Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * Copyright (c) 1984 through 2008, William LeFebvre
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 * 
 *     * Neither the name of William LeFebvre nor the names of other
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * top - a top users display for Unix
 *
 * SYNOPSIS:  PowerPC running AIX 4.2 or higher
 *
 * DESCRIPTION:
 * This is the machine-dependent module for AIX 4.2 and higher
 * It is currenlty only tested on PowerPC architectures.
 *
 * TERMCAP: -lcurses
 *
 * CFLAGS: -DORDER -DHAVE_GETOPT
 *
 * LIBS: -bD:0x18000000
 *
 * AUTHOR:  Joep Vesseur <joep@fwi.uva.nl>
 *
 * PATCHES: Antoine Tabary <tabary@bruyeres.cea.fr>
 */

#include "config.h"

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <nlist.h>
#include <sys/sysinfo.h>
#include <procinfo.h>
#include <sys/proc.h>
#include <sys/times.h>
#include <sys/param.h>
#include <pwd.h>
#include "top.h"
#include "machine.h"
#include "utils.h"


#define PROCRESS(p) (((p)->pi_trss + (p)->pi_drss)*4)
#define PROCSIZE(p) (((p)->pi_tsize/1024+(p)->pi_dvm)*4)
#define PROCTIME(pi) (pi->pi_ru.ru_utime.tv_sec + pi->pi_ru.ru_stime.tv_sec)


/*
 * structure definition taken from 'monitor' by Jussi Maki (jmaki@hut.fi)
 */
struct vmker {
    uint n0,n1,n2,n3,n4,n5,n6,n7,n8;
    uint totalmem;
    uint badmem; /* this is used in RS/6000 model 220 */
    uint freemem;
    uint n12;
    uint numperm;   /* this seems to keep other than text and data segment 
                       usage; name taken from /usr/lpp/bos/samples/vmtune.c */
    uint totalvmem,freevmem;
    uint n15, n16, n17, n18, n19;
};


#define KMEM "/dev/kmem"

/* Indices in the nlist array */
#define X_AVENRUN       0
#define X_SYSINFO       1
#define X_VMKER         2
#define X_PROC          3
#define X_V             4

static struct nlist nlst[] = {
    { "avenrun", 0, 0, 0, 0, 0 }, /* 0 */
    { "sysinfo", 0, 0, 0, 0, 0 }, /* 1 */
    { "vmker",   0, 0, 0, 0, 0 }, /* 2 */
    { "proc",    0, 0, 0, 0, 0 }, /* 3 */
    { "v",       0, 0, 0, 0, 0 }, /* 4 */
    {  NULL, 0, 0, 0, 0, 0 }
};


/* get_process_info returns handle. definition is here */
struct handle
{
	struct procsinfo **next_proc;
	int remaining;
};

/*
 *  These definitions control the format of the per-process area
 */
static char header[] =
  "   PID X        PRI NICE   SIZE   RES STATE   TIME   WCPU    CPU COMMAND";
/* 0123456   -- field to fill in starts at header+6 */
#define UNAME_START 7

#define Proc_format \
	"%6d %-8.8s %3d %4d %5d%c %4d%c %-5s %6s %5.2f%% %5.2f%% %.14s%s"


/* these are for detailing the process states */
int process_states[9];
char *procstatenames[] = {
    " none, ", " sleeping, ", " state2, ", " runnable, ",
    " idle, ", " zombie, ", " stopped, ", " running, ", " swapped, ",
    NULL
};


/* these are for detailing the cpu states */
int cpu_states[4];
char *cpustatenames[] = {
    "idle", "user", "kernel", "wait",
    NULL
};

/* these are for detailing the memory statistics */
long memory_stats[4];
char *memorynames[] = {
    "K Total, ", "K Free, ", "K Buffers", NULL
};
#define M_REAL     0
#define M_REALFREE 1
#define M_BUFFERS  2

long swap_stats[3];
char *swapnames[] = {
    "K Total, ", "K Free", NULL
};

#define M_VIRTUAL  0
#define M_VIRTFREE 1

char *state_abbrev[] = {
    "", "sleep", "", "", "sleep", "zomb", "stop", "run", "swap"
};

/* sorting orders. first is default */
char *ordernames[] = {
    "cpu", "size", "res", "time", "pri", NULL
};

/* compare routines */
int compare_cpu(), compare_size(), compare_res(), compare_time(), 
    compare_prio();

int (*proc_compares[])() = {
    compare_cpu,
    compare_size,
    compare_res,
    compare_time,
    compare_prio,
    NULL
};

/* useful externals */
extern int errno;
extern char *sys_errlist[];
long lseek();
long time();
long percentages();


/* useful globals */
int kmem;			/* file descriptor */

/* offsets in kernel */
static unsigned long avenrun_offset;
static unsigned long sysinfo_offset;
static unsigned long vmker_offset;
static unsigned long proc_offset;
static unsigned long v_offset;

/* used for calculating cpu state percentages */
static long cp_time[CPU_NTIMES];
static long cp_old[CPU_NTIMES];
static long cp_diff[CPU_NTIMES];

/* the runqueue length is a cumulative value. keep old value */
long old_runque;

/* process info */
struct var v_info;		/* to determine nprocs */
int nprocs;			/* maximum nr of procs in proctab */
int ncpus;			/* nr of cpus installed */

int ptsize;			/* size of process table in bytes */
struct proc *p_proc;		/* a copy of the process table */
struct procsinfo *p_info;	/* needed for vm and ru info */
struct procsinfo **pref;	/* processes selected for display */
int pref_len;			/* number of processes selected */

/* needed to calculate WCPU */
unsigned long curtime;


/*
 * Initialize globals, get kernel offsets and stuff...
 */
machine_init(struct statics *statics)

{
    time_t uptime, now;
    struct tms tbuf;

    if ((kmem = open(KMEM, O_RDONLY)) == -1) {
	perror(KMEM);
	return -1;
    }

    /* get kernel symbol offsets */
    if (knlist(nlst, 5, sizeof(struct nlist)) != 0) {
	perror("knlist");
	return -1;
    }
    avenrun_offset = nlst[X_AVENRUN].n_value;
    sysinfo_offset = nlst[X_SYSINFO].n_value;
    vmker_offset   = nlst[X_VMKER].n_value;
    proc_offset    = nlst[X_PROC].n_value;
    v_offset       = nlst[X_V].n_value;

    getkval(v_offset, (caddr_t)&v_info, sizeof v_info, "v");

    ncpus = v_info.v_ncpus;	/* number of cpus */
    nprocs = PROCMASK(PIDMAX);
    if (nprocs > 1024) nprocs = 1024;

    ptsize = nprocs * sizeof (struct proc);
    p_proc = (struct proc *)malloc(ptsize);
    p_info = (struct procsinfo *)malloc(nprocs * sizeof (struct procsinfo));
    pref = (struct procsinfo **)malloc(nprocs * sizeof (struct procsinfo *));

    if (!p_proc || !p_info || !pref) {
	fprintf(stderr, "top: not enough memory\n");
	return -1;
    }

    /* set boot time */
    now = time(NULL);
    uptime = times(&tbuf) / HZ;
    statics->boottime = now - uptime;

    statics->procstate_names = procstatenames;
    statics->cpustate_names = cpustatenames;
    statics->memory_names = memorynames;
    statics->order_names = ordernames;
    statics->swap_names = swapnames;

    return(0);
}



char *format_header(char *uname_field)

{
    register char *ptr;

    ptr = header + UNAME_START;
    while (*uname_field != '\0')
    {
	*ptr++ = *uname_field++;
    }

    return(header);
}



void
get_system_info(struct system_info *si)

{
    int load_avg[3];
    struct sysinfo s_info;
    struct vmker m_info;
    int i;
    double total = 0;

    /* get the load avarage array */
    getkval(avenrun_offset, (caddr_t)load_avg, sizeof load_avg, "avenrun");

    /* get the sysinfo structure */
    getkval(sysinfo_offset, (caddr_t)&s_info, sizeof s_info, "sysinfo");

    /* get vmker structure */
    getkval(vmker_offset, (caddr_t)&m_info, sizeof m_info, "vmker");

    /* convert load avarages to doubles */
    for (i = 0; i < 3; i++)
	si->load_avg[i] = (double)load_avg[i]/65536.0;

    /* calculate cpu state in percentages */
    for (i = 0; i < CPU_NTIMES; i++) {
	cp_old[i] = cp_time[i];
	cp_time[i] = s_info.cpu[i];
	cp_diff[i] = cp_time[i] - cp_old[i];
	total += cp_diff[i];
    }

    total = total/1000.0;  /* top itself will correct this */
    for (i = 0; i < CPU_NTIMES; i++) {
        cpu_states[i] = cp_diff[i] / total;
    }

    /* calculate memory statistics, scale 4K pages to megabytes */
#define PAGE_TO_MB(a) ((a)*4/1024)
    memory_stats[M_REAL]     = PAGE_TO_MB(m_info.totalmem);
    memory_stats[M_REALFREE] = PAGE_TO_MB(m_info.freemem);
    memory_stats[M_BUFFERS]  = PAGE_TO_MB(m_info.numperm);
    swap_stats[M_VIRTUAL]  = PAGE_TO_MB(m_info.totalvmem);
    swap_stats[M_VIRTFREE] = PAGE_TO_MB(m_info.freevmem);

    /* runnable processes */
    process_states[0] = s_info.runque - old_runque;
    old_runque = s_info.runque;

    si->cpustates = cpu_states;
    si->memory = memory_stats;
    si->swap = swap_stats;
}

static struct handle handle;

caddr_t
get_process_info(struct system_info *si, struct process_select *sel, int compare_index)

{
    int i, nproc;
    int ptsize_util;
    int active_procs = 0, total_procs = 0;
    struct procsinfo *pp, **p_pref = pref;
    unsigned long pctcpu;
    pid_t procsindex = 0;
    struct proc *p;

    si->procstates = process_states;

    curtime = time(0);

    /* get the procsinfo structures of all running processes */
    nproc = getprocs(p_info, sizeof (struct procsinfo), NULL, 0, 
		     &procsindex, nprocs);
    if (nproc < 0) {
	perror("getprocs");
	quit(1);
    }

    /* the swapper has no cmd-line attached */
    strcpy(p_info[0].pi_comm, "swapper");
    
    /* get proc table */
    ptsize_util = (PROCMASK(p_info[nproc-1].pi_pid)+1) * sizeof(struct proc);
    getkval(proc_offset, (caddr_t)p_proc, ptsize_util, "proc");

    memset(process_states, 0, sizeof process_states);

    /* build a list of pointers to processes to show. walk through the
     * list of procsinfo structures instead of the proc table since the
     * mapping of procsinfo -> proctable is easy, the other way around
     * is cumbersome
     */
    for (pp = p_info, i = 0; i < nproc; pp++, i++) {

	p = &p_proc[PROCMASK(pp->pi_pid)];

	/* AIX marks all runnable processes as ACTIVE. We want to know
	   which processes are sleeping, so check used cpu ticks and adjust
	   status field accordingly
	 */
	if (p->p_stat == SACTIVE && p->p_cpticks == 0)
	    p->p_stat = SIDL;

        if (pp->pi_state && (sel->system || ((pp->pi_flags & SKPROC) == 0))) {
	    total_procs++;
	    process_states[p->p_stat]++;
	    if ( (pp->pi_state != SZOMB) &&
		(sel->idle || p->p_cpticks != 0 || (p->p_stat == SACTIVE))
		&& (sel->uid == -1 || pp->pi_uid == (uid_t)sel->uid)) {
                *p_pref++ = pp;
		active_procs++;
	    }
	}
    }   

    /* the pref array now holds pointers to the procsinfo structures in
     * the p_info array that were selected for display
     */

    /* sort if requested */
    if (si->p_active)
	qsort((char *)pref, active_procs, sizeof (struct procsinfo *), 
	      proc_compares[compare_index]);
    
    si->last_pid = -1;		/* no way to figure out last used pid */
    si->p_total = total_procs;
    si->p_active = pref_len = active_procs;

    handle.next_proc = pref;
    handle.remaining = active_procs;

    return((caddr_t)&handle);
}

char fmt[MAX_COLS];		/* static area where result is built */

/* define what weighted cpu is. use definition of %CPU from 'man ps(1)' */
#define weighted_cpu(pp) (PROCTIME(pp) == 0 ? 0.0 : \
                        (((PROCTIME(pp)*100.0)/(curtime-pi->pi_start)/ncpus)))
#define double_pctcpu(p) ((double)p->p_pctcpu/(double)FLT_MODULO)

char *
format_next_process(caddr_t handle, char *(*get_userid)())

{
    register struct handle *hp;
    register struct procsinfo *pi;
    register struct proc *p;
    char *uname;
    long cpu_time;
    int proc_size, proc_ress;
    char size_unit = 'K';
    char ress_unit = 'K';

    hp = (struct handle *)handle;
    if (hp->remaining == 0) {	/* safe guard */
	fmt[0] = '\0';
	return fmt;
    }
    pi = *(hp->next_proc++);
    hp->remaining--;
    p = &p_proc[PROCMASK(pi->pi_pid)];

    cpu_time = PROCTIME(pi);

    /* we disply sizes up to 10M in KiloBytes, beyond 10M in MegaBytes */
    if ((proc_size = (pi->pi_tsize/1024+pi->pi_dvm)*4) > 10240) {
	proc_size /= 1024;
	size_unit = 'M';
    }
    if ((proc_ress = (pi->pi_trss + pi->pi_drss)*4) > 10240) {
	proc_ress /= 1024;
	ress_unit = 'M';
    }

    sprintf(fmt, Proc_format ,
            pi->pi_pid,					  /* PID */
            (*get_userid)(pi->pi_uid),			  /* login name */
            getpriority(PRIO_PROCESS, pi->pi_pid),
	    EXTRACT_NICE(p),				  /* fixed or vari */
            proc_size,					  /* size */
            size_unit,					  /* K or M */
            proc_ress,					  /* resident */
            ress_unit,					  /* K or M */
            state_abbrev[p->p_stat],			  /* process state */
            format_time(cpu_time),			  /* time used */
	    weighted_cpu(pi),	                          /* WCPU */
	    100.0 * double_pctcpu(p),                     /* CPU */
            printable(pi->pi_comm),                       /* COMM */
	    (pi->pi_flags & SKPROC) == 0 ? "" : " (sys)"  /* kernel process? */
	    );
    return(fmt);
}


/*
 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
 *	"offset" is the byte offset into the kernel for the desired value,
 *  	"ptr" points to a buffer into which the value is retrieved,
 *  	"size" is the size of the buffer (and the object to retrieve),
 *  	"refstr" is a reference string used when printing error meessages,
 *	    if "refstr" starts with a '!', then a failure on read will not
 *  	    be fatal (this may seem like a silly way to do things, but I
 *  	    really didn't want the overhead of another argument).
 *  	
 */

int
getkval(unsigned long offset, caddr_t ptr, int size, char *refstr)

{
    int upper_2gb = 0;

    /* reads above 2Gb are done by seeking to offset%2Gb, and supplying
     * 1 (opposed to 0) as fourth parameter to readx (see 'man kmem')
     */
    if (offset > 1<<31) {
	upper_2gb = 1;
	offset &= 0x7fffffff;
    }

    if (lseek(kmem, offset, SEEK_SET) != offset) {
	fprintf(stderr, "top: lseek failed\n");
	quit(2);
    }

    if (readx(kmem, ptr, size, upper_2gb) != size) {
	if (*refstr == '!')
	    return 0;
	else {
	    fprintf(stderr, "top: kvm_read for %s: %s\n", refstr,
		    sys_errlist[errno]);
	    quit(2);
	}
    }

    return 1 ;
}
    
/* comparison routine for qsort */
/*
 * The following code is taken from the solaris module and adjusted
 * for AIX -- JV .
 */

#define ORDERKEY_PCTCPU \
           if (lresult = p2->p_pctcpu - p1->p_pctcpu, \
               (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)

#define ORDERKEY_CPTICKS \
           if ((result = PROCTIME(pi2) - PROCTIME(pi1)) == 0)


#define ORDERKEY_STATE \
           if ((result = sorted_state[p2->p_stat]  \
                         - sorted_state[p1->p_stat])  == 0)

/* Nice values directly reflect the process' priority, and are always >0 ;-) */
#define ORDERKEY_PRIO \
	   if ((result = EXTRACT_NICE(p1) - EXTRACT_NICE(p2)) == 0) 

#define ORDERKEY_RSSIZE \
           if ((result = PROCRESS(pi2) - PROCRESS(pi1)) == 0)
#define ORDERKEY_MEM \
           if ((result = PROCSIZE(pi2) - PROCSIZE(pi1)) == 0)

static unsigned char sorted_state[] =
{
    0, /* not used */
    0,
    0,
    0,
    3,                          /* sleep */
    1,				/* zombie */
    4,				/* stop */
    6,				/* run */
    2,				/* swap */
};

/* compare_cpu - the comparison function for sorting by cpu percentage */

int
compare_cpu(struct procsinfo **ppi1, struct procsinfo **ppi2)

{
    register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
    register struct proc *p1;
    register struct proc *p2;
    register int result;
    register long lresult;

    p1 = &p_proc[PROCMASK(pi1->pi_pid)];
    p2 = &p_proc[PROCMASK(pi2->pi_pid)];

    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ;

    return result;
}
    

/* compare_size - the comparison function for sorting by total memory usage */

int
compare_size(struct procsinfo **ppi1, struct procsinfo **ppi2)

{
    register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
    register struct proc *p1;
    register struct proc *p2;
    register int result;
    register long lresult;

    p1 = &p_proc[PROCMASK(pi1->pi_pid)];
    p2 = &p_proc[PROCMASK(pi2->pi_pid)];

    ORDERKEY_MEM
    ORDERKEY_RSSIZE
    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ;

    return result;
}
    

/* compare_res - the comparison function for sorting by resident set size */

int
compare_res(struct procsinfo **ppi1, struct procsinfo **ppi2)

{
    register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
    register struct proc *p1;
    register struct proc *p2;
    register int result;
    register long lresult;

    p1 = &p_proc[PROCMASK(pi1->pi_pid)];
    p2 = &p_proc[PROCMASK(pi2->pi_pid)];

    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ;

    return result;
}
    

/* compare_time - the comparison function for sorting by total cpu time */

int
compare_time(struct procsinfo **ppi1, struct procsinfo **ppi2)

{
    register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
    register struct proc *p1;
    register struct proc *p2;
    register int result;
    register long lresult;

    p1 = &p_proc[PROCMASK(pi1->pi_pid)];
    p2 = &p_proc[PROCMASK(pi2->pi_pid)];

    ORDERKEY_CPTICKS
    ORDERKEY_PCTCPU
    ORDERKEY_STATE
    ORDERKEY_PRIO
    ORDERKEY_MEM
    ORDERKEY_RSSIZE
    ;

    return result;
}
    

/* compare_prio - the comparison function for sorting by cpu percentage */

int
compare_prio(struct procsinfo **ppi1, struct procsinfo **ppi2)

{
    register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
    register struct proc *p1;
    register struct proc *p2;
    register int result;
    register long lresult;

    p1 = &p_proc[PROCMASK(pi1->pi_pid)];
    p2 = &p_proc[PROCMASK(pi2->pi_pid)];

    ORDERKEY_PRIO
    ORDERKEY_PCTCPU
    ORDERKEY_CPTICKS
    ORDERKEY_STATE
    ORDERKEY_RSSIZE
    ORDERKEY_MEM
    ;

    return result;
}
    
int
proc_owner(int pid)

{
   int uid;
   register struct procsinfo **prefp = pref;
   register int cnt = pref_len;

   while (--cnt >= 0) {
       if ((*prefp)->pi_pid == pid)
	   return (*prefp)->pi_uid;
       prefp++;
   }
   
   return(-1);
}