Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <openssl/stack.h>
#include <openssl/objects.h>
#include <errno.h>
#include <openssl/e_os2.h>      /* For ossl_inline */

/*
 * The initial number of nodes in the array.
 */
static const int min_nodes = 4;
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
                             ? (int)(SIZE_MAX / sizeof(void *))
                             : INT_MAX;

struct stack_st {
    int num;
    const void **data;
    int sorted;
    int num_alloc;
    OPENSSL_sk_compfunc comp;
};

OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
{
    OPENSSL_sk_compfunc old = sk->comp;

    if (sk->comp != c)
        sk->sorted = 0;
    sk->comp = c;

    return old;
}

OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
{
    OPENSSL_STACK *ret;

    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    /* direct structure assignment */
    *ret = *sk;

    if (sk->num == 0) {
        /* postpone |ret->data| allocation */
        ret->data = NULL;
        ret->num_alloc = 0;
        return ret;
    }
    /* duplicate |sk->data| content */
    if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
        goto err;
    memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
    return ret;
 err:
    OPENSSL_sk_free(ret);
    return NULL;
}

OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
                             OPENSSL_sk_copyfunc copy_func,
                             OPENSSL_sk_freefunc free_func)
{
    OPENSSL_STACK *ret;
    int i;

    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    /* direct structure assignment */
    *ret = *sk;

    if (sk->num == 0) {
        /* postpone |ret| data allocation */
        ret->data = NULL;
        ret->num_alloc = 0;
        return ret;
    }

    ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
    ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
    if (ret->data == NULL) {
        OPENSSL_free(ret);
        return NULL;
    }

    for (i = 0; i < ret->num; ++i) {
        if (sk->data[i] == NULL)
            continue;
        if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
            while (--i >= 0)
                if (ret->data[i] != NULL)
                    free_func((void *)ret->data[i]);
            OPENSSL_sk_free(ret);
            return NULL;
        }
    }
    return ret;
}

OPENSSL_STACK *OPENSSL_sk_new_null(void)
{
    return OPENSSL_sk_new_reserve(NULL, 0);
}

OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
{
    return OPENSSL_sk_new_reserve(c, 0);
}

/*
 * Calculate the array growth based on the target size.
 *
 * The growth fraction is a rational number and is defined by a numerator
 * and a denominator.  According to Andrew Koenig in his paper "Why Are
 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
 * than the golden ratio (1.618...).
 *
 * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
 * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
 * computation is more difficult.
 *
 * The limit to avoid overflow is spot on.  The modulo three correction term
 * ensures that the limit is the largest number than can be expanded by the
 * growth factor without exceeding the hard limit.
 *
 * Do not call it with |current| lower than 2, or it will infinitely loop.
 */
static ossl_inline int compute_growth(int target, int current)
{
    const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);

    while (current < target) {
        /* Check to see if we're at the hard limit */
        if (current >= max_nodes)
            return 0;

        /* Expand the size by a factor of 3/2 if it is within range */
        current = current < limit ? current + current / 2 : max_nodes;
    }
    return current;
}

/* internal STACK storage allocation */
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
{
    const void **tmpdata;
    int num_alloc;

    /* Check to see the reservation isn't exceeding the hard limit */
    if (n > max_nodes - st->num)
        return 0;

    /* Figure out the new size */
    num_alloc = st->num + n;
    if (num_alloc < min_nodes)
        num_alloc = min_nodes;

    /* If |st->data| allocation was postponed */
    if (st->data == NULL) {
        /*
         * At this point, |st->num_alloc| and |st->num| are 0;
         * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
         */
        if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
            CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
            return 0;
        }
        st->num_alloc = num_alloc;
        return 1;
    }

    if (!exact) {
        if (num_alloc <= st->num_alloc)
            return 1;
        num_alloc = compute_growth(num_alloc, st->num_alloc);
        if (num_alloc == 0)
            return 0;
    } else if (num_alloc == st->num_alloc) {
        return 1;
    }

    tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
    if (tmpdata == NULL)
        return 0;

    st->data = tmpdata;
    st->num_alloc = num_alloc;
    return 1;
}

OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
{
    OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));

    if (st == NULL)
        return NULL;

    st->comp = c;

    if (n <= 0)
        return st;

    if (!sk_reserve(st, n, 1)) {
        OPENSSL_sk_free(st);
        return NULL;
    }

    return st;
}

int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
{
    if (st == NULL)
        return 0;

    if (n < 0)
        return 1;
    return sk_reserve(st, n, 1);
}

int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
{
    if (st == NULL || st->num == max_nodes)
        return 0;

    if (!sk_reserve(st, 1, 0))
        return 0;

    if ((loc >= st->num) || (loc < 0)) {
        st->data[st->num] = data;
    } else {
        memmove(&st->data[loc + 1], &st->data[loc],
                sizeof(st->data[0]) * (st->num - loc));
        st->data[loc] = data;
    }
    st->num++;
    st->sorted = 0;
    return st->num;
}

static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
{
    const void *ret = st->data[loc];

    if (loc != st->num - 1)
         memmove(&st->data[loc], &st->data[loc + 1],
                 sizeof(st->data[0]) * (st->num - loc - 1));
    st->num--;

    return (void *)ret;
}

void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
{
    int i;

    for (i = 0; i < st->num; i++)
        if (st->data[i] == p)
            return internal_delete(st, i);
    return NULL;
}

void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
{
    if (st == NULL || loc < 0 || loc >= st->num)
        return NULL;

    return internal_delete(st, loc);
}

static int internal_find(OPENSSL_STACK *st, const void *data,
                         int ret_val_options)
{
    const void *r;
    int i;

    if (st == NULL || st->num == 0)
        return -1;

    if (st->comp == NULL) {
        for (i = 0; i < st->num; i++)
            if (st->data[i] == data)
                return i;
        return -1;
    }

    if (!st->sorted) {
        if (st->num > 1)
            qsort(st->data, st->num, sizeof(void *), st->comp);
        st->sorted = 1; /* empty or single-element stack is considered sorted */
    }
    if (data == NULL)
        return -1;
    r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
                        ret_val_options);

    return r == NULL ? -1 : (int)((const void **)r - st->data);
}

int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
{
    return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
}

int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
{
    return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
}

int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
{
    if (st == NULL)
        return -1;
    return OPENSSL_sk_insert(st, data, st->num);
}

int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
{
    return OPENSSL_sk_insert(st, data, 0);
}

void *OPENSSL_sk_shift(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return NULL;
    return internal_delete(st, 0);
}

void *OPENSSL_sk_pop(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return NULL;
    return internal_delete(st, st->num - 1);
}

void OPENSSL_sk_zero(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return;
    memset(st->data, 0, sizeof(*st->data) * st->num);
    st->num = 0;
}

void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
{
    int i;

    if (st == NULL)
        return;
    for (i = 0; i < st->num; i++)
        if (st->data[i] != NULL)
            func((char *)st->data[i]);
    OPENSSL_sk_free(st);
}

void OPENSSL_sk_free(OPENSSL_STACK *st)
{
    if (st == NULL)
        return;
    OPENSSL_free(st->data);
    OPENSSL_free(st);
}

int OPENSSL_sk_num(const OPENSSL_STACK *st)
{
    return st == NULL ? -1 : st->num;
}

void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
{
    if (st == NULL || i < 0 || i >= st->num)
        return NULL;
    return (void *)st->data[i];
}

void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
{
    if (st == NULL || i < 0 || i >= st->num)
        return NULL;
    st->data[i] = data;
    st->sorted = 0;
    return (void *)st->data[i];
}

void OPENSSL_sk_sort(OPENSSL_STACK *st)
{
    if (st != NULL && !st->sorted && st->comp != NULL) {
        if (st->num > 1)
            qsort(st->data, st->num, sizeof(void *), st->comp);
        st->sorted = 1; /* empty or single-element stack is considered sorted */
    }
}

int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
{
    return st == NULL ? 1 : st->sorted;
}