmm, DOORBELL_TD);
ring->last_handled = (idx + 1) & (ring->depth - 1);
}
spin_unlock_irqrestore(&xn->lock, flags);
}
#ifdef __linux__
static void xmm7360_net_uninit(struct net_device *dev)
{
}
static int xmm7360_net_open(struct net_device *dev)
{
struct xmm_net *xn = netdev_priv(dev);
xn->queued_packets = xn->queued_bytes = 0;
skb_queue_purge(&xn->queue);
netif_start_queue(dev);
return xmm7360_mux_control(xn, 1, 0, 0, 0);
}
static int xmm7360_net_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static int xmm7360_net_must_flush(struct xmm_net *xn, int new_packet_bytes)
{
int frame_size;
if (xn->queued_packets >= MUX_MAX_PACKETS)
return 1;
frame_size = sizeof(struct mux_first_header) + xn->queued_bytes + sizeof(struct mux_next_header) + 4 + sizeof(struct mux_bounds)*xn->queued_packets;
frame_size += 16 + new_packet_bytes + sizeof(struct mux_bounds);
return frame_size > xn->frame.max_size;
}
static enum hrtimer_restart xmm7360_net_deadline_cb(struct hrtimer *t)
{
struct xmm_net *xn = container_of(t, struct xmm_net, deadline);
unsigned long flags;
spin_lock_irqsave(&xn->lock, flags);
if (!skb_queue_empty(&xn->queue) && xmm7360_qp_can_write(xn->qp))
xmm7360_net_flush(xn);
spin_unlock_irqrestore(&xn->lock, flags);
return HRTIMER_NORESTART;
}
static netdev_tx_t xmm7360_net_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct xmm_net *xn = netdev_priv(dev);
ktime_t kt;
unsigned long flags;
if (netif_queue_stopped(dev))
return NETDEV_TX_BUSY;
skb_orphan(skb);
spin_lock_irqsave(&xn->lock, flags);
if (xmm7360_net_must_flush(xn, skb->len)) {
if (xmm7360_qp_can_write(xn->qp)) {
xmm7360_net_flush(xn);
} else {
netif_stop_queue(dev);
spin_unlock_irqrestore(&xn->lock, flags);
return NETDEV_TX_BUSY;
}
}
xn->queued_packets++;
xn->queued_bytes += 16 + skb->len;
skb_queue_tail(&xn->queue, skb);
spin_unlock_irqrestore(&xn->lock, flags);
if (!hrtimer_active(&xn->deadline)) {
kt = ktime_set(0, 100000);
hrtimer_start(&xn->deadline, kt, HRTIMER_MODE_REL);
}
return NETDEV_TX_OK;
}
static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
{
struct sk_buff *skb;
void *p;
u8 ip_version;
skb = dev_alloc_skb(sz + NET_IP_ALIGN);
if (!skb)
return;
skb_reserve(skb, NET_IP_ALIGN);
p = skb_put(skb, sz);
memcpy(p, buf, sz);
skb->dev = xmm->netdev;
ip_version = skb->data[0] >> 4;
if (ip_version == 4) {
skb->protocol = htons(ETH_P_IP);
} else if (ip_version == 6) {
skb->protocol = htons(ETH_P_IPV6);
} else {
kfree_skb(skb);
return;
}
netif_rx(skb);
}
static void xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
{
struct sk_buff *skb;
int ret;
while ((skb = skb_dequeue(&xn->queue))) {
ret = xmm7360_mux_frame_append_packet(frame,
skb->data, skb->len);
kfree_skb(skb);
if (ret) {
/* No more space in the frame */
break;
}
}
}
static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
{
BUG_ON(!xmm7360_qp_can_write(xn->qp));
if (netif_queue_stopped(xn->xmm->netdev))
netif_wake_queue(xn->xmm->netdev);
}
static const struct net_device_ops xmm7360_netdev_ops = {
.ndo_uninit = xmm7360_net_uninit,
.ndo_open = xmm7360_net_open,
.ndo_stop = xmm7360_net_close,
.ndo_start_xmit = xmm7360_net_xmit,
};
static void xmm7360_net_setup(struct net_device *dev)
{
struct xmm_net *xn = netdev_priv(dev);
spin_lock_init(&xn->lock);
hrtimer_init(&xn->deadline, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
xn->deadline.function = xmm7360_net_deadline_cb;
skb_queue_head_init(&xn->queue);
dev->netdev_ops = &xmm7360_netdev_ops;
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->mtu = 1500;
dev->min_mtu = 1500;
dev->max_mtu = 1500;
dev->tx_queue_len = 1000;
dev->type = ARPHRD_NONE;
dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
}
static int xmm7360_create_net(struct xmm_dev *xmm, int num)
{
struct net_device *netdev;
struct xmm_net *xn;
int ret;
netdev = alloc_netdev(sizeof(struct xmm_net), "wwan%d", NET_NAME_UNKNOWN, xmm7360_net_setup);
if (!netdev)
return -ENOMEM;
SET_NETDEV_DEV(netdev, xmm->dev);
xmm->netdev = netdev;
xn = netdev_priv(netdev);
xn->xmm = xmm;
xmm->net = xn;
rtnl_lock();
ret = register_netdevice(netdev);
rtnl_unlock();
xn->qp = xmm7360_init_qp(xmm, num, 128, TD_MAX_PAGE_SIZE);
if (!ret)
ret = xmm7360_qp_start(xn->qp);
if (ret < 0) {
free_netdev(netdev);
xmm->netdev = NULL;
xmm7360_qp_stop(xn->qp);
}
return ret;
}
static void xmm7360_destroy_net(struct xmm_dev *xmm)
{
if (xmm->netdev) {
xmm7360_qp_stop(xmm->net->qp);
rtnl_lock();
unregister_netdevice(xmm->netdev);
rtnl_unlock();
free_netdev(xmm->netdev);
xmm->net = NULL;
xmm->netdev = NULL;
}
}
static irqreturn_t xmm7360_irq0(int irq, void *dev_id) {
struct xmm_dev *xmm = dev_id;
struct queue_pair *qp;
int id;
xmm7360_poll(xmm);
wake_up(&xmm->wq);
if (xmm->td_ring) {
if (xmm->net)
xmm7360_net_poll(xmm);
for (id=1; id<XMM_QP_COUNT; id++) {
qp = &xmm->qp[id];
/* wake _cdev_read() */
if (qp->open)
wake_up(&qp->wq);
/* tty tasks */
if (qp->open && qp->port.ops) {
xmm7360_tty_poll_qp(qp);
if (qp->tty_needs_wake && xmm7360_qp_can_write(qp) && qp->port.tty) {
struct tty_ldisc *ldisc = tty_ldisc_ref(qp->port.tty);
if (ldisc) {
if (ldisc->ops->write_wakeup)
ldisc->ops->write_wakeup(qp->port.tty);
tty_ldisc_deref(ldisc);
}
qp->tty_needs_wake = 0;
}
}
}
}
return IRQ_HANDLED;
}
static dev_t xmm_base;
static struct tty_driver *xmm7360_tty_driver;
static void xmm7360_dev_deinit(struct xmm_dev *xmm)
{
int i;
xmm->error = -ENODEV;
cancel_work_sync(&xmm->init_work);
xmm7360_destroy_net(xmm);
for (i=0; i<XMM_QP_COUNT; i++) {
if (xmm->qp[i].xmm) {
if (xmm->qp[i].cdev.owner) {
cdev_del(&xmm->qp[i].cdev);
device_unregister(&xmm->qp[i].dev);
}
if (xmm->qp[i].port.ops) {
tty_unregister_device(xmm7360_tty_driver, xmm->qp[i].tty_index);
tty_port_destroy(&xmm->qp[i].port);
}
}
memset(&xmm->qp[i], 0, sizeof(struct queue_pair));
}
xmm7360_cmd_ring_free(xmm);
}
static void xmm7360_remove(struct pci_dev *dev)
{
struct xmm_dev *xmm = pci_get_drvdata(dev);
xmm7360_dev_deinit(xmm);
if (xmm->irq)
free_irq(xmm->irq, xmm);
pci_free_irq_vectors(dev);
pci_release_region(dev, 0);
pci_release_region(dev, 2);
pci_disable_device(dev);
kfree(xmm);
}
static void xmm7360_cdev_dev_release(struct device *dev)
{
}
static int xmm7360_tty_open(struct tty_struct *tty, struct file *filp)
{
struct queue_pair *qp = tty->driver_data;
return tty_port_open(&qp->port, tty, filp);
}
static void xmm7360_tty_close(struct tty_struct *tty, struct file *filp)
{
struct queue_pair *qp = tty->driver_data;
if (qp)
tty_port_close(&qp->port, tty, filp);
}
static int xmm7360_tty_write(struct tty_struct *tty, const unsigned char *buffer,
int count)
{
struct queue_pair *qp = tty->driver_data;
int written;
written = xmm7360_qp_write(qp, buffer, count);
if (written < count)
qp->tty_needs_wake = 1;
return written;
}
static int xmm7360_tty_write_room(struct tty_struct *tty)
{
struct queue_pair *qp = tty->driver_data;
if (!xmm7360_qp_can_write(qp))
return 0;
else
return qp->xmm->td_ring[qp->num*2].page_size;
}
static int xmm7360_tty_install(struct tty_driver *driver, struct tty_struct *tty)
{
struct queue_pair *qp;
int ret;
ret = tty_standard_install(driver, tty);
if (ret)
return ret;
tty->port = driver->ports[tty->index];
qp = container_of(tty->port, struct queue_pair, port);
tty->driver_data = qp;
return 0;
}
static int xmm7360_tty_port_activate(struct tty_port *tport, struct tty_struct *tty)
{
struct queue_pair *qp = tty->driver_data;
return xmm7360_qp_start(qp);
}
static void xmm7360_tty_port_shutdown(struct tty_port *tport)
{
struct queue_pair *qp = tport->tty->driver_data;
xmm7360_qp_stop(qp);
}
static const struct tty_port_operations xmm7360_tty_port_ops = {
.activate = xmm7360_tty_port_activate,
.shutdown = xmm7360_tty_port_shutdown,
};
static const struct tty_operations xmm7360_tty_ops = {
.open = xmm7360_tty_open,
.close = xmm7360_tty_close,
.write = xmm7360_tty_write,
.write_room = xmm7360_tty_write_room,
.install = xmm7360_tty_install,
};
static int xmm7360_create_tty(struct xmm_dev *xmm, int num)
{
struct device *tty_dev;
struct queue_pair *qp = xmm7360_init_qp(xmm, num, 8, 4096);
int ret;
tty_port_init(&qp->port);
qp->port.low_latency = 1;
qp->port.ops = &xmm7360_tty_port_ops;
qp->tty_index = xmm->num_ttys++;
tty_dev = tty_port_register_device(&qp->port, xmm7360_tty_driver, qp->tty_index, xmm->dev);
if (IS_ERR(tty_dev)) {
qp->port.ops = NULL; // prevent calling unregister
ret = PTR_ERR(tty_dev);
dev_err(xmm->dev, "Could not allocate tty?\n");
tty_port_destroy(&qp->port);
return ret;
}
return 0;
}
static int xmm7360_create_cdev(struct xmm_dev *xmm, int num, const char *name, int cardnum)
{
struct queue_pair *qp = xmm7360_init_qp(xmm, num, 16, TD_MAX_PAGE_SIZE);
int ret;
cdev_init(&qp->cdev, &xmm7360_fops);
qp->cdev.owner = THIS_MODULE;
device_initialize(&qp->dev);
qp->dev.devt = MKDEV(MAJOR(xmm_base), num); // XXX multiple cards
qp->dev.parent = &xmm->pci_dev->dev;
qp->dev.release = xmm7360_cdev_dev_release;
dev_set_name(&qp->dev, name, cardnum);
dev_set_drvdata(&qp->dev, qp);
ret = cdev_device_add(&qp->cdev, &qp->dev);
if (ret) {
dev_err(xmm->dev, "cdev_device_add: %d\n", ret);
return ret;
}
return 0;
}
static int xmm7360_dev_init(struct xmm_dev *xmm)
{
int ret;
ret = xmm7360_base_init(xmm);
if (ret)
return ret;
ret = xmm7360_create_cdev(xmm, 1, "xmm%d/rpc", xmm->card_num);
if (ret)
return ret;
ret = xmm7360_create_cdev(xmm, 3, "xmm%d/trace", xmm->card_num);
if (ret)
return ret;
ret = xmm7360_create_tty(xmm, 2);
if (ret)
return ret;
ret = xmm7360_create_tty(xmm, 4);
if (ret)
return ret;
ret = xmm7360_create_tty(xmm, 7);
if (ret)
return ret;
ret = xmm7360_create_net(xmm, 0);
if (ret)
return ret;
return 0;
}
void xmm7360_dev_init_work(struct work_struct *work)
{
struct xmm_dev *xmm = container_of(work, struct xmm_dev, init_work);
xmm7360_dev_init(xmm);
}
static int xmm7360_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct xmm_dev *xmm = kzalloc(sizeof(struct xmm_dev), GFP_KERNEL);
int ret;
xmm->pci_dev = dev;
xmm->dev = &dev->dev;
if (!xmm) {
dev_err(&(dev->dev), "kzalloc\n");
return -ENOMEM;
}
ret = pci_enable_device(dev);
if (ret) {
dev_err(&(dev->dev), "pci_enable_device\n");
goto fail;
}
pci_set_master(dev);
ret = pci_set_dma_mask(dev, 0xffffffffffffffff);
if (ret) {
dev_err(xmm->dev, "Cannot set DMA mask\n");
goto fail;
}
dma_set_coherent_mask(xmm->dev, 0xffffffffffffffff);
ret = pci_request_region(dev, 0, "xmm0");
if (ret) {
dev_err(&(dev->dev), "pci_request_region(0)\n");
goto fail;
}
xmm->bar0 = pci_iomap(dev, 0, pci_resource_len(dev, 0));
ret = pci_request_region(dev, 2, "xmm2");
if (ret) {
dev_err(&(dev->dev), "pci_request_region(2)\n");
goto fail;
}
xmm->bar2 = pci_iomap(dev, 2, pci_resource_len(dev, 2));
ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (ret < 0) {
dev_err(&(dev->dev), "pci_alloc_irq_vectors\n");
goto fail;
}
init_waitqueue_head(&xmm->wq);
INIT_WORK(&xmm->init_work, xmm7360_dev_init_work);
pci_set_drvdata(dev, xmm);
ret = xmm7360_dev_init(xmm);
if (ret)
goto fail;
xmm->irq = pci_irq_vector(dev, 0);
ret = request_irq(xmm->irq, xmm7360_irq0, 0, "xmm7360", xmm);
if (ret) {
dev_err(&(dev->dev), "request_irq\n");
goto fail;
}
return ret;
fail:
xmm7360_dev_deinit(xmm);
xmm7360_remove(dev);
return ret;
}
static struct pci_driver xmm7360_driver = {
.name = "xmm7360",
.id_table = xmm7360_ids,
.probe = xmm7360_probe,
.remove = xmm7360_remove,
};
static int xmm7360_init(void)
{
int ret;
ret = alloc_chrdev_region(&xmm_base, 0, 8, "xmm");
if (ret)
return ret;
xmm7360_tty_driver = alloc_tty_driver(8);
if (!xmm7360_tty_driver)
return -ENOMEM;
xmm7360_tty_driver->driver_name = "xmm7360";
xmm7360_tty_driver->name = "ttyXMM";
xmm7360_tty_driver->major = 0;
xmm7360_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
xmm7360_tty_driver->subtype = SERIAL_TYPE_NORMAL;
xmm7360_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
xmm7360_tty_driver->init_termios = tty_std_termios;
xmm7360_tty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
HUPCL | CLOCAL;
xmm7360_tty_driver->init_termios.c_lflag &= ~ECHO;
xmm7360_tty_driver->init_termios.c_ispeed = 115200;
xmm7360_tty_driver->init_termios.c_ospeed = 115200;
tty_set_operations(xmm7360_tty_driver, &xmm7360_tty_ops);
ret = tty_register_driver(xmm7360_tty_driver);
if (ret) {
pr_err("xmm7360: failed to register xmm7360_tty driver\n");
return ret;
}
ret = pci_register_driver(&xmm7360_driver);
if (ret)
return ret;
return 0;
}
static void xmm7360_exit(void)
{
pci_unregister_driver(&xmm7360_driver);
unregister_chrdev_region(xmm_base, 8);
tty_unregister_driver(xmm7360_tty_driver);
put_tty_driver(xmm7360_tty_driver);
}
module_init(xmm7360_init);
module_exit(xmm7360_exit);
#endif /* __linux__ */
#if defined(__OpenBSD__) || defined(__NetBSD__)
/*
* RPC and trace devices behave as regular character device,
* other devices behave as terminal.
*/
#define DEVCUA(x) (minor(x) & 0x80)
#define DEVUNIT(x) ((minor(x) & 0x70) >> 4)
#define DEVFUNC_MASK 0x0f
#define DEVFUNC(x) (minor(x) & DEVFUNC_MASK)
#define DEV_IS_TTY(x) (DEVFUNC(x) == 2 || DEVFUNC(x) > 3)
struct wwanc_softc {
#ifdef __OpenBSD__
struct device sc_devx; /* gen. device info storage */
#endif
struct device *sc_dev; /* generic device information */
pci_chipset_tag_t sc_pc;
pcitag_t sc_tag;
bus_dma_tag_t sc_dmat;
pci_intr_handle_t sc_pih;
void *sc_ih; /* interrupt vectoring */
bus_space_tag_t sc_bar0_tag;
bus_space_handle_t sc_bar0_handle;
bus_size_t sc_bar0_sz;
bus_space_tag_t sc_bar2_tag;
bus_space_handle_t sc_bar2_handle;
bus_size_t sc_bar2_sz;
struct xmm_dev sc_xmm;
struct tty *sc_tty[XMM_QP_COUNT];
struct device *sc_net;
struct selinfo sc_selr, sc_selw;
bool sc_resume;
};
struct wwanc_attach_args {
enum wwanc_type {
WWMC_TYPE_RPC,
WWMC_TYPE_TRACE,
WWMC_TYPE_TTY,
WWMC_TYPE_NET
} aa_type;
};
static int wwanc_match(struct device *, cfdata_t, void *);
static void wwanc_attach(struct device *, struct device *, void *);
static int wwanc_detach(struct device *, int);
#ifdef __OpenBSD__
static int wwanc_activate(struct device *, int);
struct cfattach wwanc_ca = {
sizeof(struct wwanc_softc), wwanc_match, wwanc_attach,
wwanc_detach, wwanc_activate
};
struct cfdriver wwanc_cd = {
NULL, "wwanc", DV_DULL
};
#endif
#ifdef __NetBSD__
CFATTACH_DECL3_NEW(wwanc, sizeof(struct wwanc_softc),
wwanc_match, wwanc_attach, wwanc_detach, NULL,
NULL, NULL, DVF_DETACH_SHUTDOWN);
static bool wwanc_pmf_suspend(device_t, const pmf_qual_t *);
static bool wwanc_pmf_resume(device_t, const pmf_qual_t *);
#endif /* __NetBSD__ */
static int
wwanc_match(struct device *parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_XMM7360);
}
static int xmm7360_dev_init(struct xmm_dev *xmm)
{
int ret;
int depth, page_size;
ret = xmm7360_base_init(xmm);
if (ret)
return ret;
/* Initialize queue pairs for later use */
for (int num = 0; num < XMM_QP_COUNT; num++) {
switch (num) {
case 0: /* net */
depth = 128;
page_size = TD_MAX_PAGE_SIZE;
break;
case 1: /* rpc */
case 3: /* trace */
depth = 16;
page_size = TD_MAX_PAGE_SIZE;
break;
default: /* tty */
depth = 8;
page_size = 4096;
break;
}
xmm7360_init_qp(xmm, num, depth, page_size);
}
return 0;
}
static void xmm7360_dev_deinit(struct xmm_dev *xmm)
{
struct wwanc_softc *sc = device_private(xmm->dev);
bool devgone = false;
struct tty *tp;
xmm->error = -ENODEV;
/* network device should be gone by now */
KASSERT(sc->sc_net == NULL);
KASSERT(xmm->net == NULL);
/* free ttys */
for (int i=0; i<XMM_QP_COUNT; i++) {
tp = sc->sc_tty[i];
if (tp) {
KASSERT(DEV_IS_TTY(i));
if (!devgone) {
vdevgone(major(tp->t_dev), 0, DEVFUNC_MASK,
VCHR);
devgone = true;
}
ttyfree(tp);
sc->sc_tty[i] = NULL;
}
}
xmm7360_cmd_ring_free(xmm);
}
static void
wwanc_io_wakeup(struct queue_pair *qp, int flag)
{
if (flag & FREAD) {
selnotify(&qp->selr, POLLIN|POLLRDNORM, NOTE_SUBMIT);
wakeup(qp->wq);
}
if (flag & FWRITE) {
selnotify(&qp->selw, POLLOUT|POLLWRNORM, NOTE_SUBMIT);
wakeup(qp->wq);
}
}
static int
wwanc_intr(void *xsc)
{
struct wwanc_softc *sc = xsc;
struct xmm_dev *xmm = &sc->sc_xmm;
struct queue_pair *qp;
xmm7360_poll(xmm);
wakeup(&xmm->wq);
if (xmm->net && xmm->net->qp->open && xmm7360_qp_has_data(xmm->net->qp))
xmm7360_net_poll(xmm);
for (int func = 1; func < XMM_QP_COUNT; func++) {
qp = &xmm->qp[func];
if (!qp->open)
continue;
/* Check for input, wwancstart()/wwancwrite() does output */
if (xmm7360_qp_has_data(qp)) {
if (DEV_IS_TTY(func)) {
int s = spltty();
xmm7360_tty_poll_qp(qp);
splx(s);
}
wwanc_io_wakeup(qp, FREAD);
}
/* Wakeup/notify eventual writers */
if (xmm7360_qp_can_write(qp))
wwanc_io_wakeup(qp, FWRITE);
}
return 1;
}
static int
wwancprint(void *aux, const char *pnp)
{
struct wwanc_attach_args *wa = aux;
if (pnp)
printf("wwanc type %s at %s",
(wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk", pnp);
else
printf(" type %s",
(wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk");
return (UNCONF);
}
static void
wwanc_attach_finish(struct device *self)
{
struct wwanc_softc *sc = device_private(self);
if (xmm7360_dev_init(&sc->sc_xmm)) {
/* error already printed */
return;
}
/* Attach the network device */
struct wwanc_attach_args wa;
memset(&wa, 0, sizeof(wa));
wa.aa_type = WWMC_TYPE_NET;
sc->sc_net = config_found(self, &wa, wwancprint, CFARGS_NONE);
}
static void
wwanc_attach(struct device *parent, struct device *self, void *aux)
{
struct wwanc_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_size_t sz;
int error;
const char *intrstr;
#ifdef __OpenBSD__
pci_intr_handle_t ih;
#endif
#ifdef __NetBSD__
pci_intr_handle_t *ih;
char intrbuf[PCI_INTRSTR_LEN];
#endif
sc->sc_dev = self;
sc->sc_pc = pa->pa_pc;
sc->sc_tag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
/* map the register window, memory mapped 64-bit non-prefetchable */
error = pci_mapreg_map(pa, WWAN_BAR0,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
if (error != 0) {
printf(": can't map mem space for BAR0 %d\n", error);
return;
}
sc->sc_bar0_tag = memt;
sc->sc_bar0_handle = memh;
sc->sc_bar0_sz = sz;
error = pci_mapreg_map(pa, WWAN_BAR2,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
if (error != 0) {
bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
sc->sc_bar0_sz);
printf(": can't map mem space for BAR2\n");
return;
}
sc->sc_bar2_tag = memt;
sc->sc_bar2_handle = memh;
sc->sc_bar2_sz = sz;
/* Set xmm members needed for xmm7360_dev_init() */
sc->sc_xmm.dev = self;
sc->sc_xmm.bar0 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar0_handle);
sc->sc_xmm.bar2 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar2_handle);
init_waitqueue_head(&sc->sc_xmm.wq);
#ifdef __OpenBSD__
if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) {
printf(": can't map interrupt\n");
goto fail;
}
sc->sc_pih = ih;
intrstr = pci_intr_string(sc->sc_pc, ih);
printf(": %s\n", intrstr);
#endif
#ifdef __NetBSD__
if (pci_intr_alloc(pa, &ih, NULL, 0)) {
printf(": can't map interrupt\n");
goto fail;
}
sc->sc_pih = ih[0];
intrstr = pci_intr_string(pa->pa_pc, ih[0], intrbuf, sizeof(intrbuf));
aprint_normal(": LTE modem\n");
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
#endif
/* Device initialized, can establish the interrupt now */
sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_pih, IPL_NET,
wwanc_intr, sc, device_xname(sc->sc_dev));
if (sc->sc_ih == NULL) {
device_printf(self, "can't establish interrupt\n");
return;
}
#ifdef __NetBSD__
if (!pmf_device_register(self, wwanc_pmf_suspend, wwanc_pmf_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
#endif
/*
* Device initialization requires working interrupts, so need
* to postpone this until they are enabled.
*/
config_mountroot(self, wwanc_attach_finish);
return;
fail:
bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle, sc->sc_bar0_sz);
sc->sc_bar0_tag = 0;
bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle, sc->sc_bar2_sz);
sc->sc_bar2_tag = 0;
return;
}
static int
wwanc_detach(struct device *self, int flags)
{
int error;
struct wwanc_softc *sc = device_private(self);
if (sc->sc_ih) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
if (sc->sc_net) {
error = config_detach_children(self, flags);
if (error)
return error;
sc->sc_net = NULL;
}
pmf_device_deregister(self);
xmm7360_dev_deinit(&sc->sc_xmm);
if (sc->sc_bar0_tag) {
bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
sc->sc_bar0_sz);
sc->sc_bar0_tag = 0;
}
sc->sc_xmm.bar0 = NULL;
if (sc->sc_bar2_tag) {
bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle,
sc->sc_bar2_sz);
sc->sc_bar2_tag = 0;
}
sc->sc_xmm.bar2 = NULL;
return 0;
}
static void
wwanc_suspend(struct device *self)
{
struct wwanc_softc *sc = device_private(self);
struct xmm_dev *xmm = &sc->sc_xmm;
struct queue_pair *qp;
KASSERT(!sc->sc_resume);
KASSERT(xmm->cp != NULL);
for (int i = 0; i < XMM_QP_COUNT; i++) {
qp = &xmm->qp[i];
if (qp->open)
xmm7360_qp_suspend(qp);
}
xmm7360_cmd_ring_free(xmm);
KASSERT(xmm->cp == NULL);
}
static void
wwanc_resume(struct device *self)
{
struct wwanc_softc *sc = device_private(self);
struct xmm_dev *xmm = &sc->sc_xmm;
struct queue_pair *qp;
KASSERT(xmm->cp == NULL);
xmm7360_base_init(xmm);
for (int i = 0; i < XMM_QP_COUNT; i++) {
qp = &xmm->qp[i];
if (qp->open)
xmm7360_qp_resume(qp);
}
}
#ifdef __OpenBSD__
static void
wwanc_defer_resume(void *xarg)
{
struct device *self = xarg;
struct wwanc_softc *sc = device_private(self);
tsleep(&sc->sc_resume, 0, "wwancdr", 2 * hz);
wwanc_resume(self);
(void)config_activate_children(self, DVACT_RESUME);
sc->sc_resume = false;
kthread_exit(0);
}
static int
wwanc_activate(struct device *self, int act)
{
struct wwanc_softc *sc = device_private(self);
switch (act) {
case DVACT_QUIESCE:
(void)config_activate_children(self, act);
break;
case DVACT_SUSPEND:
if (sc->sc_resume) {
/* Refuse to suspend if resume still ongoing */
device_printf(self,
"not suspending, resume still ongoing\n");
return EBUSY;
}
(void)config_activate_children(self, act);
wwanc_suspend(self);
break;
case DVACT_RESUME:
/*
* Modem reinitialization can take several seconds, defer
* it via kernel thread to avoid blocking the resume.
*/
sc->sc_resume = true;
kthread_create(wwanc_defer_resume, self, NULL, "wwancres");
break;
default:
break;
}
return 0;
}
cdev_decl(wwanc);
#endif /* __OpenBSD__ */
#ifdef __NetBSD__
static bool
wwanc_pmf_suspend(device_t self, const pmf_qual_t *qual)
{
wwanc_suspend(self);
return true;
}
static bool
wwanc_pmf_resume(device_t self, const pmf_qual_t *qual)
{
wwanc_resume(self);
return true;
}
static dev_type_open(wwancopen);
static dev_type_close(wwancclose);
static dev_type_read(wwancread);
static dev_type_write(wwancwrite);
static dev_type_ioctl(wwancioctl);
static dev_type_poll(wwancpoll);
static dev_type_kqfilter(wwanckqfilter);
static dev_type_tty(wwanctty);
const struct cdevsw wwanc_cdevsw = {
.d_open = wwancopen,
.d_close = wwancclose,
.d_read = wwancread,
.d_write = wwancwrite,
.d_ioctl = wwancioctl,
.d_stop = nullstop,
.d_tty = wwanctty,
.d_poll = wwancpoll,
.d_mmap = nommap,
.d_kqfilter = wwanckqfilter,
.d_discard = nodiscard,
.d_flag = D_TTY
};
#endif
static int wwancparam(struct tty *, struct termios *);
static void wwancstart(struct tty *);
static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
{
struct xmm_dev *xmm = qp->xmm;
struct wwanc_softc *sc = device_private(xmm->dev);
int func = qp->num;
struct tty *tp = sc->sc_tty[func];
KASSERT(DEV_IS_TTY(func));
KASSERT(tp);
for (int i = 0; i < nread; i++)
LINESW(tp).l_rint(data[i], tp);
}
int
wwancopen(dev_t dev, int flags, int mode, struct proc *p)
{
int unit = DEVUNIT(dev);
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, unit);
struct tty *tp;
int func, error;
if (sc == NULL)
return ENXIO;
/* Only allow opening the rpc/trace/AT queue pairs */
func = DEVFUNC(dev);
if (func < 1 || func > 7)
return ENXIO;
if (DEV_IS_TTY(dev)) {
if (!sc->sc_tty[func]) {
tp = sc->sc_tty[func] = ttymalloc(1000000);
tp->t_oproc = wwancstart;
tp->t_param = wwancparam;
tp->t_dev = dev;
tp->t_sc = (void *)sc;
} else
tp = sc->sc_tty[func];
if (!ISSET(tp->t_state, TS_ISOPEN)) {
ttychars(tp);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_ispeed = tp->t_ospeed = B115200;
SET(tp->t_cflag, CS8 | CREAD | HUPCL | CLOCAL);
SET(tp->t_state, TS_CARR_ON);
} else if (suser(p) != 0) {
return EBUSY;
}
error = LINESW(tp).l_open(dev, tp, p);
if (error)
return error;
}
/* Initialize ring if qp not open yet */
xmm7360_qp_start(&sc->sc_xmm.qp[func]);
return 0;
}
int
wwancread(dev_t dev, struct uio *uio, int flag)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int func = DEVFUNC(dev);
KASSERT(sc != NULL);
if (DEV_IS_TTY(dev)) {
struct tty *tp = sc->sc_tty[func];
return (LINESW(tp).l_read(tp, uio, flag));
} else {
struct queue_pair *qp = &sc->sc_xmm.qp[func];
ssize_t ret;
char *buf;
size_t size, read = 0;
#ifdef __OpenBSD__
KASSERT(uio->uio_segflg == UIO_USERSPACE);
#endif
for (int i = 0; i < uio->uio_iovcnt; i++) {
buf = uio->uio_iov[i].iov_base;
size = uio->uio_iov[i].iov_len;
while (size > 0) {
ret = xmm7360_qp_read_user(qp, buf, size);
if (ret < 0) {
/*
* This shadows -EPERM, but that is
* not returned by the call stack,
* so this condition is safe.
*/
return (ret == ERESTART) ? ret : -ret;
}
KASSERT(ret > 0 && ret <= size);
size -= ret;
buf += ret;
read += ret;
/* Reader will re-try if they want more */
goto out;
}
}
out:
uio->uio_resid -= read;
uio->uio_offset += read;
return 0;
}
}
int
wwancwrite(dev_t dev, struct uio *uio, int flag)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int func = DEVFUNC(dev);
if (DEV_IS_TTY(dev)) {
struct tty *tp = sc->sc_tty[func];
return (LINESW(tp).l_write(tp, uio, flag));
} else {
struct queue_pair *qp = &sc->sc_xmm.qp[func];
ssize_t ret;
const char *buf;
size_t size, wrote = 0;
#ifdef __OpenBSD__
KASSERT(uio->uio_segflg == UIO_USERSPACE);
#endif
for (int i = 0; i < uio->uio_iovcnt; i++) {
buf = uio->uio_iov[i].iov_base;
size = uio->uio_iov[i].iov_len;
while (size > 0) {
ret = xmm7360_qp_write_user(qp, buf, size);
if (ret < 0) {
/*
* This shadows -EPERM, but that is
* not returned by the call stack,
* so this condition is safe.
*/
return (ret == ERESTART) ? ret : -ret;
}
KASSERT(ret > 0 && ret <= size);
size -= ret;
buf += ret;
wrote += ret;
}
}
uio->uio_resid -= wrote;
uio->uio_offset += wrote;
return 0;
}
}
int
wwancioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int error;
if (DEV_IS_TTY(dev)) {
struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
KASSERT(tp);
error = LINESW(tp).l_ioctl(tp, cmd, data, flag, p);
if (error >= 0)
return error;
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return error;
}
return ENOTTY;
}
int
wwancclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int func = DEVFUNC(dev);
if (DEV_IS_TTY(dev)) {
struct tty *tp = sc->sc_tty[func];
KASSERT(tp);
CLR(tp->t_state, TS_BUSY | TS_FLUSH);
LINESW(tp).l_close(tp, flag, p);
ttyclose(tp);
}
xmm7360_qp_stop(&sc->sc_xmm.qp[func]);
return 0;
}
struct tty *
wwanctty(dev_t dev)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
KASSERT(DEV_IS_TTY(dev));
KASSERT(tp);
return tp;
}
static int
wwancparam(struct tty *tp, struct termios *t)
{
struct wwanc_softc *sc __diagused = (struct wwanc_softc *)tp->t_sc;
dev_t dev = tp->t_dev;
int func __diagused = DEVFUNC(dev);
KASSERT(DEV_IS_TTY(dev));
KASSERT(tp == sc->sc_tty[func]);
/* Can't assert tty_locked(), it's not taken when called via ttioctl()*/
/* Nothing to set on hardware side, just copy values */
tp->t_ispeed = t->c_ispeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = t->c_cflag;
return 0;
}
static void
wwancstart(struct tty *tp)
{
struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
dev_t dev = tp->t_dev;
int func = DEVFUNC(dev);
struct queue_pair *qp = &sc->sc_xmm.qp[func];
int n, written;
KASSERT(DEV_IS_TTY(dev));
KASSERT(tp == sc->sc_tty[func]);
tty_locked(tp);
if (ISSET(tp->t_state, TS_BUSY) || !xmm7360_qp_can_write(qp))
return;
if (tp->t_outq.c_cc == 0)
return;
/*
* If we can write, we can write full qb page_size amount of data.
* Once q_to_b() is called, the data must be trasmitted - q_to_b()
* removes them from the tty output queue. Partial write is not
* possible.
*/
KASSERT(sizeof(qp->user_buf) >= qp->page_size);
SET(tp->t_state, TS_BUSY);
n = q_to_b(&tp->t_outq, qp->user_buf, qp->page_size);
KASSERT(n > 0);
KASSERT(n <= qp->page_size);
written = xmm7360_qp_write(qp, qp->user_buf, n);
CLR(tp->t_state, TS_BUSY);
if (written != n) {
dev_err(sc->sc_dev, "xmm7360_qp_write(%d) failed %d != %d\n",
func, written, n);
/* nothing to recover, just return */
}
}
int
wwancpoll(dev_t dev, int events, struct proc *p)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int func = DEVFUNC(dev);
struct queue_pair *qp = &sc->sc_xmm.qp[func];
int mask = 0;
if (DEV_IS_TTY(dev)) {
#ifdef __OpenBSD__
return ttpoll(dev, events, p);
#endif
#ifdef __NetBSD__
struct tty *tp = sc->sc_tty[func];
return LINESW(tp).l_poll(tp, events, p);
#endif
}
KASSERT(!DEV_IS_TTY(dev));
if (qp->xmm->error) {
mask |= POLLHUP;
goto out;
}
if (xmm7360_qp_has_data(qp))
mask |= POLLIN | POLLRDNORM;
if (xmm7360_qp_can_write(qp))
mask |= POLLOUT | POLLWRNORM;
out:
if ((mask & events) == 0) {
if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND))
selrecord(p, &sc->sc_selr);
if (events & (POLLOUT | POLLWRNORM))
selrecord(p, &sc->sc_selw);
}
return mask & events;
}
static void
filt_wwancrdetach(struct knote *kn)
{
struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
struct xmm_dev *xmm = qp->xmm;
int func = qp - xmm->qp;
struct wwanc_softc *sc = container_of(xmm, struct wwanc_softc, sc_xmm);
struct tty *tp = sc->sc_tty[func];
tty_lock(tp);
selremove_knote(&qp->selr, kn);
tty_unlock(tp);
}
static int
filt_wwancread(struct knote *kn, long hint)
{
struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
kn->kn_data = 0;
if (!qp->open) {
knote_set_eof(kn, 0);
return (1);
} else {
kn->kn_data = xmm7360_qp_has_data(qp) ? 1 : 0;
}
return (kn->kn_data > 0);
}
static void
filt_wwancwdetach(struct knote *kn)
{
struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
struct xmm_dev *xmm = qp->xmm;
int func = qp - xmm->qp;
struct wwanc_softc *sc = container_of(xmm, struct wwanc_softc, sc_xmm);
struct tty *tp = sc->sc_tty[func];
tty_lock(tp);
selremove_knote(&qp->selw, kn);
tty_unlock(tp);
}
static int
filt_wwancwrite(struct knote *kn, long hint)
{
struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
kn->kn_data = 0;
if (qp->open) {
if (xmm7360_qp_can_write(qp))
kn->kn_data = qp->page_size;
}
return (kn->kn_data > 0);
}
static const struct filterops wwancread_filtops = {
XMM_KQ_ISFD_INITIALIZER,
.f_attach = NULL,
.f_detach = filt_wwancrdetach,
.f_event = filt_wwancread,
};
static const struct filterops wwancwrite_filtops = {
XMM_KQ_ISFD_INITIALIZER,
.f_attach = NULL,
.f_detach = filt_wwancwdetach,
.f_event = filt_wwancwrite,
};
int
wwanckqfilter(dev_t dev, struct knote *kn)
{
struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
int func = DEVFUNC(dev);
struct queue_pair *qp = &sc->sc_xmm.qp[func];
struct tty *tp = sc->sc_tty[func];
struct selinfo *si;
if (DEV_IS_TTY(func))
return ttkqfilter(dev, kn);
KASSERT(!DEV_IS_TTY(func));
switch (kn->kn_filter) {
case EVFILT_READ:
si = &qp->selr;
kn->kn_fop = &wwancread_filtops;
break;
case EVFILT_WRITE:
si = &qp->selw;
kn->kn_fop = &wwancwrite_filtops;
break;
default:
return (EINVAL);
}
kn->kn_hook = (void *)qp;
tty_lock(tp);
selrecord_knote(si, kn);
tty_unlock(tp);
return (0);
}
static void *
dma_alloc_coherent(struct device *self, size_t sz, dma_addr_t *physp, int flags)
{
struct wwanc_softc *sc = device_private(self);
bus_dma_segment_t seg;
int nsegs;
int error;
caddr_t kva;
error = bus_dmamem_alloc(sc->sc_dmat, sz, 0, 0, &seg, 1, &nsegs,
BUS_DMA_WAITOK);
if (error) {
panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
device_xname(self), (unsigned long)sz, error);
/* NOTREACHED */
}
KASSERT(nsegs == 1);
KASSERT(seg.ds_len == round_page(sz));
error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, sz, &kva,
BUS_DMA_WAITOK | BUS_DMA_COHERENT);
if (error) {
panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
device_xname(self), (unsigned long)sz, error);
/* NOTREACHED */
}
memset(kva, 0, sz);
*physp = seg.ds_addr;
return (void *)kva;
}
static void
dma_free_coherent(struct device *self, size_t sz, volatile void *vaddr, dma_addr_t phys)
{
struct wwanc_softc *sc = device_private(self);
bus_dma_segment_t seg;
sz = round_page(sz);
bus_dmamem_unmap(sc->sc_dmat, __UNVOLATILE(vaddr), sz);
/* this does't need the exact seg returned by bus_dmamem_alloc() */
memset(&seg, 0, sizeof(seg));
seg.ds_addr = phys;
seg.ds_len = sz;
bus_dmamem_free(sc->sc_dmat, &seg, 1);
}
struct wwan_softc {
#ifdef __OpenBSD__
struct device sc_devx; /* gen. device info storage */
#endif
struct device *sc_dev; /* generic device */
struct wwanc_softc *sc_parent; /* parent device */
struct ifnet sc_ifnet; /* network-visible interface */
struct xmm_net sc_xmm_net;
};
static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
{
struct wwanc_softc *sc = device_private(xmm->dev);
struct wwan_softc *sc_if = device_private(sc->sc_net);
struct ifnet *ifp = &sc_if->sc_ifnet;
struct mbuf *m;
KASSERT(sz <= MCLBYTES);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
return;
if (sz > MHLEN) {
MCLGETI(m, M_DONTWAIT, NULL, sz);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return;
}
}
m->m_len = m->m_pkthdr.len = sz;
/*
* No explicit alignment necessary - there is no ethernet header,
* so IP address is already aligned.
*/
KASSERT(m->m_pkthdr.len == sz);
m_copyback(m, 0, sz, (const void *)buf, M_NOWAIT);
#ifdef __OpenBSD__
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
ml_enqueue(&ml, m);
if_input(ifp, &ml);
#endif
#ifdef __NetBSD__
if_percpuq_enqueue(ifp->if_percpuq, m);
#endif
}
static void
xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
{
struct wwan_softc *sc_if =
container_of(xn, struct wwan_softc, sc_xmm_net);
struct ifnet *ifp = &sc_if->sc_ifnet;
struct mbuf *m;
int ret;
MUTEX_ASSERT_LOCKED(&xn->lock);
while ((m = ifq_deq_begin(&ifp->if_snd))) {
/*
* xmm7360_mux_frame_append_packet() requires single linear
* buffer, so try m_defrag(). Another option would be
* using m_copydata() into an intermediate buffer.
*/
if (m->m_next) {
if (m_defrag(m, M_DONTWAIT) != 0 || m->m_next) {
/* Can't defrag, drop and continue */
ifq_deq_commit(&ifp->if_snd, m);
m_freem(m);
continue;
}
}
ret = xmm7360_mux_frame_append_packet(frame,
mtod(m, void *), m->m_pkthdr.len);
if (ret) {
/* No more space in the frame */
ifq_deq_rollback(&ifp->if_snd, m);
break;
}
ifq_deq_commit(&ifp->if_snd, m);
/* Send a copy of the frame to the BPF listener */
BPF_MTAP_OUT(ifp, m);
m_freem(m);
}
}
static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
{
struct wwan_softc *sc_if =
container_of(xn, struct wwan_softc, sc_xmm_net);
struct ifnet *ifp = &sc_if->sc_ifnet;
MUTEX_ASSERT_LOCKED(&xn->lock);
KASSERT(xmm7360_qp_can_write(xn->qp));
if (ifq_is_oactive(&ifp->if_snd)) {
ifq_clr_oactive(&ifp->if_snd);
#ifdef __OpenBSD__
ifq_restart(&ifp->if_snd);
#endif
#ifdef __NetBSD__
if_schedule_deferred_start(ifp);
#endif
}
}
#ifdef __OpenBSD__
/*
* Process received raw IPv4/IPv6 packet. There is no encapsulation.
*/
static int
wwan_if_input(struct ifnet *ifp, struct mbuf *m, void *cookie)
{
const uint8_t *data = mtod(m, uint8_t *);
void (*input)(struct ifnet *, struct mbuf *);
u8 ip_version;
ip_version = data[0] >> 4;
switch (ip_version) {
case IPVERSION:
input = ipv4_input;
break;
case (IPV6_VERSION >> 4):
input = ipv6_input;
break;
default:
/* Unknown protocol, just drop packet */
m_freem(m);
return 1;
/* NOTREACHED */
}
/* Needed for tcpdump(1) et.al */
m->m_pkthdr.ph_rtableid = ifp->if_rdomain;
m_adj(m, sizeof(u_int32_t));
(*input)(ifp, m);
return 1;
}
#endif /* __OpenBSD__ */
#ifdef __NetBSD__
static bool wwan_pmf_suspend(device_t, const pmf_qual_t *);
/*
* Process received raw IPv4/IPv6 packet. There is no encapsulation.
*/
static void
wwan_if_input(struct ifnet *ifp, struct mbuf *m)
{
const uint8_t *data = mtod(m, uint8_t *);
pktqueue_t *pktq = NULL;
u8 ip_version;
KASSERT(!cpu_intr_p());
KASSERT((m->m_flags & M_PKTHDR) != 0);
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
/*
* The interface can't receive packets for other host, so never
* really IFF_PROMISC even if bpf listener is attached.
*/
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
return;
if (m == NULL)
return;
ip_version = data[0] >> 4;
switch (ip_version) {
#ifdef INET
case IPVERSION:
#ifdef GATEWAY
if (ipflow_fastforward(m))
return;
#endif
pktq = ip_pktq;
break;
#endif /* INET */
#ifdef INET6
case (IPV6_VERSION >> 4):
if (__predict_false(!in6_present)) {
m_freem(m);
return;
}
#ifdef GATEWAY
if (ip6flow_fastforward(&m))
return;
#endif
pktq = ip6_pktq;
break;
#endif /* INET6 */
default:
/* Unknown protocol, just drop packet */
m_freem(m);
return;
/* NOTREACHED */
}
KASSERT(pktq != NULL);
/* No errors. Receive the packet. */
m_set_rcvif(m, ifp);
const uint32_t h = pktq_rps_hash(&xmm7360_pktq_rps_hash_p, m);
if (__predict_false(!pktq_enqueue(pktq, m, h))) {
m_freem(m);
}
}
#endif
/*
* Transmit raw IPv4/IPv6 packet. No encapsulation necessary.
*/
static int
wwan_if_output(struct ifnet *ifp, struct mbuf *m,
IF_OUTPUT_CONST struct sockaddr *dst, IF_OUTPUT_CONST struct rtentry *rt)
{
// there is no ethernet frame, this means no bridge(4) handling
return (if_enqueue(ifp, m));
}
static int
wwan_if_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct wwan_softc *sc_if = ifp->if_softc;
int error = 0;
int s;
s = splnet();
switch (cmd) {
#ifdef __NetBSD__
case SIOCINITIFADDR:
#endif
#ifdef __OpenBSD__
case SIOCAIFADDR:
case SIOCAIFADDR_IN6:
case SIOCSIFADDR:
#endif
/* Make interface ready to run if address is assigned */
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING)) {
ifp->if_flags |= IFF_RUNNING;
xmm7360_mux_control(&sc_if->sc_xmm_net, 1, 0, 0, 0);
}
break;
case SIOCSIFFLAGS:
case SIOCADDMULTI:
case SIOCDELMULTI:
/* nothing special to do */
break;
case SIOCSIFMTU:
error = ENOTTY;
break;
default:
#ifdef __NetBSD__
/*
* Call common code for SIOCG* ioctls. In OpenBSD those ioctls
* are handled in ifioctl(), and the if_ioctl is not called
* for them at all.
*/
error = ifioctl_common(ifp, cmd, data);
if (error == ENETRESET)
error = 0;
#endif
#ifdef __OpenBSD__
error = ENOTTY;
#endif
break;
}
splx(s);
return error;
}
static void
wwan_if_start(struct ifnet *ifp)
{
struct wwan_softc *sc = ifp->if_softc;
mutex_lock(&sc->sc_xmm_net.lock);
while (!ifq_empty(&ifp->if_snd)) {
if (!xmm7360_qp_can_write(sc->sc_xmm_net.qp)) {
break;
}
xmm7360_net_flush(&sc->sc_xmm_net);
}
mutex_unlock(&sc->sc_xmm_net.lock);
}
static int
wwan_match(struct device *parent, cfdata_t match, void *aux)
{
struct wwanc_attach_args *wa = aux;
return (wa->aa_type == WWMC_TYPE_NET);
}
static void
wwan_attach(struct device *parent, struct device *self, void *aux)
{
struct wwan_softc *sc_if = device_private(self);
struct ifnet *ifp = &sc_if->sc_ifnet;
struct xmm_dev *xmm;
struct xmm_net *xn;
sc_if->sc_dev = self;
sc_if->sc_parent = device_private(parent);
xmm = sc_if->sc_xmm_net.xmm = &sc_if->sc_parent->sc_xmm;
xn = &sc_if->sc_xmm_net;
mutex_init(&xn->lock);
/* QP already initialized in parent, just set pointers and start */
xn->qp = &xmm->qp[0];
xmm7360_qp_start(xn->qp);
xmm->net = xn;
ifp->if_softc = sc_if;
ifp->if_flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST \
| IFF_SIMPLEX;
ifp->if_ioctl = wwan_if_ioctl;
ifp->if_start = wwan_if_start;
ifp->if_mtu = 1500;
ifp->if_hardmtu = 1500;
ifp->if_type = IFT_OTHER;
IFQ_SET_MAXLEN(&ifp->if_snd, xn->qp->depth);
IFQ_SET_READY(&ifp->if_snd);
CTASSERT(DEVICE_XNAME_SIZE == IFNAMSIZ);
bcopy(device_xname(sc_if->sc_dev), ifp->if_xname, IFNAMSIZ);
/* Call MI attach routines. */
if_attach(ifp);
/* Hook custom input and output processing, and dummy sadl */
ifp->if_output = wwan_if_output;
if_ih_insert(ifp, wwan_if_input, NULL);
if_deferred_start_init(ifp, NULL);
if_alloc_sadl(ifp);
#if NBPFILTER > 0
#ifdef __OpenBSD__
bpfattach(&ifp->if_bpf, ifp, DLT_LOOP, sizeof(u_int32_t));
#endif
#ifdef __NetBSD__
bpfattach(&ifp->if_bpf, ifp, DLT_RAW, 0);
#endif
#endif
printf("\n");
#ifdef __NetBSD__
xmm7360_pktq_rps_hash_p = pktq_rps_hash_default;
if (pmf_device_register(self, wwan_pmf_suspend, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
#endif
}
static int
wwan_detach(struct device *self, int flags)
{
struct wwan_softc *sc_if = device_private(self);
struct ifnet *ifp = &sc_if->sc_ifnet;
if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
pmf_device_deregister(self);
if_ih_remove(ifp, wwan_if_input, NULL);
if_detach(ifp);
xmm7360_qp_stop(sc_if->sc_xmm_net.qp);
sc_if->sc_xmm_net.xmm->net = NULL;
return 0;
}
static void
wwan_suspend(struct device *self)
{
struct wwan_softc *sc_if = device_private(self);
struct ifnet *ifp = &sc_if->sc_ifnet;
/*
* Interface is marked down on suspend, and needs to be reconfigured
* after resume.
*/
if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
ifq_purge(&ifp->if_snd);
}
#ifdef __OpenBSD__
static int
wwan_activate(struct device *self, int act)
{
switch (act) {
case DVACT_QUIESCE:
case DVACT_SUSPEND:
wwan_suspend(self);
break;
case DVACT_RESUME:
/* Nothing to do */
break;
}
return 0;
}
struct cfattach wwan_ca = {
sizeof(struct wwan_softc), wwan_match, wwan_attach,
wwan_detach, wwan_activate
};
struct cfdriver wwan_cd = {
NULL, "wwan", DV_IFNET
};
#endif /* __OpenBSD__ */
#ifdef __NetBSD__
static bool
wwan_pmf_suspend(device_t self, const pmf_qual_t *qual)
{
wwan_suspend(self);
return true;
}
CFATTACH_DECL3_NEW(wwan, sizeof(struct wwan_softc),
wwan_match, wwan_attach, wwan_detach, NULL,
NULL, NULL, DVF_DETACH_SHUTDOWN);
#endif /* __NetBSD__ */
#endif /* __OpenBSD__ || __NetBSD__ */