Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*	$NetBSD: intel_guc.h,v 1.2 2021/12/18 23:45:31 riastradh Exp $	*/

/* SPDX-License-Identifier: MIT */
/*
 * Copyright © 2014-2019 Intel Corporation
 */

#ifndef _INTEL_GUC_H_
#define _INTEL_GUC_H_

#include "intel_uncore.h"
#include "intel_guc_fw.h"
#include "intel_guc_fwif.h"
#include "intel_guc_ct.h"
#include "intel_guc_log.h"
#include "intel_guc_reg.h"
#include "intel_uc_fw.h"
#include "i915_utils.h"
#include "i915_vma.h"

struct __guc_ads_blob;

/*
 * Top level structure of GuC. It handles firmware loading and manages client
 * pool. intel_guc owns a intel_guc_client to replace the legacy ExecList
 * submission.
 */
struct intel_guc {
	struct intel_uc_fw fw;
	struct intel_guc_log log;
	struct intel_guc_ct ct;

	/* intel_guc_recv interrupt related state */
	spinlock_t irq_lock;
	unsigned int msg_enabled_mask;

	struct {
		bool enabled;
		void (*reset)(struct intel_guc *guc);
		void (*enable)(struct intel_guc *guc);
		void (*disable)(struct intel_guc *guc);
	} interrupts;

	bool submission_supported;

	struct i915_vma *ads_vma;
	struct __guc_ads_blob *ads_blob;

	struct i915_vma *stage_desc_pool;
	void *stage_desc_pool_vaddr;

	struct i915_vma *workqueue;
	void *workqueue_vaddr;
	spinlock_t wq_lock;

	struct i915_vma *proc_desc;
	void *proc_desc_vaddr;

	/* Control params for fw initialization */
	u32 params[GUC_CTL_MAX_DWORDS];

	/* GuC's FW specific registers used in MMIO send */
	struct {
		u32 base;
		unsigned int count;
		enum forcewake_domains fw_domains;
	} send_regs;

	/* register used to send interrupts to the GuC FW */
	i915_reg_t notify_reg;

	/* Store msg (e.g. log flush) that we see while CTBs are disabled */
	u32 mmio_msg;

	/* To serialize the intel_guc_send actions */
	struct mutex send_mutex;
};

static
inline int intel_guc_send(struct intel_guc *guc, const u32 *action, u32 len)
{
	return intel_guc_ct_send(&guc->ct, action, len, NULL, 0);
}

static inline int
intel_guc_send_and_receive(struct intel_guc *guc, const u32 *action, u32 len,
			   u32 *response_buf, u32 response_buf_size)
{
	return intel_guc_ct_send(&guc->ct, action, len,
				 response_buf, response_buf_size);
}

static inline void intel_guc_to_host_event_handler(struct intel_guc *guc)
{
	intel_guc_ct_event_handler(&guc->ct);
}

/* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */
#define GUC_GGTT_TOP	0xFEE00000

/**
 * intel_guc_ggtt_offset() - Get and validate the GGTT offset of @vma
 * @guc: intel_guc structure.
 * @vma: i915 graphics virtual memory area.
 *
 * GuC does not allow any gfx GGTT address that falls into range
 * [0, ggtt.pin_bias), which is reserved for Boot ROM, SRAM and WOPCM.
 * Currently, in order to exclude [0, ggtt.pin_bias) address space from
 * GGTT, all gfx objects used by GuC are allocated with intel_guc_allocate_vma()
 * and pinned with PIN_OFFSET_BIAS along with the value of ggtt.pin_bias.
 *
 * Return: GGTT offset of the @vma.
 */
static inline u32 intel_guc_ggtt_offset(struct intel_guc *guc,
					struct i915_vma *vma)
{
	u32 offset = i915_ggtt_offset(vma);

	GEM_BUG_ON(offset < i915_ggtt_pin_bias(vma));
	GEM_BUG_ON(range_overflows_t(u64, offset, vma->size, GUC_GGTT_TOP));

	return offset;
}

void intel_guc_init_early(struct intel_guc *guc);
void intel_guc_init_send_regs(struct intel_guc *guc);
void intel_guc_write_params(struct intel_guc *guc);
int intel_guc_init(struct intel_guc *guc);
void intel_guc_fini(struct intel_guc *guc);
void intel_guc_notify(struct intel_guc *guc);
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
			u32 *response_buf, u32 response_buf_size);
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
				       const u32 *payload, u32 len);
int intel_guc_sample_forcewake(struct intel_guc *guc);
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset);
int intel_guc_suspend(struct intel_guc *guc);
int intel_guc_resume(struct intel_guc *guc);
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size);
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
				   struct i915_vma **out_vma, void **out_vaddr);

static inline bool intel_guc_is_supported(struct intel_guc *guc)
{
	return intel_uc_fw_is_supported(&guc->fw);
}

static inline bool intel_guc_is_enabled(struct intel_guc *guc)
{
	return intel_uc_fw_is_enabled(&guc->fw);
}

static inline bool intel_guc_is_running(struct intel_guc *guc)
{
	return intel_uc_fw_is_running(&guc->fw);
}

static inline int intel_guc_sanitize(struct intel_guc *guc)
{
	intel_uc_fw_sanitize(&guc->fw);
	guc->mmio_msg = 0;

	return 0;
}

static inline bool intel_guc_is_submission_supported(struct intel_guc *guc)
{
	return guc->submission_supported;
}

static inline void intel_guc_enable_msg(struct intel_guc *guc, u32 mask)
{
	spin_lock_irq(&guc->irq_lock);
	guc->msg_enabled_mask |= mask;
	spin_unlock_irq(&guc->irq_lock);
}

static inline void intel_guc_disable_msg(struct intel_guc *guc, u32 mask)
{
	spin_lock_irq(&guc->irq_lock);
	guc->msg_enabled_mask &= ~mask;
	spin_unlock_irq(&guc->irq_lock);
}

int intel_guc_reset_engine(struct intel_guc *guc,
			   struct intel_engine_cs *engine);

#endif