#include "config.h"
#include "ntp_stdlib.h"
#include "ntp_fp.h"
#include "unity.h"
#include <float.h>
#include <math.h>
/*
replaced: TEST_ASSERT_EQUAL_MEMORY(&a, &b, sizeof(a))
with: TEST_ASSERT_EQUAL_l_fp(a, b).
It's safer this way, because structs can be compared even if they
aren't initiated with memset (due to padding bytes).
*/
#define TEST_ASSERT_EQUAL_l_fp(a, b) { \
TEST_ASSERT_EQUAL_MESSAGE(a.l_i, b.l_i, "Field l_i"); \
TEST_ASSERT_EQUAL_UINT_MESSAGE(a.l_uf, b.l_uf, "Field l_uf"); \
}
typedef struct {
uint32_t h, l;
} lfp_hl;
int l_fp_scmp(const l_fp first, const l_fp second);
int l_fp_ucmp(const l_fp first, l_fp second);
l_fp l_fp_init(int32 i, u_int32 f);
l_fp l_fp_add(const l_fp first, const l_fp second);
l_fp l_fp_subtract(const l_fp first, const l_fp second);
l_fp l_fp_negate(const l_fp first);
l_fp l_fp_abs(const l_fp first);
int l_fp_signum(const l_fp first);
double l_fp_convert_to_double(const l_fp first);
l_fp l_fp_init_from_double( double rhs);
void l_fp_swap(l_fp * first, l_fp *second);
bool l_isgt(const l_fp first, const l_fp second);
bool l_isgtu(const l_fp first, const l_fp second);
bool l_ishis(const l_fp first, const l_fp second);
bool l_isgeq(const l_fp first, const l_fp second);
bool l_isequ(const l_fp first, const l_fp second);
double eps(double d);
void test_AdditionLR(void);
void test_AdditionRL(void);
void test_SubtractionLR(void);
void test_SubtractionRL(void);
void test_Negation(void);
void test_Absolute(void);
void test_FDF_RoundTrip(void);
void test_SignedRelOps(void);
void test_UnsignedRelOps(void);
static int cmp_work(u_int32 a[3], u_int32 b[3]);
//----------------------------------------------------------------------
// reference comparision
// This is implementad as a full signed MP-subtract in 3 limbs, where
// the operands are zero or sign extended before the subtraction is
// executed.
//----------------------------------------------------------------------
int
l_fp_scmp(const l_fp first, const l_fp second)
{
u_int32 a[3], b[3];
const l_fp op1 = first;
const l_fp op2 = second;
a[0] = op1.l_uf; a[1] = op1.l_ui; a[2] = 0;
b[0] = op2.l_uf; b[1] = op2.l_ui; b[2] = 0;
a[2] -= (op1.l_i < 0);
b[2] -= (op2.l_i < 0);
return cmp_work(a,b);
}
int
l_fp_ucmp(const l_fp first, l_fp second)
{
u_int32 a[3], b[3];
const l_fp op1 = first;
const l_fp op2 = second;
a[0] = op1.l_uf; a[1] = op1.l_ui; a[2] = 0;
b[0] = op2.l_uf; b[1] = op2.l_ui; b[2] = 0;
return cmp_work(a,b);
}
// maybe rename it to lf_cmp_work
int
cmp_work(u_int32 a[3], u_int32 b[3])
{
u_int32 cy, idx, tmp;
for (cy = idx = 0; idx < 3; ++idx) {
tmp = a[idx]; cy = (a[idx] -= cy ) > tmp;
tmp = a[idx]; cy |= (a[idx] -= b[idx]) > tmp;
}
if (a[2])
return -1;
return a[0] || a[1];
}
//----------------------------------------------------------------------
// imlementation of the LFP stuff
// This should be easy enough...
//----------------------------------------------------------------------
l_fp
l_fp_init(int32 i, u_int32 f)
{
l_fp temp;
temp.l_i = i;
temp.l_uf = f;
return temp;
}
l_fp
l_fp_add(const l_fp first, const l_fp second)
{
l_fp temp = first;
L_ADD(&temp, &second);
return temp;
}
l_fp
l_fp_subtract(const l_fp first, const l_fp second)
{
l_fp temp = first;
L_SUB(&temp, &second);
return temp;
}
l_fp
l_fp_negate(const l_fp first)
{
l_fp temp = first;
L_NEG(&temp);
return temp;
}
l_fp
l_fp_abs(const l_fp first)
{
l_fp temp = first;
if (L_ISNEG(&temp))
L_NEG(&temp);
return temp;
}
int
l_fp_signum(const l_fp first)
{
if (first.l_ui & 0x80000000u)
return -1;
return (first.l_ui || first.l_uf);
}
double
l_fp_convert_to_double(const l_fp first)
{
double res;
LFPTOD(&first, res);
return res;
}
l_fp
l_fp_init_from_double( double rhs)
{
l_fp temp;
DTOLFP(rhs, &temp);
return temp;
}
void
l_fp_swap(l_fp * first, l_fp *second)
{
l_fp temp = *second;
*second = *first;
*first = temp;
return;
}
//----------------------------------------------------------------------
// testing the relational macros works better with proper predicate
// formatting functions; it slows down the tests a bit, but makes for
// readable failure messages.
//----------------------------------------------------------------------
bool
l_isgt (const l_fp first, const l_fp second)
{
return L_ISGT(&first, &second);
}
bool
l_isgtu(const l_fp first, const l_fp second)
{
return L_ISGTU(&first, &second);
}
bool
l_ishis(const l_fp first, const l_fp second)
{
return L_ISHIS(&first, &second);
}
bool
l_isgeq(const l_fp first, const l_fp second)
{
return L_ISGEQ(&first, &second);
}
bool
l_isequ(const l_fp first, const l_fp second)
{
return L_ISEQU(&first, &second);
}
//----------------------------------------------------------------------
// test data table for add/sub and compare
//----------------------------------------------------------------------
static const lfp_hl addsub_tab[][3] = {
// trivial idendity:
{{0 ,0 }, { 0,0 }, { 0,0}},
// with carry from fraction and sign change:
{{-1,0x80000000}, { 0,0x80000000}, { 0,0}},
// without carry from fraction
{{ 1,0x40000000}, { 1,0x40000000}, { 2,0x80000000}},
// with carry from fraction:
{{ 1,0xC0000000}, { 1,0xC0000000}, { 3,0x80000000}},
// with carry from fraction and sign change:
{{0x7FFFFFFF, 0x7FFFFFFF}, {0x7FFFFFFF,0x7FFFFFFF}, {0xFFFFFFFE,0xFFFFFFFE}},
// two tests w/o carry (used for l_fp<-->double):
{{0x55555555,0xAAAAAAAA}, {0x11111111,0x11111111}, {0x66666666,0xBBBBBBBB}},
{{0x55555555,0x55555555}, {0x11111111,0x11111111}, {0x66666666,0x66666666}},
// wide-range test, triggers compare trouble
{{0x80000000,0x00000001}, {0xFFFFFFFF,0xFFFFFFFE}, {0x7FFFFFFF,0xFFFFFFFF}}
};
static const size_t addsub_cnt = (sizeof(addsub_tab)/sizeof(addsub_tab[0]));
static const size_t addsub_tot = (sizeof(addsub_tab)/sizeof(addsub_tab[0][0]));
//----------------------------------------------------------------------
// epsilon estimation for the precision of a conversion double --> l_fp
//
// The error estimation limit is as follows:
// * The 'l_fp' fixed point fraction has 32 bits precision, so we allow
// for the LSB to toggle by clamping the epsilon to be at least 2^(-31)
//
// * The double mantissa has a precsion 54 bits, so the other minimum is
// dval * (2^(-53))
//
// The maximum of those two boundaries is used for the check.
//
// Note: once there are more than 54 bits between the highest and lowest
// '1'-bit of the l_fp value, the roundtrip *will* create truncation
// errors. This is an inherent property caused by the 54-bit mantissa of
// the 'double' type.
double
eps(double d)
{
return fmax(ldexp(1.0, -31), ldexp(fabs(d), -53));
}
//----------------------------------------------------------------------
// test addition
//----------------------------------------------------------------------
void
test_AdditionLR(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op1 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp op2 = l_fp_init(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
l_fp e_res = l_fp_init(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
l_fp res = l_fp_add(op1, op2);
TEST_ASSERT_EQUAL_l_fp(e_res, res);
}
return;
}
void
test_AdditionRL(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op2 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp op1 = l_fp_init(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
l_fp e_res = l_fp_init(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
l_fp res = l_fp_add(op1, op2);
TEST_ASSERT_EQUAL_l_fp(e_res, res);
}
return;
}
//----------------------------------------------------------------------
// test subtraction
//----------------------------------------------------------------------
void
test_SubtractionLR(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op2 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp e_res = l_fp_init(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
l_fp op1 = l_fp_init(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
l_fp res = l_fp_subtract(op1, op2);
TEST_ASSERT_EQUAL_l_fp(e_res, res);
}
return;
}
void
test_SubtractionRL(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp e_res = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp op2 = l_fp_init(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
l_fp op1 = l_fp_init(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
l_fp res = l_fp_subtract(op1, op2);
TEST_ASSERT_EQUAL_l_fp(e_res, res);
}
return;
}
//----------------------------------------------------------------------
// test negation
//----------------------------------------------------------------------
void
test_Negation(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op1 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp op2 = l_fp_negate(op1);
l_fp sum = l_fp_add(op1, op2);
l_fp zero = l_fp_init(0, 0);
TEST_ASSERT_EQUAL_l_fp(zero, sum);
}
return;
}
//----------------------------------------------------------------------
// test absolute value
//----------------------------------------------------------------------
void
test_Absolute(void)
{
size_t idx = 0;
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op1 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
l_fp op2 = l_fp_abs(op1);
TEST_ASSERT_TRUE(l_fp_signum(op2) >= 0);
if (l_fp_signum(op1) >= 0)
op1 = l_fp_subtract(op1, op2);
else
op1 = l_fp_add(op1, op2);
l_fp zero = l_fp_init(0, 0);
TEST_ASSERT_EQUAL_l_fp(zero, op1);
}
// There is one special case we have to check: the minimum
// value cannot be negated, or, to be more precise, the
// negation reproduces the original pattern.
l_fp minVal = l_fp_init(0x80000000, 0x00000000);
l_fp minAbs = l_fp_abs(minVal);
TEST_ASSERT_EQUAL(-1, l_fp_signum(minVal));
TEST_ASSERT_EQUAL_l_fp(minVal, minAbs);
return;
}
//----------------------------------------------------------------------
// fp -> double -> fp rountrip test
//----------------------------------------------------------------------
void
test_FDF_RoundTrip(void)
{
size_t idx = 0;
// since a l_fp has 64 bits in it's mantissa and a double has
// only 54 bits available (including the hidden '1') we have to
// make a few concessions on the roundtrip precision. The 'eps()'
// function makes an educated guess about the avilable precision
// and checks the difference in the two 'l_fp' values against
// that limit.
for (idx = 0; idx < addsub_cnt; ++idx) {
l_fp op1 = l_fp_init(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
double op2 = l_fp_convert_to_double(op1);
l_fp op3 = l_fp_init_from_double(op2);
l_fp temp = l_fp_subtract(op1, op3);
double d = l_fp_convert_to_double(temp);
TEST_ASSERT_DOUBLE_WITHIN(eps(op2), 0.0, fabs(d));
}
return;
}
//----------------------------------------------------------------------
// test the compare stuff
//
// This uses the local compare and checks if the operations using the
// macros in 'ntp_fp.h' produce mathing results.
// ----------------------------------------------------------------------
void
test_SignedRelOps(void)
{
const lfp_hl * tv = (&addsub_tab[0][0]);
size_t lc ;
for (lc = addsub_tot - 1; lc; --lc, ++tv) {
l_fp op1 = l_fp_init(tv[0].h, tv[0].l);
l_fp op2 = l_fp_init(tv[1].h, tv[1].l);
int cmp = l_fp_scmp(op1, op2);
switch (cmp) {
case -1:
//printf("op1:%d %d, op2:%d %d\n",op1.l_uf,op1.l_ui,op2.l_uf,op2.l_ui);
l_fp_swap(&op1, &op2);
//printf("op1:%d %d, op2:%d %d\n",op1.l_uf,op1.l_ui,op2.l_uf,op2.l_ui);
case 1:
TEST_ASSERT_TRUE (l_isgt(op1, op2));
TEST_ASSERT_FALSE(l_isgt(op2, op1));
TEST_ASSERT_TRUE (l_isgeq(op1, op2));
TEST_ASSERT_FALSE(l_isgeq(op2, op1));
TEST_ASSERT_FALSE(l_isequ(op1, op2));
TEST_ASSERT_FALSE(l_isequ(op2, op1));
break;
case 0:
TEST_ASSERT_FALSE(l_isgt(op1, op2));
TEST_ASSERT_FALSE(l_isgt(op2, op1));
TEST_ASSERT_TRUE (l_isgeq(op1, op2));
TEST_ASSERT_TRUE (l_isgeq(op2, op1));
TEST_ASSERT_TRUE (l_isequ(op1, op2));
TEST_ASSERT_TRUE (l_isequ(op2, op1));
break;
default:
TEST_FAIL_MESSAGE("unexpected UCMP result: ");
}
}
return;
}
void
test_UnsignedRelOps(void)
{
const lfp_hl * tv =(&addsub_tab[0][0]);
size_t lc;
for (lc = addsub_tot - 1; lc; --lc, ++tv) {
l_fp op1 = l_fp_init(tv[0].h, tv[0].l);
l_fp op2 = l_fp_init(tv[1].h, tv[1].l);
int cmp = l_fp_ucmp(op1, op2);
switch (cmp) {
case -1:
//printf("op1:%d %d, op2:%d %d\n",op1.l_uf,op1.l_ui,op2.l_uf,op2.l_ui);
l_fp_swap(&op1, &op2);
//printf("op1:%d %d, op2:%d %d\n",op1.l_uf,op1.l_ui,op2.l_uf,op2.l_ui);
case 1:
TEST_ASSERT_TRUE (l_isgtu(op1, op2));
TEST_ASSERT_FALSE(l_isgtu(op2, op1));
TEST_ASSERT_TRUE (l_ishis(op1, op2));
TEST_ASSERT_FALSE(l_ishis(op2, op1));
break;
case 0:
TEST_ASSERT_FALSE(l_isgtu(op1, op2));
TEST_ASSERT_FALSE(l_isgtu(op2, op1));
TEST_ASSERT_TRUE (l_ishis(op1, op2));
TEST_ASSERT_TRUE (l_ishis(op2, op1));
break;
default:
TEST_FAIL_MESSAGE("unexpected UCMP result: ");
}
}
return;
}
/*
*/
//----------------------------------------------------------------------
// that's all folks... but feel free to add things!
//----------------------------------------------------------------------