Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
//===-- sanitizer_win.cc --------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//

#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS

#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <io.h>
#include <psapi.h>
#include <stdlib.h>

#include "sanitizer_common.h"
#include "sanitizer_file.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_win_defs.h"

#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
#pragma comment(lib, "psapi")
#endif

// A macro to tell the compiler that this part of the code cannot be reached,
// if the compiler supports this feature. Since we're using this in
// code that is called when terminating the process, the expansion of the
// macro should not terminate the process to avoid infinite recursion.
#if defined(__clang__)
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(__GNUC__) && \
    (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define BUILTIN_UNREACHABLE() __assume(0)
#else
# define BUILTIN_UNREACHABLE()
#endif

namespace __sanitizer {

#include "sanitizer_syscall_generic.inc"

// --------------------- sanitizer_common.h
uptr GetPageSize() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwPageSize;
}

uptr GetMmapGranularity() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwAllocationGranularity;
}

uptr GetMaxUserVirtualAddress() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return (uptr)si.lpMaximumApplicationAddress;
}

uptr GetMaxVirtualAddress() {
  return GetMaxUserVirtualAddress();
}

bool FileExists(const char *filename) {
  return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
}

uptr internal_getpid() {
  return GetProcessId(GetCurrentProcess());
}

// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
tid_t GetTid() {
  return GetCurrentThreadId();
}

uptr GetThreadSelf() {
  return GetTid();
}

#if !SANITIZER_GO
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
                                uptr *stack_bottom) {
  CHECK(stack_top);
  CHECK(stack_bottom);
  MEMORY_BASIC_INFORMATION mbi;
  CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
  // FIXME: is it possible for the stack to not be a single allocation?
  // Are these values what ASan expects to get (reserved, not committed;
  // including stack guard page) ?
  *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
  *stack_bottom = (uptr)mbi.AllocationBase;
}
#endif  // #if !SANITIZER_GO

void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
  void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (rv == 0)
    ReportMmapFailureAndDie(size, mem_type, "allocate",
                            GetLastError(), raw_report);
  return rv;
}

void UnmapOrDie(void *addr, uptr size) {
  if (!size || !addr)
    return;

  MEMORY_BASIC_INFORMATION mbi;
  CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));

  // MEM_RELEASE can only be used to unmap whole regions previously mapped with
  // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
  // fails try MEM_DECOMMIT.
  if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
    if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
      Report("ERROR: %s failed to "
             "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
             SanitizerToolName, size, size, addr, GetLastError());
      CHECK("unable to unmap" && 0);
    }
  }
}

static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
                                     const char *mmap_type) {
  error_t last_error = GetLastError();
  if (last_error == ERROR_NOT_ENOUGH_MEMORY)
    return nullptr;
  ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
}

void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
  void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (rv == 0)
    return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
  return rv;
}

// We want to map a chunk of address space aligned to 'alignment'.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
                                   const char *mem_type) {
  CHECK(IsPowerOfTwo(size));
  CHECK(IsPowerOfTwo(alignment));

  // Windows will align our allocations to at least 64K.
  alignment = Max(alignment, GetMmapGranularity());

  uptr mapped_addr =
      (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (!mapped_addr)
    return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");

  // If we got it right on the first try, return. Otherwise, unmap it and go to
  // the slow path.
  if (IsAligned(mapped_addr, alignment))
    return (void*)mapped_addr;
  if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
    ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());

  // If we didn't get an aligned address, overallocate, find an aligned address,
  // unmap, and try to allocate at that aligned address.
  int retries = 0;
  const int kMaxRetries = 10;
  for (; retries < kMaxRetries &&
         (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
       retries++) {
    // Overallocate size + alignment bytes.
    mapped_addr =
        (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
    if (!mapped_addr)
      return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");

    // Find the aligned address.
    uptr aligned_addr = RoundUpTo(mapped_addr, alignment);

    // Free the overallocation.
    if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
      ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());

    // Attempt to allocate exactly the number of bytes we need at the aligned
    // address. This may fail for a number of reasons, in which case we continue
    // the loop.
    mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
                                     MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  }

  // Fail if we can't make this work quickly.
  if (retries == kMaxRetries && mapped_addr == 0)
    return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");

  return (void *)mapped_addr;
}

bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
  // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
  // but on Win64 it does.
  (void)name;  // unsupported
#if !SANITIZER_GO && SANITIZER_WINDOWS64
  // On asan/Windows64, use MEM_COMMIT would result in error
  // 1455:ERROR_COMMITMENT_LIMIT.
  // Asan uses exception handler to commit page on demand.
  void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
#else
  void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
                         PAGE_READWRITE);
#endif
  if (p == 0) {
    Report("ERROR: %s failed to "
           "allocate %p (%zd) bytes at %p (error code: %d)\n",
           SanitizerToolName, size, size, fixed_addr, GetLastError());
    return false;
  }
  return true;
}

// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
// 'MmapFixedNoAccess'.
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
  void *p = VirtualAlloc((LPVOID)fixed_addr, size,
      MEM_COMMIT, PAGE_READWRITE);
  if (p == 0) {
    char mem_type[30];
    internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
                      fixed_addr);
    ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
  }
  return p;
}

// Uses fixed_addr for now.
// Will use offset instead once we've implemented this function for real.
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size) {
  return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
}

uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size) {
  return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
}

void ReservedAddressRange::Unmap(uptr addr, uptr size) {
  // Only unmap if it covers the entire range.
  CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
  // We unmap the whole range, just null out the base.
  base_ = nullptr;
  size_ = 0;
  UnmapOrDie(reinterpret_cast<void*>(addr), size);
}

void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
  void *p = VirtualAlloc((LPVOID)fixed_addr, size,
      MEM_COMMIT, PAGE_READWRITE);
  if (p == 0) {
    char mem_type[30];
    internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
                      fixed_addr);
    return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
  }
  return p;
}

void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
  // FIXME: make this really NoReserve?
  return MmapOrDie(size, mem_type);
}

uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
  base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
  size_ = size;
  name_ = name;
  (void)os_handle_;  // unsupported
  return reinterpret_cast<uptr>(base_);
}


void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
  (void)name; // unsupported
  void *res = VirtualAlloc((LPVOID)fixed_addr, size,
                           MEM_RESERVE, PAGE_NOACCESS);
  if (res == 0)
    Report("WARNING: %s failed to "
           "mprotect %p (%zd) bytes at %p (error code: %d)\n",
           SanitizerToolName, size, size, fixed_addr, GetLastError());
  return res;
}

void *MmapNoAccess(uptr size) {
  void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
  if (res == 0)
    Report("WARNING: %s failed to "
           "mprotect %p (%zd) bytes (error code: %d)\n",
           SanitizerToolName, size, size, GetLastError());
  return res;
}

bool MprotectNoAccess(uptr addr, uptr size) {
  DWORD old_protection;
  return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
}

void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
  // This is almost useless on 32-bits.
  // FIXME: add madvise-analog when we move to 64-bits.
}

bool NoHugePagesInRegion(uptr addr, uptr size) {
  // FIXME: probably similar to ReleaseMemoryToOS.
  return true;
}

bool DontDumpShadowMemory(uptr addr, uptr length) {
  // This is almost useless on 32-bits.
  // FIXME: add madvise-analog when we move to 64-bits.
  return true;
}

uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
                              uptr *largest_gap_found,
                              uptr *max_occupied_addr) {
  uptr address = 0;
  while (true) {
    MEMORY_BASIC_INFORMATION info;
    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
      return 0;

    if (info.State == MEM_FREE) {
      uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
                                      alignment);
      if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
        return shadow_address;
    }

    // Move to the next region.
    address = (uptr)info.BaseAddress + info.RegionSize;
  }
  return 0;
}

bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
  MEMORY_BASIC_INFORMATION mbi;
  CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
  return mbi.Protect == PAGE_NOACCESS &&
         (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
}

void *MapFileToMemory(const char *file_name, uptr *buff_size) {
  UNIMPLEMENTED();
}

void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
  UNIMPLEMENTED();
}

static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;

namespace {

struct EnvVariable {
  char name[kMaxEnvNameLength];
  char value[kMaxEnvValueLength];
};

}  // namespace

static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;

const char *GetEnv(const char *name) {
  // Note: this implementation caches the values of the environment variables
  // and limits their quantity.
  for (int i = 0; i < num_env_vars; i++) {
    if (0 == internal_strcmp(name, env_vars[i].name))
      return env_vars[i].value;
  }
  CHECK_LT(num_env_vars, kEnvVariables);
  DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
                                     kMaxEnvValueLength);
  if (rv > 0 && rv < kMaxEnvValueLength) {
    CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
    internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
    num_env_vars++;
    return env_vars[num_env_vars - 1].value;
  }
  return 0;
}

const char *GetPwd() {
  UNIMPLEMENTED();
}

u32 GetUid() {
  UNIMPLEMENTED();
}

namespace {
struct ModuleInfo {
  const char *filepath;
  uptr base_address;
  uptr end_address;
};

#if !SANITIZER_GO
int CompareModulesBase(const void *pl, const void *pr) {
  const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
  if (l->base_address < r->base_address)
    return -1;
  return l->base_address > r->base_address;
}
#endif
}  // namespace

#if !SANITIZER_GO
void DumpProcessMap() {
  Report("Dumping process modules:\n");
  ListOfModules modules;
  modules.init();
  uptr num_modules = modules.size();

  InternalMmapVector<ModuleInfo> module_infos(num_modules);
  for (size_t i = 0; i < num_modules; ++i) {
    module_infos[i].filepath = modules[i].full_name();
    module_infos[i].base_address = modules[i].ranges().front()->beg;
    module_infos[i].end_address = modules[i].ranges().back()->end;
  }
  qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
        CompareModulesBase);

  for (size_t i = 0; i < num_modules; ++i) {
    const ModuleInfo &mi = module_infos[i];
    if (mi.end_address != 0) {
      Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
             mi.filepath[0] ? mi.filepath : "[no name]");
    } else if (mi.filepath[0]) {
      Printf("\t??\?-??? %s\n", mi.filepath);
    } else {
      Printf("\t???\n");
    }
  }
}
#endif

void PrintModuleMap() { }

void DisableCoreDumperIfNecessary() {
  // Do nothing.
}

void ReExec() {
  UNIMPLEMENTED();
}

void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}

bool StackSizeIsUnlimited() {
  UNIMPLEMENTED();
}

void SetStackSizeLimitInBytes(uptr limit) {
  UNIMPLEMENTED();
}

bool AddressSpaceIsUnlimited() {
  UNIMPLEMENTED();
}

void SetAddressSpaceUnlimited() {
  UNIMPLEMENTED();
}

bool IsPathSeparator(const char c) {
  return c == '\\' || c == '/';
}

bool IsAbsolutePath(const char *path) {
  UNIMPLEMENTED();
}

void SleepForSeconds(int seconds) {
  Sleep(seconds * 1000);
}

void SleepForMillis(int millis) {
  Sleep(millis);
}

u64 NanoTime() {
  static LARGE_INTEGER frequency = {};
  LARGE_INTEGER counter;
  if (UNLIKELY(frequency.QuadPart == 0)) {
    QueryPerformanceFrequency(&frequency);
    CHECK_NE(frequency.QuadPart, 0);
  }
  QueryPerformanceCounter(&counter);
  counter.QuadPart *= 1000ULL * 1000000ULL;
  counter.QuadPart /= frequency.QuadPart;
  return counter.QuadPart;
}

u64 MonotonicNanoTime() { return NanoTime(); }

void Abort() {
  internal__exit(3);
}

#if !SANITIZER_GO
// Read the file to extract the ImageBase field from the PE header. If ASLR is
// disabled and this virtual address is available, the loader will typically
// load the image at this address. Therefore, we call it the preferred base. Any
// addresses in the DWARF typically assume that the object has been loaded at
// this address.
static uptr GetPreferredBase(const char *modname) {
  fd_t fd = OpenFile(modname, RdOnly, nullptr);
  if (fd == kInvalidFd)
    return 0;
  FileCloser closer(fd);

  // Read just the DOS header.
  IMAGE_DOS_HEADER dos_header;
  uptr bytes_read;
  if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
      bytes_read != sizeof(dos_header))
    return 0;

  // The file should start with the right signature.
  if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
    return 0;

  // The layout at e_lfanew is:
  // "PE\0\0"
  // IMAGE_FILE_HEADER
  // IMAGE_OPTIONAL_HEADER
  // Seek to e_lfanew and read all that data.
  char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
  if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
      INVALID_SET_FILE_POINTER)
    return 0;
  if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
      bytes_read != sizeof(buf))
    return 0;

  // Check for "PE\0\0" before the PE header.
  char *pe_sig = &buf[0];
  if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
    return 0;

  // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
  IMAGE_OPTIONAL_HEADER *pe_header =
      (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));

  // Check for more magic in the PE header.
  if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
    return 0;

  // Finally, return the ImageBase.
  return (uptr)pe_header->ImageBase;
}

void ListOfModules::init() {
  clearOrInit();
  HANDLE cur_process = GetCurrentProcess();

  // Query the list of modules.  Start by assuming there are no more than 256
  // modules and retry if that's not sufficient.
  HMODULE *hmodules = 0;
  uptr modules_buffer_size = sizeof(HMODULE) * 256;
  DWORD bytes_required;
  while (!hmodules) {
    hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
    CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
                             &bytes_required));
    if (bytes_required > modules_buffer_size) {
      // Either there turned out to be more than 256 hmodules, or new hmodules
      // could have loaded since the last try.  Retry.
      UnmapOrDie(hmodules, modules_buffer_size);
      hmodules = 0;
      modules_buffer_size = bytes_required;
    }
  }

  // |num_modules| is the number of modules actually present,
  size_t num_modules = bytes_required / sizeof(HMODULE);
  for (size_t i = 0; i < num_modules; ++i) {
    HMODULE handle = hmodules[i];
    MODULEINFO mi;
    if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
      continue;

    // Get the UTF-16 path and convert to UTF-8.
    wchar_t modname_utf16[kMaxPathLength];
    int modname_utf16_len =
        GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
    if (modname_utf16_len == 0)
      modname_utf16[0] = '\0';
    char module_name[kMaxPathLength];
    int module_name_len =
        ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
                              &module_name[0], kMaxPathLength, NULL, NULL);
    module_name[module_name_len] = '\0';

    uptr base_address = (uptr)mi.lpBaseOfDll;
    uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;

    // Adjust the base address of the module so that we get a VA instead of an
    // RVA when computing the module offset. This helps llvm-symbolizer find the
    // right DWARF CU. In the common case that the image is loaded at it's
    // preferred address, we will now print normal virtual addresses.
    uptr preferred_base = GetPreferredBase(&module_name[0]);
    uptr adjusted_base = base_address - preferred_base;

    LoadedModule cur_module;
    cur_module.set(module_name, adjusted_base);
    // We add the whole module as one single address range.
    cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
                               /*writable*/ true);
    modules_.push_back(cur_module);
  }
  UnmapOrDie(hmodules, modules_buffer_size);
}

void ListOfModules::fallbackInit() { clear(); }

// We can't use atexit() directly at __asan_init time as the CRT is not fully
// initialized at this point.  Place the functions into a vector and use
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;

int Atexit(void (*function)(void)) {
  atexit_functions.push_back(function);
  return 0;
}

static int RunAtexit() {
  int ret = 0;
  for (uptr i = 0; i < atexit_functions.size(); ++i) {
    ret |= atexit(atexit_functions[i]);
  }
  return ret;
}

#pragma section(".CRT$XID", long, read)  // NOLINT
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
#endif

// ------------------ sanitizer_libc.h
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
  // FIXME: Use the wide variants to handle Unicode filenames.
  fd_t res;
  if (mode == RdOnly) {
    res = CreateFileA(filename, GENERIC_READ,
                      FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
                      nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
  } else if (mode == WrOnly) {
    res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
                      FILE_ATTRIBUTE_NORMAL, nullptr);
  } else {
    UNIMPLEMENTED();
  }
  CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
  CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
  if (res == kInvalidFd && last_error)
    *last_error = GetLastError();
  return res;
}

void CloseFile(fd_t fd) {
  CloseHandle(fd);
}

bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
                  error_t *error_p) {
  CHECK(fd != kInvalidFd);

  // bytes_read can't be passed directly to ReadFile:
  // uptr is unsigned long long on 64-bit Windows.
  unsigned long num_read_long;

  bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
  if (!success && error_p)
    *error_p = GetLastError();
  if (bytes_read)
    *bytes_read = num_read_long;
  return success;
}

bool SupportsColoredOutput(fd_t fd) {
  // FIXME: support colored output.
  return false;
}

bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
                 error_t *error_p) {
  CHECK(fd != kInvalidFd);

  // Handle null optional parameters.
  error_t dummy_error;
  error_p = error_p ? error_p : &dummy_error;
  uptr dummy_bytes_written;
  bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;

  // Initialize output parameters in case we fail.
  *error_p = 0;
  *bytes_written = 0;

  // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
  // closed, in which case this will fail.
  if (fd == kStdoutFd || fd == kStderrFd) {
    fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
    if (fd == 0) {
      *error_p = ERROR_INVALID_HANDLE;
      return false;
    }
  }

  DWORD bytes_written_32;
  if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
    *error_p = GetLastError();
    return false;
  } else {
    *bytes_written = bytes_written_32;
    return true;
  }
}

uptr internal_sched_yield() {
  Sleep(0);
  return 0;
}

void internal__exit(int exitcode) {
  // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
  // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
  // so add our own breakpoint here.
  if (::IsDebuggerPresent())
    __debugbreak();
  TerminateProcess(GetCurrentProcess(), exitcode);
  BUILTIN_UNREACHABLE();
}

uptr internal_ftruncate(fd_t fd, uptr size) {
  UNIMPLEMENTED();
}

uptr GetRSS() {
  PROCESS_MEMORY_COUNTERS counters;
  if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
    return 0;
  return counters.WorkingSetSize;
}

void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) { }

// ---------------------- BlockingMutex ---------------- {{{1

BlockingMutex::BlockingMutex() {
  CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
  internal_memset(this, 0, sizeof(*this));
}

void BlockingMutex::Lock() {
  AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
  CHECK_EQ(owner_, 0);
  owner_ = GetThreadSelf();
}

void BlockingMutex::Unlock() {
  CheckLocked();
  owner_ = 0;
  ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
}

void BlockingMutex::CheckLocked() {
  CHECK_EQ(owner_, GetThreadSelf());
}

uptr GetTlsSize() {
  return 0;
}

void InitTlsSize() {
}

void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
                          uptr *tls_addr, uptr *tls_size) {
#if SANITIZER_GO
  *stk_addr = 0;
  *stk_size = 0;
  *tls_addr = 0;
  *tls_size = 0;
#else
  uptr stack_top, stack_bottom;
  GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
  *stk_addr = stack_bottom;
  *stk_size = stack_top - stack_bottom;
  *tls_addr = 0;
  *tls_size = 0;
#endif
}

void ReportFile::Write(const char *buffer, uptr length) {
  SpinMutexLock l(mu);
  ReopenIfNecessary();
  if (!WriteToFile(fd, buffer, length)) {
    // stderr may be closed, but we may be able to print to the debugger
    // instead.  This is the case when launching a program from Visual Studio,
    // and the following routine should write to its console.
    OutputDebugStringA(buffer);
  }
}

void SetAlternateSignalStack() {
  // FIXME: Decide what to do on Windows.
}

void UnsetAlternateSignalStack() {
  // FIXME: Decide what to do on Windows.
}

void InstallDeadlySignalHandlers(SignalHandlerType handler) {
  (void)handler;
  // FIXME: Decide what to do on Windows.
}

HandleSignalMode GetHandleSignalMode(int signum) {
  // FIXME: Decide what to do on Windows.
  return kHandleSignalNo;
}

// Check based on flags if we should handle this exception.
bool IsHandledDeadlyException(DWORD exceptionCode) {
  switch (exceptionCode) {
    case EXCEPTION_ACCESS_VIOLATION:
    case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
    case EXCEPTION_STACK_OVERFLOW:
    case EXCEPTION_DATATYPE_MISALIGNMENT:
    case EXCEPTION_IN_PAGE_ERROR:
      return common_flags()->handle_segv;
    case EXCEPTION_ILLEGAL_INSTRUCTION:
    case EXCEPTION_PRIV_INSTRUCTION:
    case EXCEPTION_BREAKPOINT:
      return common_flags()->handle_sigill;
    case EXCEPTION_FLT_DENORMAL_OPERAND:
    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
    case EXCEPTION_FLT_INEXACT_RESULT:
    case EXCEPTION_FLT_INVALID_OPERATION:
    case EXCEPTION_FLT_OVERFLOW:
    case EXCEPTION_FLT_STACK_CHECK:
    case EXCEPTION_FLT_UNDERFLOW:
    case EXCEPTION_INT_DIVIDE_BY_ZERO:
    case EXCEPTION_INT_OVERFLOW:
      return common_flags()->handle_sigfpe;
  }
  return false;
}

bool IsAccessibleMemoryRange(uptr beg, uptr size) {
  SYSTEM_INFO si;
  GetNativeSystemInfo(&si);
  uptr page_size = si.dwPageSize;
  uptr page_mask = ~(page_size - 1);

  for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
       page <= end;) {
    MEMORY_BASIC_INFORMATION info;
    if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
      return false;

    if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
        info.Protect == PAGE_EXECUTE)
      return false;

    if (info.RegionSize == 0)
      return false;

    page += info.RegionSize;
  }

  return true;
}

bool SignalContext::IsStackOverflow() const {
  return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
}

void SignalContext::InitPcSpBp() {
  EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
  CONTEXT *context_record = (CONTEXT *)context;

  pc = (uptr)exception_record->ExceptionAddress;
#ifdef _WIN64
  bp = (uptr)context_record->Rbp;
  sp = (uptr)context_record->Rsp;
#else
  bp = (uptr)context_record->Ebp;
  sp = (uptr)context_record->Esp;
#endif
}

uptr SignalContext::GetAddress() const {
  EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
  return exception_record->ExceptionInformation[1];
}

bool SignalContext::IsMemoryAccess() const {
  return GetWriteFlag() != SignalContext::UNKNOWN;
}

SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
  EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
  // The contents of this array are documented at
  // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
  // The first element indicates read as 0, write as 1, or execute as 8.  The
  // second element is the faulting address.
  switch (exception_record->ExceptionInformation[0]) {
    case 0:
      return SignalContext::READ;
    case 1:
      return SignalContext::WRITE;
    case 8:
      return SignalContext::UNKNOWN;
  }
  return SignalContext::UNKNOWN;
}

void SignalContext::DumpAllRegisters(void *context) {
  // FIXME: Implement this.
}

int SignalContext::GetType() const {
  return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
}

const char *SignalContext::Describe() const {
  unsigned code = GetType();
  // Get the string description of the exception if this is a known deadly
  // exception.
  switch (code) {
    case EXCEPTION_ACCESS_VIOLATION:
      return "access-violation";
    case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
      return "array-bounds-exceeded";
    case EXCEPTION_STACK_OVERFLOW:
      return "stack-overflow";
    case EXCEPTION_DATATYPE_MISALIGNMENT:
      return "datatype-misalignment";
    case EXCEPTION_IN_PAGE_ERROR:
      return "in-page-error";
    case EXCEPTION_ILLEGAL_INSTRUCTION:
      return "illegal-instruction";
    case EXCEPTION_PRIV_INSTRUCTION:
      return "priv-instruction";
    case EXCEPTION_BREAKPOINT:
      return "breakpoint";
    case EXCEPTION_FLT_DENORMAL_OPERAND:
      return "flt-denormal-operand";
    case EXCEPTION_FLT_DIVIDE_BY_ZERO:
      return "flt-divide-by-zero";
    case EXCEPTION_FLT_INEXACT_RESULT:
      return "flt-inexact-result";
    case EXCEPTION_FLT_INVALID_OPERATION:
      return "flt-invalid-operation";
    case EXCEPTION_FLT_OVERFLOW:
      return "flt-overflow";
    case EXCEPTION_FLT_STACK_CHECK:
      return "flt-stack-check";
    case EXCEPTION_FLT_UNDERFLOW:
      return "flt-underflow";
    case EXCEPTION_INT_DIVIDE_BY_ZERO:
      return "int-divide-by-zero";
    case EXCEPTION_INT_OVERFLOW:
      return "int-overflow";
  }
  return "unknown exception";
}

uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
  // FIXME: Actually implement this function.
  CHECK_GT(buf_len, 0);
  buf[0] = 0;
  return 0;
}

uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
  return ReadBinaryName(buf, buf_len);
}

void CheckVMASize() {
  // Do nothing.
}

void InitializePlatformEarly() {
  // Do nothing.
}

void MaybeReexec() {
  // No need to re-exec on Windows.
}

void CheckASLR() {
  // Do nothing
}

void CheckMPROTECT() {
  // Do nothing
}

char **GetArgv() {
  // FIXME: Actually implement this function.
  return 0;
}

char **GetEnviron() {
  // FIXME: Actually implement this function.
  return 0;
}

pid_t StartSubprocess(const char *program, const char *const argv[],
                      fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
  // FIXME: implement on this platform
  // Should be implemented based on
  // SymbolizerProcess::StarAtSymbolizerSubprocess
  // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
  return -1;
}

bool IsProcessRunning(pid_t pid) {
  // FIXME: implement on this platform.
  return false;
}

int WaitForProcess(pid_t pid) { return -1; }

// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }

void CheckNoDeepBind(const char *filename, int flag) {
  // Do nothing.
}

// FIXME: implement on this platform.
bool GetRandom(void *buffer, uptr length, bool blocking) {
  UNIMPLEMENTED();
}

u32 GetNumberOfCPUs() {
  SYSTEM_INFO sysinfo = {};
  GetNativeSystemInfo(&sysinfo);
  return sysinfo.dwNumberOfProcessors;
}

}  // namespace __sanitizer

#endif  // _WIN32