/* $NetBSD: ld_sdmmc.c,v 1.42 2022/05/16 10:03:23 jmcneill Exp $ */
/*
* Copyright (c) 2008 KIYOHARA Takashi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ld_sdmmc.c,v 1.42 2022/05/16 10:03:23 jmcneill Exp $");
#ifdef _KERNEL_OPT
#include "opt_sdmmc.h"
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/dkio.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <dev/ldvar.h>
#include <dev/sdmmc/sdmmcvar.h>
#include "ioconf.h"
#ifdef LD_SDMMC_DEBUG
#define DPRINTF(s) printf s
#else
#define DPRINTF(s) __nothing
#endif
#define LD_SDMMC_IORETRIES 5 /* number of retries before giving up */
#define RECOVERYTIME hz/2 /* time to wait before retrying a cmd */
#define LD_SDMMC_MAXQUEUECNT 4 /* number of queued bio requests */
#define LD_SDMMC_MAXTASKCNT 8 /* number of tasks in task pool */
struct ld_sdmmc_softc;
struct ld_sdmmc_task {
struct sdmmc_task task;
struct ld_sdmmc_softc *task_sc;
struct buf *task_bp;
int task_retries; /* number of xfer retry */
struct callout task_restart_ch;
bool task_poll;
int *task_errorp;
TAILQ_ENTRY(ld_sdmmc_task) task_entry;
};
struct ld_sdmmc_softc {
struct ld_softc sc_ld;
int sc_hwunit;
char *sc_typename;
struct sdmmc_function *sc_sf;
kmutex_t sc_lock;
kcondvar_t sc_cv;
TAILQ_HEAD(, ld_sdmmc_task) sc_freeq;
TAILQ_HEAD(, ld_sdmmc_task) sc_xferq;
unsigned sc_busy;
bool sc_dying;
struct evcnt sc_ev_discard; /* discard counter */
struct evcnt sc_ev_discarderr; /* discard error counter */
struct evcnt sc_ev_discardbusy; /* discard busy counter */
struct evcnt sc_ev_cachesyncbusy; /* cache sync busy counter */
struct ld_sdmmc_task sc_task[LD_SDMMC_MAXTASKCNT];
};
static int ld_sdmmc_match(device_t, cfdata_t, void *);
static void ld_sdmmc_attach(device_t, device_t, void *);
static int ld_sdmmc_detach(device_t, int);
static int ld_sdmmc_dump(struct ld_softc *, void *, int, int);
static int ld_sdmmc_start(struct ld_softc *, struct buf *);
static void ld_sdmmc_restart(void *);
static int ld_sdmmc_discard(struct ld_softc *, struct buf *);
static int ld_sdmmc_ioctl(struct ld_softc *, u_long, void *, int32_t, bool);
static void ld_sdmmc_doattach(void *);
static void ld_sdmmc_dobio(void *);
static void ld_sdmmc_dodiscard(void *);
CFATTACH_DECL_NEW(ld_sdmmc, sizeof(struct ld_sdmmc_softc),
ld_sdmmc_match, ld_sdmmc_attach, ld_sdmmc_detach, NULL);
static struct ld_sdmmc_task *
ld_sdmmc_task_get(struct ld_sdmmc_softc *sc)
{
struct ld_sdmmc_task *task;
KASSERT(mutex_owned(&sc->sc_lock));
if (sc->sc_dying || (task = TAILQ_FIRST(&sc->sc_freeq)) == NULL)
return NULL;
TAILQ_REMOVE(&sc->sc_freeq, task, task_entry);
TAILQ_INSERT_TAIL(&sc->sc_xferq, task, task_entry);
KASSERT(task->task_bp == NULL);
KASSERT(task->task_errorp == NULL);
return task;
}
static void
ld_sdmmc_task_put(struct ld_sdmmc_softc *sc, struct ld_sdmmc_task *task)
{
KASSERT(mutex_owned(&sc->sc_lock));
TAILQ_REMOVE(&sc->sc_xferq, task, task_entry);
TAILQ_INSERT_TAIL(&sc->sc_freeq, task, task_entry);
task->task_bp = NULL;
task->task_errorp = NULL;
}
static void
ld_sdmmc_task_cancel(struct ld_sdmmc_softc *sc, struct ld_sdmmc_task *task)
{
struct buf *bp;
int *errorp;
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(sc->sc_dying);
/*
* Either the callout or the task may be pending, but not both.
* First, determine whether the callout is pending.
*/
if (callout_pending(&task->task_restart_ch) ||
callout_invoking(&task->task_restart_ch)) {
/*
* The callout either is pending, or just started but
* is waiting for us to release the lock. At this
* point, it will notice sc->sc_dying and give up, so
* just wait for it to complete and then we will
* release everything.
*/
callout_halt(&task->task_restart_ch, &sc->sc_lock);
} else {
/*
* If the callout is running, it has just scheduled, so
* after we wait for the callout to finish running, the
* task is either pending or running. If the task is
* already running, it will notice sc->sc_dying and
* give up; otherwise we have to release everything.
*/
callout_halt(&task->task_restart_ch, &sc->sc_lock);
if (!sdmmc_del_task(sc->sc_sf->sc, &task->task, &sc->sc_lock))
return; /* task already started, let it clean up */
}
/*
* It is our responsibility to clean up. Move it from xferq
* back to freeq and make sure to notify anyone waiting that
* it's finished.
*/
bp = task->task_bp;
errorp = task->task_errorp;
ld_sdmmc_task_put(sc, task);
/*
* If the task was for an asynchronous I/O xfer, fail the I/O
* xfer, with the softc lock dropped since this is a callback
* into arbitrary other subsystems.
*/
if (bp) {
mutex_exit(&sc->sc_lock);
/*
* XXX We assume that the same sequence works for bio
* and discard -- that lddiscardend is just the same as
* setting bp->b_resid = bp->b_bcount in the event of
* error and then calling lddone.
*/
bp->b_error = ENXIO;
bp->b_resid = bp->b_bcount;
lddone(&sc->sc_ld, bp);
mutex_enter(&sc->sc_lock);
}
/*
* If the task was for a synchronous operation (cachesync),
* then just set the error indicator and wake up the waiter.
*/
if (errorp) {
*errorp = ENXIO;
cv_broadcast(&sc->sc_cv);
}
}
/* ARGSUSED */
static int
ld_sdmmc_match(device_t parent, cfdata_t match, void *aux)
{
struct sdmmc_softc *sdmsc = device_private(parent);
if (ISSET(sdmsc->sc_flags, SMF_MEM_MODE))
return 1;
return 0;
}
/* ARGSUSED */
static void
ld_sdmmc_attach(device_t parent, device_t self, void *aux)
{
struct ld_sdmmc_softc *sc = device_private(self);
struct sdmmc_attach_args *sa = aux;
struct ld_softc *ld = &sc->sc_ld;
struct ld_sdmmc_task *task;
struct lwp *lwp;
const char *cardtype;
int i;
ld->sc_dv = self;
aprint_normal(": <0x%02x:0x%04x:%s:0x%02x:0x%08x:0x%03x>\n",
sa->sf->cid.mid, sa->sf->cid.oid, sa->sf->cid.pnm,
sa->sf->cid.rev, sa->sf->cid.psn, sa->sf->cid.mdt);
aprint_naive("\n");
if (ISSET(sa->sf->sc->sc_flags, SMF_SD_MODE)) {
cardtype = "SD card";
} else {
cardtype = "MMC";
}
sc->sc_typename = kmem_asprintf("%s 0x%02x:0x%04x:%s",
cardtype, sa->sf->cid.mid, sa->sf->cid.oid, sa->sf->cid.pnm);
evcnt_attach_dynamic(&sc->sc_ev_discard, EVCNT_TYPE_MISC,
NULL, device_xname(self), "sdmmc discard count");
evcnt_attach_dynamic(&sc->sc_ev_discarderr, EVCNT_TYPE_MISC,
NULL, device_xname(self), "sdmmc discard errors");
evcnt_attach_dynamic(&sc->sc_ev_discardbusy, EVCNT_TYPE_MISC,
NULL, device_xname(self), "sdmmc discard busy");
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SDMMC);
cv_init(&sc->sc_cv, "ldsdmmc");
TAILQ_INIT(&sc->sc_freeq);
TAILQ_INIT(&sc->sc_xferq);
sc->sc_dying = false;
const int ntask = __arraycount(sc->sc_task);
for (i = 0; i < ntask; i++) {
task = &sc->sc_task[i];
task->task_sc = sc;
callout_init(&task->task_restart_ch, CALLOUT_MPSAFE);
TAILQ_INSERT_TAIL(&sc->sc_freeq, task, task_entry);
}
sc->sc_hwunit = 0; /* always 0? */
sc->sc_sf = sa->sf;
ld->sc_flags = LDF_ENABLED | LDF_MPSAFE;
ld->sc_secperunit = sc->sc_sf->csd.capacity;
ld->sc_secsize = SDMMC_SECTOR_SIZE;
ld->sc_maxxfer = MAXPHYS;
ld->sc_maxqueuecnt = LD_SDMMC_MAXQUEUECNT;
ld->sc_dump = ld_sdmmc_dump;
ld->sc_start = ld_sdmmc_start;
ld->sc_discard = ld_sdmmc_discard;
ld->sc_ioctl = ld_sdmmc_ioctl;
ld->sc_typename = sc->sc_typename;
/*
* Defer attachment of ld + disk subsystem to a thread.
*
* This is necessary because wedge autodiscover needs to
* open and call into the ld driver, which could deadlock
* when the sdmmc driver isn't ready in early bootstrap.
*
* Don't mark thread as MPSAFE to keep aprint output sane.
*/
config_pending_incr(self);
if (kthread_create(PRI_NONE, 0, NULL,
ld_sdmmc_doattach, sc, &lwp, "%sattach", device_xname(self))) {
aprint_error_dev(self, "couldn't create thread\n");
}
}
static void
ld_sdmmc_doattach(void *arg)
{
struct ld_sdmmc_softc *sc = (struct ld_sdmmc_softc *)arg;
struct ld_softc *ld = &sc->sc_ld;
struct sdmmc_softc *ssc = device_private(device_parent(ld->sc_dv));
const u_int cache_size = sc->sc_sf->ext_csd.cache_size;
char buf[sizeof("9999 KB")];
ldattach(ld, BUFQ_DISK_DEFAULT_STRAT);
aprint_normal_dev(ld->sc_dv, "%d-bit width,", sc->sc_sf->width);
if (ssc->sc_transfer_mode != NULL)
aprint_normal(" %s,", ssc->sc_transfer_mode);
if (cache_size > 0) {
format_bytes(buf, sizeof(buf), cache_size);
aprint_normal(" %s cache%s,", buf,
ISSET(sc->sc_sf->flags, SFF_CACHE_ENABLED) ? "" :
" (disabled)");
}
if ((ssc->sc_busclk / 1000) != 0)
aprint_normal(" %u.%03u MHz\n",
ssc->sc_busclk / 1000, ssc->sc_busclk % 1000);
else
aprint_normal(" %u KHz\n", ssc->sc_busclk % 1000);
config_pending_decr(ld->sc_dv);
kthread_exit(0);
}
static int
ld_sdmmc_detach(device_t dev, int flags)
{
struct ld_sdmmc_softc *sc = device_private(dev);
struct ld_softc *ld = &sc->sc_ld;
struct ld_sdmmc_task *task;
int error, i;
/*
* Block new xfers, or fail if the disk is still open and the
* detach isn't forced. After this point, we are committed to
* detaching.
*/
error = ldbegindetach(ld, flags);
if (error)
return error;
/*
* Abort all pending tasks, and wait for all pending waiters to
* notice that we're gone.
*/
mutex_enter(&sc->sc_lock);
sc->sc_dying = true;
while ((task = TAILQ_FIRST(&sc->sc_xferq)) != NULL)
ld_sdmmc_task_cancel(sc, task);
while (sc->sc_busy)
cv_wait(&sc->sc_cv, &sc->sc_lock);
mutex_exit(&sc->sc_lock);
/* Done! Destroy the disk. */
ldenddetach(ld);
KASSERT(TAILQ_EMPTY(&sc->sc_xferq));
for (i = 0; i < __arraycount(sc->sc_task); i++)
callout_destroy(&sc->sc_task[i].task_restart_ch);
cv_destroy(&sc->sc_cv);
mutex_destroy(&sc->sc_lock);
evcnt_detach(&sc->sc_ev_discard);
evcnt_detach(&sc->sc_ev_discarderr);
evcnt_detach(&sc->sc_ev_discardbusy);
kmem_free(sc->sc_typename, strlen(sc->sc_typename) + 1);
return 0;
}
static int
ld_sdmmc_start(struct ld_softc *ld, struct buf *bp)
{
struct ld_sdmmc_softc *sc = device_private(ld->sc_dv);
struct ld_sdmmc_task *task;
int error;
mutex_enter(&sc->sc_lock);
if ((task = ld_sdmmc_task_get(sc)) == NULL) {
error = EAGAIN;
goto out;
}
task->task_bp = bp;
task->task_retries = 0;
sdmmc_init_task(&task->task, ld_sdmmc_dobio, task);
sdmmc_add_task(sc->sc_sf->sc, &task->task);
/* Success! The xfer is now queued. */
error = 0;
out: mutex_exit(&sc->sc_lock);
return error;
}
static void
ld_sdmmc_restart(void *arg)
{
struct ld_sdmmc_task *task = (struct ld_sdmmc_task *)arg;
struct ld_sdmmc_softc *sc = task->task_sc;
struct buf *bp = task->task_bp;
bp->b_resid = bp->b_bcount;
mutex_enter(&sc->sc_lock);
callout_ack(&task->task_restart_ch);
if (!sc->sc_dying)
sdmmc_add_task(sc->sc_sf->sc, &task->task);
mutex_exit(&sc->sc_lock);
}
static void
ld_sdmmc_dobio(void *arg)
{
struct ld_sdmmc_task *task = (struct ld_sdmmc_task *)arg;
struct ld_sdmmc_softc *sc = task->task_sc;
struct buf *bp = task->task_bp;
int error;
/*
* I/O operation
*/
DPRINTF(("%s: I/O operation (dir=%s, blkno=0x%jx, bcnt=0x%x)\n",
device_xname(sc->sc_ld.sc_dv), bp->b_flags & B_READ ? "IN" : "OUT",
bp->b_rawblkno, bp->b_bcount));
/* is everything done in terms of blocks? */
if (bp->b_rawblkno >= sc->sc_sf->csd.capacity) {
/* trying to read or write past end of device */
aprint_error_dev(sc->sc_ld.sc_dv,
"blkno 0x%" PRIu64 " exceeds capacity %d\n",
bp->b_rawblkno, sc->sc_sf->csd.capacity);
bp->b_error = EINVAL;
bp->b_resid = bp->b_bcount;
goto done;
}
if (bp->b_flags & B_READ)
error = sdmmc_mem_read_block(sc->sc_sf, bp->b_rawblkno,
bp->b_data, bp->b_bcount);
else
error = sdmmc_mem_write_block(sc->sc_sf, bp->b_rawblkno,
bp->b_data, bp->b_bcount);
if (error) {
if (task->task_retries < LD_SDMMC_IORETRIES) {
struct dk_softc *dksc = &sc->sc_ld.sc_dksc;
struct cfdriver *cd = device_cfdriver(dksc->sc_dev);
diskerr(bp, cd->cd_name, "error", LOG_PRINTF, 0,
dksc->sc_dkdev.dk_label);
printf(", retrying\n");
task->task_retries++;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
bp->b_resid = bp->b_bcount;
bp->b_error = error;
goto done_locked;
} else {
callout_reset(&task->task_restart_ch,
RECOVERYTIME, ld_sdmmc_restart, task);
}
mutex_exit(&sc->sc_lock);
return;
}
bp->b_error = error;
bp->b_resid = bp->b_bcount;
} else {
bp->b_resid = 0;
}
done:
/* Dissociate the task from the I/O xfer and release it. */
mutex_enter(&sc->sc_lock);
done_locked:
ld_sdmmc_task_put(sc, task);
mutex_exit(&sc->sc_lock);
lddone(&sc->sc_ld, bp);
}
static int
ld_sdmmc_dump(struct ld_softc *ld, void *data, int blkno, int blkcnt)
{
struct ld_sdmmc_softc *sc = device_private(ld->sc_dv);
return sdmmc_mem_write_block(sc->sc_sf, blkno, data,
blkcnt * ld->sc_secsize);
}
static void
ld_sdmmc_dodiscard(void *arg)
{
struct ld_sdmmc_task *task = arg;
struct ld_sdmmc_softc *sc = task->task_sc;
struct buf *bp = task->task_bp;
uint32_t sblkno, nblks;
int error;
/* first and last block to erase */
sblkno = bp->b_rawblkno;
nblks = howmany(bp->b_bcount, sc->sc_ld.sc_secsize);
/* An error from discard is non-fatal */
error = sdmmc_mem_discard(sc->sc_sf, sblkno, sblkno + nblks - 1);
/* Count error or success and release the task. */
mutex_enter(&sc->sc_lock);
if (error)
sc->sc_ev_discarderr.ev_count++;
else
sc->sc_ev_discard.ev_count++;
ld_sdmmc_task_put(sc, task);
mutex_exit(&sc->sc_lock);
/* Record the error and notify the xfer of completion. */
if (error)
bp->b_error = error;
lddiscardend(&sc->sc_ld, bp);
}
static int
ld_sdmmc_discard(struct ld_softc *ld, struct buf *bp)
{
struct ld_sdmmc_softc *sc = device_private(ld->sc_dv);
struct ld_sdmmc_task *task;
int error;
mutex_enter(&sc->sc_lock);
/* Acquire a free task, or drop the request altogether. */
if ((task = ld_sdmmc_task_get(sc)) == NULL) {
sc->sc_ev_discardbusy.ev_count++;
error = EBUSY;
goto out;
}
/* Set up the task and schedule it. */
task->task_bp = bp;
sdmmc_init_task(&task->task, ld_sdmmc_dodiscard, task);
sdmmc_add_task(sc->sc_sf->sc, &task->task);
/* Success! The request is queued. */
error = 0;
out: mutex_exit(&sc->sc_lock);
return error;
}
static void
ld_sdmmc_docachesync(void *arg)
{
struct ld_sdmmc_task *task = arg;
struct ld_sdmmc_softc *sc = task->task_sc;
int error;
/* Flush the cache. */
error = sdmmc_mem_flush_cache(sc->sc_sf, task->task_poll);
mutex_enter(&sc->sc_lock);
/* Notify the other thread that we're done; pass on the error. */
*task->task_errorp = error;
cv_broadcast(&sc->sc_cv);
/* Release the task. */
ld_sdmmc_task_put(sc, task);
mutex_exit(&sc->sc_lock);
}
static int
ld_sdmmc_cachesync(struct ld_softc *ld, bool poll)
{
struct ld_sdmmc_softc *sc = device_private(ld->sc_dv);
struct ld_sdmmc_task *task;
int error = -1;
mutex_enter(&sc->sc_lock);
/* Acquire a free task, or fail with EBUSY. */
if ((task = ld_sdmmc_task_get(sc)) == NULL) {
sc->sc_ev_cachesyncbusy.ev_count++;
error = EBUSY;
goto out;
}
/* Set up the task and schedule it. */
task->task_poll = poll;
task->task_errorp = &error;
sdmmc_init_task(&task->task, ld_sdmmc_docachesync, task);
sdmmc_add_task(sc->sc_sf->sc, &task->task);
/*
* Wait for the task to complete. If the device is yanked,
* detach will notify us. Keep the busy count up until we're
* done waiting so that the softc doesn't go away until we're
* done.
*/
sc->sc_busy++;
KASSERT(sc->sc_busy <= LD_SDMMC_MAXTASKCNT);
while (error == -1)
cv_wait(&sc->sc_cv, &sc->sc_lock);
if (--sc->sc_busy == 0)
cv_broadcast(&sc->sc_cv);
out: mutex_exit(&sc->sc_lock);
return error;
}
static int
ld_sdmmc_ioctl(struct ld_softc *ld, u_long cmd, void *addr, int32_t flag,
bool poll)
{
switch (cmd) {
case DIOCCACHESYNC:
return ld_sdmmc_cachesync(ld, poll);
default:
return EPASSTHROUGH;
}
}
MODULE(MODULE_CLASS_DRIVER, ld_sdmmc, "ld");
#ifdef _MODULE
/*
* XXX Don't allow ioconf.c to redefine the "struct cfdriver ld_cd"
* XXX it will be defined in the common-code module
*/
#undef CFDRIVER_DECL
#define CFDRIVER_DECL(name, class, attr)
#include "ioconf.c"
#endif
static int
ld_sdmmc_modcmd(modcmd_t cmd, void *opaque)
{
#ifdef _MODULE
/*
* We ignore the cfdriver_vec[] that ioconf provides, since
* the cfdrivers are attached already.
*/
static struct cfdriver * const no_cfdriver_vec[] = { NULL };
#endif
int error = 0;
#ifdef _MODULE
switch (cmd) {
case MODULE_CMD_INIT:
error = config_init_component(no_cfdriver_vec,
cfattach_ioconf_ld_sdmmc, cfdata_ioconf_ld_sdmmc);
break;
case MODULE_CMD_FINI:
error = config_fini_component(no_cfdriver_vec,
cfattach_ioconf_ld_sdmmc, cfdata_ioconf_ld_sdmmc);
break;
default:
error = ENOTTY;
break;
}
#endif
return error;
}