Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
/*	$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $	*/

/*-
 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
 *    The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
 * Daniel Sieger.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*-
 * Copyright (c) 1982, 1986, 1990, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $");

#include "opt_kstack.h"
#include "opt_dtrace.h"

#define	__MUTEX_PRIVATE

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/pserialize.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/syscall_stats.h>
#include <sys/sleepq.h>
#include <sys/lockdebug.h>
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <sys/lwpctl.h>
#include <sys/atomic.h>
#include <sys/syslog.h>

#include <uvm/uvm_extern.h>

#include <dev/lockstat.h>

#include <sys/dtrace_bsd.h>
int                             dtrace_vtime_active=0;
dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;

static void	sched_unsleep(struct lwp *, bool);
static void	sched_changepri(struct lwp *, pri_t);
static void	sched_lendpri(struct lwp *, pri_t);

syncobj_t sleep_syncobj = {
	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
	.sobj_unsleep	= sleepq_unsleep,
	.sobj_changepri	= sleepq_changepri,
	.sobj_lendpri	= sleepq_lendpri,
	.sobj_owner	= syncobj_noowner,
};

syncobj_t sched_syncobj = {
	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
	.sobj_unsleep	= sched_unsleep,
	.sobj_changepri	= sched_changepri,
	.sobj_lendpri	= sched_lendpri,
	.sobj_owner	= syncobj_noowner,
};

syncobj_t kpause_syncobj = {
	.sobj_flag	= SOBJ_SLEEPQ_NULL,
	.sobj_unsleep	= sleepq_unsleep,
	.sobj_changepri	= sleepq_changepri,
	.sobj_lendpri	= sleepq_lendpri,
	.sobj_owner	= syncobj_noowner,
};

/* "Lightning bolt": once a second sleep address. */
kcondvar_t		lbolt			__cacheline_aligned;

u_int			sched_pstats_ticks	__cacheline_aligned;

/* Preemption event counters. */
static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;

void
synch_init(void)
{

	cv_init(&lbolt, "lbolt");

	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
	   "kpreempt", "defer: critical section");
	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
	   "kpreempt", "defer: kernel_lock");
	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
	   "kpreempt", "immediate");
}

/*
 * OBSOLETE INTERFACE
 *
 * General sleep call.  Suspends the current LWP until a wakeup is
 * performed on the specified identifier.  The LWP will then be made
 * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
 * means no timeout).  If pri includes PCATCH flag, signals are checked
 * before and after sleeping, else signals are not checked.  Returns 0 if
 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
 * signal needs to be delivered, ERESTART is returned if the current system
 * call should be restarted if possible, and EINTR is returned if the system
 * call should be interrupted by the signal (return EINTR).
 */
int
tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
{
	struct lwp *l = curlwp;
	sleepq_t *sq;
	kmutex_t *mp;
	bool catch_p;

	KASSERT((l->l_pflag & LP_INTR) == 0);
	KASSERT(ident != &lbolt);
	//KASSERT(KERNEL_LOCKED_P());

	if (sleepq_dontsleep(l)) {
		(void)sleepq_abort(NULL, 0);
		return 0;
	}

	l->l_kpriority = true;
	catch_p = priority & PCATCH;
	sq = sleeptab_lookup(&sleeptab, ident, &mp);
	sleepq_enter(sq, l, mp);
	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
	return sleepq_block(timo, catch_p, &sleep_syncobj);
}

int
mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
	kmutex_t *mtx)
{
	struct lwp *l = curlwp;
	sleepq_t *sq;
	kmutex_t *mp;
	bool catch_p;
	int error;

	KASSERT((l->l_pflag & LP_INTR) == 0);
	KASSERT(ident != &lbolt);

	if (sleepq_dontsleep(l)) {
		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
		return 0;
	}

	l->l_kpriority = true;
	catch_p = priority & PCATCH;
	sq = sleeptab_lookup(&sleeptab, ident, &mp);
	sleepq_enter(sq, l, mp);
	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
	mutex_exit(mtx);
	error = sleepq_block(timo, catch_p, &sleep_syncobj);

	if ((priority & PNORELOCK) == 0)
		mutex_enter(mtx);

	return error;
}

/*
 * General sleep call for situations where a wake-up is not expected.
 */
int
kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
{
	struct lwp *l = curlwp;
	int error;

	KASSERT(timo != 0 || intr);

	if (sleepq_dontsleep(l))
		return sleepq_abort(NULL, 0);

	if (mtx != NULL)
		mutex_exit(mtx);
	l->l_kpriority = true;
	lwp_lock(l);
	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
	error = sleepq_block(timo, intr, &kpause_syncobj);
	if (mtx != NULL)
		mutex_enter(mtx);

	return error;
}

/*
 * OBSOLETE INTERFACE
 *
 * Make all LWPs sleeping on the specified identifier runnable.
 */
void
wakeup(wchan_t ident)
{
	sleepq_t *sq;
	kmutex_t *mp;

	if (__predict_false(cold))
		return;

	sq = sleeptab_lookup(&sleeptab, ident, &mp);
	sleepq_wake(sq, ident, (u_int)-1, mp);
}

/*
 * General yield call.  Puts the current LWP back on its run queue and
 * performs a context switch.
 */
void
yield(void)
{
	struct lwp *l = curlwp;

	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
	lwp_lock(l);

	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
	KASSERT(l->l_stat == LSONPROC);

	/* Voluntary - ditch kpriority boost. */
	l->l_kpriority = false;
	spc_lock(l->l_cpu);
	mi_switch(l);
	KERNEL_LOCK(l->l_biglocks, l);
}

/*
 * General preemption call.  Puts the current LWP back on its run queue
 * and performs an involuntary context switch.  Different from yield()
 * in that:
 *
 * - It's counted differently (involuntary vs. voluntary).
 * - Realtime threads go to the head of their runqueue vs. tail for yield().
 * - Priority boost is retained unless LWP has exceeded timeslice.
 */
void
preempt(void)
{
	struct lwp *l = curlwp;

	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
	lwp_lock(l);

	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
	KASSERT(l->l_stat == LSONPROC);

	spc_lock(l->l_cpu);
	/* Involuntary - keep kpriority boost unless a CPU hog. */
	if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
		l->l_kpriority = false;
	}
	l->l_pflag |= LP_PREEMPTING;
	mi_switch(l);
	KERNEL_LOCK(l->l_biglocks, l);
}

/*
 * Return true if the current LWP should yield the processor.  Intended to
 * be used by long-running code in kernel.
 */
inline bool
preempt_needed(void)
{
	lwp_t *l = curlwp;
	int needed;

	KPREEMPT_DISABLE(l);
	needed = l->l_cpu->ci_want_resched;
	KPREEMPT_ENABLE(l);

	return (needed != 0);
}

/*
 * A breathing point for long running code in kernel.
 */
void
preempt_point(void)
{

	if (__predict_false(preempt_needed())) {
		preempt();
	}
}

/*
 * Handle a request made by another agent to preempt the current LWP
 * in-kernel.  Usually called when l_dopreempt may be non-zero.
 *
 * Character addresses for lockstat only.
 */
static char	kpreempt_is_disabled;
static char	kernel_lock_held;
static char	is_softint_lwp;
static char	spl_is_raised;

bool
kpreempt(uintptr_t where)
{
	uintptr_t failed;
	lwp_t *l;
	int s, dop, lsflag;

	l = curlwp;
	failed = 0;
	while ((dop = l->l_dopreempt) != 0) {
		if (l->l_stat != LSONPROC) {
			/*
			 * About to block (or die), let it happen.
			 * Doesn't really count as "preemption has
			 * been blocked", since we're going to
			 * context switch.
			 */
			atomic_swap_uint(&l->l_dopreempt, 0);
			return true;
		}
		KASSERT((l->l_flag & LW_IDLE) == 0);
		if (__predict_false(l->l_nopreempt != 0)) {
			/* LWP holds preemption disabled, explicitly. */
			if ((dop & DOPREEMPT_COUNTED) == 0) {
				kpreempt_ev_crit.ev_count++;
			}
			failed = (uintptr_t)&kpreempt_is_disabled;
			break;
		}
		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
			/* Can't preempt soft interrupts yet. */
			atomic_swap_uint(&l->l_dopreempt, 0);
			failed = (uintptr_t)&is_softint_lwp;
			break;
		}
		s = splsched();
		if (__predict_false(l->l_blcnt != 0 ||
		    curcpu()->ci_biglock_wanted != NULL)) {
			/* Hold or want kernel_lock, code is not MT safe. */
			splx(s);
			if ((dop & DOPREEMPT_COUNTED) == 0) {
				kpreempt_ev_klock.ev_count++;
			}
			failed = (uintptr_t)&kernel_lock_held;
			break;
		}
		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
			/*
			 * It may be that the IPL is too high.
			 * kpreempt_enter() can schedule an
			 * interrupt to retry later.
			 */
			splx(s);
			failed = (uintptr_t)&spl_is_raised;
			break;
		}
		/* Do it! */
		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
			kpreempt_ev_immed.ev_count++;
		}
		lwp_lock(l);
		/* Involuntary - keep kpriority boost. */
		l->l_pflag |= LP_PREEMPTING;
		spc_lock(l->l_cpu);
		mi_switch(l);
		l->l_nopreempt++;
		splx(s);

		/* Take care of any MD cleanup. */
		cpu_kpreempt_exit(where);
		l->l_nopreempt--;
	}

	if (__predict_true(!failed)) {
		return false;
	}

	/* Record preemption failure for reporting via lockstat. */
	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
	lsflag = 0;
	LOCKSTAT_ENTER(lsflag);
	if (__predict_false(lsflag)) {
		if (where == 0) {
			where = (uintptr_t)__builtin_return_address(0);
		}
		/* Preemption is on, might recurse, so make it atomic. */
		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
		    (void *)where) == NULL) {
			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
			l->l_pfaillock = failed;
		}
	}
	LOCKSTAT_EXIT(lsflag);
	return true;
}

/*
 * Return true if preemption is explicitly disabled.
 */
bool
kpreempt_disabled(void)
{
	const lwp_t *l = curlwp;

	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
	    cpu_kpreempt_disabled();
}

/*
 * Disable kernel preemption.
 */
void
kpreempt_disable(void)
{

	KPREEMPT_DISABLE(curlwp);
}

/*
 * Reenable kernel preemption.
 */
void
kpreempt_enable(void)
{

	KPREEMPT_ENABLE(curlwp);
}

/*
 * Compute the amount of time during which the current lwp was running.
 *
 * - update l_rtime unless it's an idle lwp.
 */

void
updatertime(lwp_t *l, const struct bintime *now)
{

	if (__predict_false(l->l_flag & LW_IDLE))
		return;

	/* rtime += now - stime */
	bintime_add(&l->l_rtime, now);
	bintime_sub(&l->l_rtime, &l->l_stime);
}

/*
 * Select next LWP from the current CPU to run..
 */
static inline lwp_t *
nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
{
	lwp_t *newl;

	/*
	 * Let sched_nextlwp() select the LWP to run the CPU next.
	 * If no LWP is runnable, select the idle LWP.
	 * 
	 * On arrival here LWPs on a run queue are locked by spc_mutex which
	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
	 * which may or may not be held here.  On exit from this code block,
	 * in all cases newl is locked by spc_lwplock.
	 */
	newl = sched_nextlwp();
	if (newl != NULL) {
		sched_dequeue(newl);
		KASSERT(lwp_locked(newl, spc->spc_mutex));
		KASSERT(newl->l_cpu == ci);
		newl->l_stat = LSONPROC;
		newl->l_pflag |= LP_RUNNING;
		spc->spc_curpriority = lwp_eprio(newl);
		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
		lwp_setlock(newl, spc->spc_lwplock);
	} else {
		/*
		 * The idle LWP does not get set to LSONPROC, because
		 * otherwise it screws up the output from top(1) etc.
		 */
		newl = ci->ci_data.cpu_idlelwp;
		newl->l_pflag |= LP_RUNNING;
		spc->spc_curpriority = PRI_IDLE;
		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
		    SPCF_IDLE;
	}

	/*
	 * Only clear want_resched if there are no pending (slow) software
	 * interrupts.  We can do this without an atomic, because no new
	 * LWPs can appear in the queue due to our hold on spc_mutex, and
	 * the update to ci_want_resched will become globally visible before
	 * the release of spc_mutex becomes globally visible.
	 */
	if (ci->ci_data.cpu_softints == 0)
		ci->ci_want_resched = 0;

	return newl;
}

/*
 * The machine independent parts of context switch.
 *
 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
 * changes its own l_cpu (that would screw up curcpu on many ports and could
 * cause all kinds of other evil stuff).  l_cpu is always changed by some
 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
 * is checked under lock).
 */
void
mi_switch(lwp_t *l)
{
	struct cpu_info *ci;
	struct schedstate_percpu *spc;
	struct lwp *newl;
	kmutex_t *lock;
	int oldspl;
	struct bintime bt;
	bool returning;

	KASSERT(lwp_locked(l, NULL));
	KASSERT(kpreempt_disabled());
	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");

	kstack_check_magic(l);

	binuptime(&bt);

	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
	KASSERT((l->l_pflag & LP_RUNNING) != 0);
	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
	ci = curcpu();
	spc = &ci->ci_schedstate;
	returning = false;
	newl = NULL;

	/*
	 * If we have been asked to switch to a specific LWP, then there
	 * is no need to inspect the run queues.  If a soft interrupt is
	 * blocking, then return to the interrupted thread without adjusting
	 * VM context or its start time: neither have been changed in order
	 * to take the interrupt.
	 */
	if (l->l_switchto != NULL) {
		if ((l->l_pflag & LP_INTR) != 0) {
			returning = true;
			softint_block(l);
			if ((l->l_pflag & LP_TIMEINTR) != 0)
				updatertime(l, &bt);
		}
		newl = l->l_switchto;
		l->l_switchto = NULL;
	}
#ifndef __HAVE_FAST_SOFTINTS
	else if (ci->ci_data.cpu_softints != 0) {
		/* There are pending soft interrupts, so pick one. */
		newl = softint_picklwp();
		newl->l_stat = LSONPROC;
		newl->l_pflag |= LP_RUNNING;
	}
#endif	/* !__HAVE_FAST_SOFTINTS */

	/*
	 * If on the CPU and we have gotten this far, then we must yield.
	 */
	if (l->l_stat == LSONPROC && l != newl) {
		KASSERT(lwp_locked(l, spc->spc_lwplock));
		KASSERT((l->l_flag & LW_IDLE) == 0);
		l->l_stat = LSRUN;
		lwp_setlock(l, spc->spc_mutex);
		sched_enqueue(l);
		sched_preempted(l);

		/*
		 * Handle migration.  Note that "migrating LWP" may
		 * be reset here, if interrupt/preemption happens
		 * early in idle LWP.
		 */
		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
			KASSERT((l->l_pflag & LP_INTR) == 0);
			spc->spc_migrating = l;
		}
	}

	/* Pick new LWP to run. */
	if (newl == NULL) {
		newl = nextlwp(ci, spc);
	}

	/* Items that must be updated with the CPU locked. */
	if (!returning) {
		/* Count time spent in current system call */
		SYSCALL_TIME_SLEEP(l);

		updatertime(l, &bt);

		/* Update the new LWP's start time. */
		newl->l_stime = bt;

		/*
		 * ci_curlwp changes when a fast soft interrupt occurs.
		 * We use ci_onproc to keep track of which kernel or
		 * user thread is running 'underneath' the software
		 * interrupt.  This is important for time accounting,
		 * itimers and forcing user threads to preempt (aston).
		 */
		ci->ci_onproc = newl;
	}

	/*
	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
	 * l_dopreempt without an atomic - it's only ever set non-zero by
	 * sched_resched_cpu() which also holds spc_mutex, and only ever
	 * cleared by the LWP itself (us) with atomics when not under lock.
	 */
	l->l_dopreempt = 0;
	if (__predict_false(l->l_pfailaddr != 0)) {
		LOCKSTAT_FLAG(lsflag);
		LOCKSTAT_ENTER(lsflag);
		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
		    1, l->l_pfailtime, l->l_pfailaddr);
		LOCKSTAT_EXIT(lsflag);
		l->l_pfailtime = 0;
		l->l_pfaillock = 0;
		l->l_pfailaddr = 0;
	}

	if (l != newl) {
		struct lwp *prevlwp;

		/* Release all locks, but leave the current LWP locked */
		if (l->l_mutex == spc->spc_mutex) {
			/*
			 * Drop spc_lwplock, if the current LWP has been moved
			 * to the run queue (it is now locked by spc_mutex).
			 */
			mutex_spin_exit(spc->spc_lwplock);
		} else {
			/*
			 * Otherwise, drop the spc_mutex, we are done with the
			 * run queues.
			 */
			mutex_spin_exit(spc->spc_mutex);
		}

		/* We're down to only one lock, so do debug checks. */
		LOCKDEBUG_BARRIER(l->l_mutex, 1);

		/* Count the context switch. */
		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
		l->l_ncsw++;
		if ((l->l_pflag & LP_PREEMPTING) != 0) {
			l->l_nivcsw++;
			l->l_pflag &= ~LP_PREEMPTING;
		}

		/*
		 * Increase the count of spin-mutexes before the release
		 * of the last lock - we must remain at IPL_SCHED after
		 * releasing the lock.
		 */
		KASSERTMSG(ci->ci_mtx_count == -1,
		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
		    "(block with spin-mutex held)",
		     __func__, cpu_index(ci), ci->ci_mtx_count);
		oldspl = MUTEX_SPIN_OLDSPL(ci);
		ci->ci_mtx_count = -2;

		/* Update status for lwpctl, if present. */
		if (l->l_lwpctl != NULL) {
			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
		}

		/*
		 * If curlwp is a soft interrupt LWP, there's nobody on the
		 * other side to unlock - we're returning into an assembly
		 * trampoline.  Unlock now.  This is safe because this is a
		 * kernel LWP and is bound to current CPU: the worst anyone
		 * else will do to it, is to put it back onto this CPU's run
		 * queue (and the CPU is busy here right now!).
		 */
		if (returning) {
			/* Keep IPL_SCHED after this; MD code will fix up. */
			l->l_pflag &= ~LP_RUNNING;
			lwp_unlock(l);
		} else {
			/* A normal LWP: save old VM context. */
			pmap_deactivate(l);
		}

		/*
		 * If DTrace has set the active vtime enum to anything
		 * other than INACTIVE (0), then it should have set the
		 * function to call.
		 */
		if (__predict_false(dtrace_vtime_active)) {
			(*dtrace_vtime_switch_func)(newl);
		}

		/*
		 * We must ensure not to come here from inside a read section.
		 */
		KASSERT(pserialize_not_in_read_section());

		/* Switch to the new LWP.. */
#ifdef MULTIPROCESSOR
		KASSERT(curlwp == ci->ci_curlwp);
#endif
		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
		prevlwp = cpu_switchto(l, newl, returning);
		ci = curcpu();
#ifdef MULTIPROCESSOR
		KASSERT(curlwp == ci->ci_curlwp);
#endif
		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
		    l, curlwp, prevlwp);
		KASSERT(prevlwp != NULL);
		KASSERT(l->l_cpu == ci);
		KASSERT(ci->ci_mtx_count == -2);

		/*
		 * Immediately mark the previous LWP as no longer running
		 * and unlock (to keep lock wait times short as possible).
		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
		 * don't touch after clearing LP_RUNNING as it could be
		 * reaped by another CPU.  Issue a memory barrier to ensure
		 * this.
		 *
		 * atomic_store_release matches atomic_load_acquire in
		 * lwp_free.
		 */
		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
		lock = prevlwp->l_mutex;
		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
			atomic_store_release(&prevlwp->l_pflag,
			    prevlwp->l_pflag & ~LP_RUNNING);
		} else {
			prevlwp->l_pflag &= ~LP_RUNNING;
		}
		mutex_spin_exit(lock);

		/*
		 * Switched away - we have new curlwp.
		 * Restore VM context and IPL.
		 */
		pmap_activate(l);
		pcu_switchpoint(l);

		/* Update status for lwpctl, if present. */
		if (l->l_lwpctl != NULL) {
			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
			l->l_lwpctl->lc_pctr++;
		}

		/*
		 * Normalize the spin mutex count and restore the previous
		 * SPL.  Note that, unless the caller disabled preemption,
		 * we can be preempted at any time after this splx().
		 */
		KASSERT(l->l_cpu == ci);
		KASSERT(ci->ci_mtx_count == -1);
		ci->ci_mtx_count = 0;
		splx(oldspl);
	} else {
		/* Nothing to do - just unlock and return. */
		mutex_spin_exit(spc->spc_mutex);
		l->l_pflag &= ~LP_PREEMPTING;
		lwp_unlock(l);
	}

	KASSERT(l == curlwp);
	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0); 

	SYSCALL_TIME_WAKEUP(l);
	LOCKDEBUG_BARRIER(NULL, 1);
}

/*
 * setrunnable: change LWP state to be runnable, placing it on the run queue.
 *
 * Call with the process and LWP locked.  Will return with the LWP unlocked.
 */
void
setrunnable(struct lwp *l)
{
	struct proc *p = l->l_proc;
	struct cpu_info *ci;
	kmutex_t *oldlock;

	KASSERT((l->l_flag & LW_IDLE) == 0);
	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
	KASSERT(mutex_owned(p->p_lock));
	KASSERT(lwp_locked(l, NULL));
	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);

	switch (l->l_stat) {
	case LSSTOP:
		/*
		 * If we're being traced (possibly because someone attached us
		 * while we were stopped), check for a signal from the debugger.
		 */
		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
			signotify(l);
		p->p_nrlwps++;
		break;
	case LSSUSPENDED:
		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
		l->l_flag &= ~LW_WSUSPEND;
		p->p_nrlwps++;
		cv_broadcast(&p->p_lwpcv);
		break;
	case LSSLEEP:
		KASSERT(l->l_wchan != NULL);
		break;
	case LSIDL:
		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
		break;
	default:
		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
	}

	/*
	 * If the LWP was sleeping, start it again.
	 */
	if (l->l_wchan != NULL) {
		l->l_stat = LSSLEEP;
		/* lwp_unsleep() will release the lock. */
		lwp_unsleep(l, true);
		return;
	}

	/*
	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
	 * about to call mi_switch(), in which case it will yield.
	 */
	if ((l->l_pflag & LP_RUNNING) != 0) {
		l->l_stat = LSONPROC;
		l->l_slptime = 0;
		lwp_unlock(l);
		return;
	}

	/*
	 * Look for a CPU to run.
	 * Set the LWP runnable.
	 */
	ci = sched_takecpu(l);
	l->l_cpu = ci;
	spc_lock(ci);
	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
	sched_setrunnable(l);
	l->l_stat = LSRUN;
	l->l_slptime = 0;
	sched_enqueue(l);
	sched_resched_lwp(l, true);
	/* SPC & LWP now unlocked. */
	mutex_spin_exit(oldlock);
}

/*
 * suspendsched:
 *
 *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 
 */
void
suspendsched(void)
{
	CPU_INFO_ITERATOR cii;
	struct cpu_info *ci;
	struct lwp *l;
	struct proc *p;

	/*
	 * We do this by process in order not to violate the locking rules.
	 */
	mutex_enter(&proc_lock);
	PROCLIST_FOREACH(p, &allproc) {
		mutex_enter(p->p_lock);
		if ((p->p_flag & PK_SYSTEM) != 0) {
			mutex_exit(p->p_lock);
			continue;
		}

		if (p->p_stat != SSTOP) {
			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
				p->p_pptr->p_nstopchild++;
				p->p_waited = 0;
			}
			p->p_stat = SSTOP;
		}

		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
			if (l == curlwp)
				continue;

			lwp_lock(l);

			/*
			 * Set L_WREBOOT so that the LWP will suspend itself
			 * when it tries to return to user mode.  We want to
			 * try and get to get as many LWPs as possible to
			 * the user / kernel boundary, so that they will
			 * release any locks that they hold.
			 */
			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);

			if (l->l_stat == LSSLEEP &&
			    (l->l_flag & LW_SINTR) != 0) {
				/* setrunnable() will release the lock. */
				setrunnable(l);
				continue;
			}

			lwp_unlock(l);
		}

		mutex_exit(p->p_lock);
	}
	mutex_exit(&proc_lock);

	/*
	 * Kick all CPUs to make them preempt any LWPs running in user mode. 
	 * They'll trap into the kernel and suspend themselves in userret(). 
	 *
	 * Unusually, we don't hold any other scheduler object locked, which
	 * would keep preemption off for sched_resched_cpu(), so disable it
	 * explicitly.
	 */
	kpreempt_disable();
	for (CPU_INFO_FOREACH(cii, ci)) {
		spc_lock(ci);
		sched_resched_cpu(ci, PRI_KERNEL, true);
		/* spc now unlocked */
	}
	kpreempt_enable();
}

/*
 * sched_unsleep:
 *
 *	The is called when the LWP has not been awoken normally but instead
 *	interrupted: for example, if the sleep timed out.  Because of this,
 *	it's not a valid action for running or idle LWPs.
 */
static void
sched_unsleep(struct lwp *l, bool cleanup)
{

	lwp_unlock(l);
	panic("sched_unsleep");
}

static void
sched_changepri(struct lwp *l, pri_t pri)
{
	struct schedstate_percpu *spc;
	struct cpu_info *ci;

	KASSERT(lwp_locked(l, NULL));

	ci = l->l_cpu;
	spc = &ci->ci_schedstate;

	if (l->l_stat == LSRUN) {
		KASSERT(lwp_locked(l, spc->spc_mutex));
		sched_dequeue(l);
		l->l_priority = pri;
		sched_enqueue(l);
		sched_resched_lwp(l, false);
	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
		/* On priority drop, only evict realtime LWPs. */
		KASSERT(lwp_locked(l, spc->spc_lwplock));
		l->l_priority = pri;
		spc_lock(ci);
		sched_resched_cpu(ci, spc->spc_maxpriority, true);
		/* spc now unlocked */
	} else {
		l->l_priority = pri;
	}
}

static void
sched_lendpri(struct lwp *l, pri_t pri)
{
	struct schedstate_percpu *spc;
	struct cpu_info *ci;

	KASSERT(lwp_locked(l, NULL));

	ci = l->l_cpu;
	spc = &ci->ci_schedstate;

	if (l->l_stat == LSRUN) {
		KASSERT(lwp_locked(l, spc->spc_mutex));
		sched_dequeue(l);
		l->l_inheritedprio = pri;
		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
		sched_enqueue(l);
		sched_resched_lwp(l, false);
	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
		/* On priority drop, only evict realtime LWPs. */
		KASSERT(lwp_locked(l, spc->spc_lwplock));
		l->l_inheritedprio = pri;
		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
		spc_lock(ci);
		sched_resched_cpu(ci, spc->spc_maxpriority, true);
		/* spc now unlocked */
	} else {
		l->l_inheritedprio = pri;
		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
	}
}

struct lwp *
syncobj_noowner(wchan_t wchan)
{

	return NULL;
}

/* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;

/*
 * Constants for averages over 1, 5 and 15 minutes when sampling at
 * 5 second intervals.
 */
static const fixpt_t cexp[ ] = {
	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
};

/*
 * sched_pstats:
 *
 * => Update process statistics and check CPU resource allocation.
 * => Call scheduler-specific hook to eventually adjust LWP priorities.
 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
 */
void
sched_pstats(void)
{
	struct loadavg *avg = &averunnable;
	const int clkhz = (stathz != 0 ? stathz : hz);
	static bool backwards = false;
	static u_int lavg_count = 0;
	struct proc *p;
	int nrun;

	sched_pstats_ticks++;
	if (++lavg_count >= 5) {
		lavg_count = 0;
		nrun = 0;
	}
	mutex_enter(&proc_lock);
	PROCLIST_FOREACH(p, &allproc) {
		struct lwp *l;
		struct rlimit *rlim;
		time_t runtm;
		int sig;

		/* Increment sleep time (if sleeping), ignore overflow. */
		mutex_enter(p->p_lock);
		runtm = p->p_rtime.sec;
		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
			fixpt_t lpctcpu;
			u_int lcpticks;

			if (__predict_false((l->l_flag & LW_IDLE) != 0))
				continue;
			lwp_lock(l);
			runtm += l->l_rtime.sec;
			l->l_swtime++;
			sched_lwp_stats(l);

			/* For load average calculation. */
			if (__predict_false(lavg_count == 0) &&
			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
				switch (l->l_stat) {
				case LSSLEEP:
					if (l->l_slptime > 1) {
						break;
					}
					/* FALLTHROUGH */
				case LSRUN:
				case LSONPROC:
				case LSIDL:
					nrun++;
				}
			}
			lwp_unlock(l);

			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
			if (l->l_slptime != 0)
				continue;

			lpctcpu = l->l_pctcpu;
			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
			lpctcpu += ((FSCALE - ccpu) *
			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
			l->l_pctcpu = lpctcpu;
		}
		/* Calculating p_pctcpu only for ps(1) */
		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;

		if (__predict_false(runtm < 0)) {
			if (!backwards) {
				backwards = true;
				printf("WARNING: negative runtime; "
				    "monotonic clock has gone backwards\n");
			}
			mutex_exit(p->p_lock);
			continue;
		}

		/*
		 * Check if the process exceeds its CPU resource allocation.
		 * If over the hard limit, kill it with SIGKILL.
		 * If over the soft limit, send SIGXCPU and raise
		 * the soft limit a little.
		 */
		rlim = &p->p_rlimit[RLIMIT_CPU];
		sig = 0;
		if (__predict_false(runtm >= rlim->rlim_cur)) {
			if (runtm >= rlim->rlim_max) {
				sig = SIGKILL;
				log(LOG_NOTICE,
				    "pid %d, command %s, is killed: %s\n",
				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
				uprintf("pid %d, command %s, is killed: %s\n",
				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
			} else {
				sig = SIGXCPU;
				if (rlim->rlim_cur < rlim->rlim_max)
					rlim->rlim_cur += 5;
			}
		}
		mutex_exit(p->p_lock);
		if (__predict_false(sig)) {
			KASSERT((p->p_flag & PK_SYSTEM) == 0);
			psignal(p, sig);
		}
	}

	/* Load average calculation. */
	if (__predict_false(lavg_count == 0)) {
		int i;
		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
		for (i = 0; i < __arraycount(cexp); i++) {
			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
		}
	}

	/* Lightning bolt. */
	cv_broadcast(&lbolt);

	mutex_exit(&proc_lock);
}