Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

#include "config.h"
#include <stdlib.h>
#include <fcntl.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#include <inttypes.h>
#include <sys/time.h>
#include <sys/types.h>
#include "sldns/sbuffer.h"
#include "util/config_file.h"
#include "util/net_help.h"
#include "util/netevent.h"
#include "util/log.h"
#include "util/storage/slabhash.h"
#include "util/storage/lookup3.h"

#include "dnscrypt/cert.h"
#include "dnscrypt/dnscrypt.h"
#include "dnscrypt/dnscrypt_config.h"

#include <ctype.h>


/**
 * \file
 * dnscrypt functions for encrypting DNS packets.
 */

#define DNSCRYPT_QUERY_BOX_OFFSET \
    (DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_PUBLICKEYBYTES + \
    crypto_box_HALF_NONCEBYTES)

//  8 bytes: magic header (CERT_MAGIC_HEADER)
// 12 bytes: the client's nonce
// 12 bytes: server nonce extension
// 16 bytes: Poly1305 MAC (crypto_box_ZEROBYTES - crypto_box_BOXZEROBYTES)

#define DNSCRYPT_REPLY_BOX_OFFSET \
    (DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_HALF_NONCEBYTES + \
    crypto_box_HALF_NONCEBYTES)


/**
 * Shared secret cache key length.
 * secret key.
 * 1 byte: ES_VERSION[1]
 * 32 bytes: client crypto_box_PUBLICKEYBYTES
 * 32 bytes: server crypto_box_SECRETKEYBYTES
 */
#define DNSCRYPT_SHARED_SECRET_KEY_LENGTH \
    (1 + crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES)


struct shared_secret_cache_key {
    /** the hash table key */
    uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
    /** the hash table entry, data is uint8_t pointer of size crypto_box_BEFORENMBYTES which contains the shared secret. */
    struct lruhash_entry entry;
};


struct nonce_cache_key {
    /** the nonce used by the client */
    uint8_t nonce[crypto_box_HALF_NONCEBYTES];
    /** the client_magic used by the client, this is associated to 1 cert only */
    uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN];
    /** the client public key */
    uint8_t client_publickey[crypto_box_PUBLICKEYBYTES];
    /** the hash table entry, data is uint8_t */
    struct lruhash_entry entry;
};

/**
 * Generate a key suitable to find shared secret in slabhash.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * \param[in] esversion: The es version least significant byte.
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] sk: The secret key of the server matching the magic query number.
 * uint8_t pointer of size crypto_box_SECRETKEYBYTES.
 * \return the hash of the key.
 */
static uint32_t
dnsc_shared_secrets_cache_key(uint8_t* key,
                              uint8_t esversion,
                              uint8_t* pk,
                              uint8_t* sk)
{
    key[0] = esversion;
    memcpy(key + 1, pk, crypto_box_PUBLICKEYBYTES);
    memcpy(key + 1 + crypto_box_PUBLICKEYBYTES, sk, crypto_box_SECRETKEYBYTES);
    return hashlittle(key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH, 0);
}

/**
 * Inserts a shared secret into the shared_secrets_cache slabhash.
 * The shared secret is copied so the caller can use it freely without caring
 * about the cache entry being evicted or not.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * which contains the key of the shared secret.
 * \param[in] hash: the hash of the key.
 * \param[in] nmkey: a uint8_t pointer of size crypto_box_BEFORENMBYTES which
 * contains the shared secret.
 */
static void
dnsc_shared_secret_cache_insert(struct slabhash *cache,
                                uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
                                uint32_t hash,
                                uint8_t nmkey[crypto_box_BEFORENMBYTES])
{
    struct shared_secret_cache_key* k =
        (struct shared_secret_cache_key*)calloc(1, sizeof(*k));
    uint8_t* d = malloc(crypto_box_BEFORENMBYTES);
    if(!k || !d) {
        free(k);
        free(d);
        return;
    }
    memcpy(d, nmkey, crypto_box_BEFORENMBYTES);
    lock_rw_init(&k->entry.lock);
    memcpy(k->key, key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
    k->entry.hash = hash;
    k->entry.key = k;
    k->entry.data = d;
    slabhash_insert(cache,
                    hash, &k->entry,
                    d,
                    NULL);
}

/**
 * Lookup a record in shared_secrets_cache.
 * \param[in] cache: a pointer to shared_secrets_cache slabhash.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * containing the key to look for.
 * \param[in] hash: a hash of the key.
 * \return a pointer to the locked cache entry or NULL on failure.
 */
static struct lruhash_entry*
dnsc_shared_secrets_lookup(struct slabhash* cache,
                           uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
                           uint32_t hash)
{
    return slabhash_lookup(cache, hash, key, 0);
}

/**
 * Generate a key hash suitable to find a nonce in slabhash.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \return the hash of the key.
 */
static uint32_t
dnsc_nonce_cache_key_hash(const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                          const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                          const uint8_t pk[crypto_box_PUBLICKEYBYTES])
{
    uint32_t h = 0;
    h = hashlittle(nonce, crypto_box_HALF_NONCEBYTES, h);
    h = hashlittle(magic_query, DNSCRYPT_MAGIC_HEADER_LEN, h);
    return hashlittle(pk, crypto_box_PUBLICKEYBYTES, h);
}

/**
 * Inserts a nonce, magic_query, pk tuple into the nonces_cache slabhash.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] hash: the hash of the key.
 */
static void
dnsc_nonce_cache_insert(struct slabhash *cache,
                        const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                        const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                        const uint8_t pk[crypto_box_PUBLICKEYBYTES],
                        uint32_t hash)
{
    struct nonce_cache_key* k =
        (struct nonce_cache_key*)calloc(1, sizeof(*k));
    if(!k) {
        free(k);
        return;
    }
    lock_rw_init(&k->entry.lock);
    memcpy(k->nonce, nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(k->magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
    memcpy(k->client_publickey, pk, crypto_box_PUBLICKEYBYTES);
    k->entry.hash = hash;
    k->entry.key = k;
    k->entry.data = NULL;
    slabhash_insert(cache,
                    hash, &k->entry,
                    NULL,
                    NULL);
}

/**
 * Lookup a record in nonces_cache.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] hash: the hash of the key.
 * \return a pointer to the locked cache entry or NULL on failure.
 */
static struct lruhash_entry*
dnsc_nonces_lookup(struct slabhash* cache,
                   const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                   const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                   const uint8_t pk[crypto_box_PUBLICKEYBYTES],
                   uint32_t hash)
{
    struct nonce_cache_key k;
    memset(&k, 0, sizeof(k));
    k.entry.hash = hash;
    memcpy(k.nonce, nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(k.magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
    memcpy(k.client_publickey, pk, crypto_box_PUBLICKEYBYTES);

    return slabhash_lookup(cache, hash, &k, 0);
}

/**
 * Decrypt a query using the dnsccert that was found using dnsc_find_cert.
 * The client nonce will be extracted from the encrypted query and stored in
 * client_nonce, a shared secret will be computed and stored in nmkey and the
 * buffer will be decrypted inplace.
 * \param[in] env the dnscrypt environment.
 * \param[in] cert the cert that matches this encrypted query.
 * \param[in] client_nonce where the client nonce will be stored.
 * \param[in] nmkey where the shared secret key will be written.
 * \param[in] buffer the encrypted buffer.
 * \return 0 on success.
 */
static int
dnscrypt_server_uncurve(struct dnsc_env* env,
                        const dnsccert *cert,
                        uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
                        uint8_t nmkey[crypto_box_BEFORENMBYTES],
                        struct sldns_buffer* buffer)
{
    size_t len = sldns_buffer_limit(buffer);
    uint8_t *const buf = sldns_buffer_begin(buffer);
    uint8_t nonce[crypto_box_NONCEBYTES];
    struct dnscrypt_query_header *query_header;
    // shared secret cache
    uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
    struct lruhash_entry* entry;
    uint32_t hash;

    uint32_t nonce_hash;

    if (len <= DNSCRYPT_QUERY_HEADER_SIZE) {
        return -1;
    }

    query_header = (struct dnscrypt_query_header *)buf;

    /* Detect replay attacks */
    nonce_hash = dnsc_nonce_cache_key_hash(
        query_header->nonce,
        cert->magic_query,
        query_header->publickey);

    lock_basic_lock(&env->nonces_cache_lock);
    entry = dnsc_nonces_lookup(
        env->nonces_cache,
        query_header->nonce,
        cert->magic_query,
        query_header->publickey,
        nonce_hash);

    if(entry) {
        lock_rw_unlock(&entry->lock);
        env->num_query_dnscrypt_replay++;
        lock_basic_unlock(&env->nonces_cache_lock);
        return -1;
    }

    dnsc_nonce_cache_insert(
        env->nonces_cache,
        query_header->nonce,
        cert->magic_query,
        query_header->publickey,
        nonce_hash);
    lock_basic_unlock(&env->nonces_cache_lock);

    /* Find existing shared secret */
    hash = dnsc_shared_secrets_cache_key(key,
                                         cert->es_version[1],
                                         query_header->publickey,
                                         cert->keypair->crypt_secretkey);
    entry = dnsc_shared_secrets_lookup(env->shared_secrets_cache,
                                       key,
                                       hash);

    if(!entry) {
        lock_basic_lock(&env->shared_secrets_cache_lock);
        env->num_query_dnscrypt_secret_missed_cache++;
        lock_basic_unlock(&env->shared_secrets_cache_lock);
        if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
            if (crypto_box_curve25519xchacha20poly1305_beforenm(
                        nmkey, query_header->publickey,
                        cert->keypair->crypt_secretkey) != 0) {
                return -1;
            }
#else
            return -1;
#endif
	} else {
	    if (crypto_box_beforenm(nmkey,
				    query_header->publickey,
				    cert->keypair->crypt_secretkey) != 0) {
		return -1;
	    }
	}
        // Cache the shared secret we just computed.
        dnsc_shared_secret_cache_insert(env->shared_secrets_cache,
                                    key,
                                    hash,
                                    nmkey);
    } else {
        /* copy shared secret and unlock entry */
        memcpy(nmkey, entry->data, crypto_box_BEFORENMBYTES);
        lock_rw_unlock(&entry->lock);
    }

    memcpy(nonce, query_header->nonce, crypto_box_HALF_NONCEBYTES);
    memset(nonce + crypto_box_HALF_NONCEBYTES, 0, crypto_box_HALF_NONCEBYTES);

    if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
        if (crypto_box_curve25519xchacha20poly1305_open_easy_afternm
                (buf,
                buf + DNSCRYPT_QUERY_BOX_OFFSET,
                len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
                nmkey) != 0) {
            return -1;
        }
#else
        return -1;
#endif
    } else {
        if (crypto_box_open_easy_afternm
            (buf,
             buf + DNSCRYPT_QUERY_BOX_OFFSET,
             len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
             nmkey) != 0) {
            return -1;
        }
    }

    len -= DNSCRYPT_QUERY_HEADER_SIZE;

    while (*sldns_buffer_at(buffer, --len) == 0)
        ;

    if (*sldns_buffer_at(buffer, len) != 0x80) {
        return -1;
    }

    memcpy(client_nonce, nonce, crypto_box_HALF_NONCEBYTES);

    sldns_buffer_set_position(buffer, 0);
    sldns_buffer_set_limit(buffer, len);

    return 0;
}


/**
 * Add random padding to a buffer, according to a client nonce.
 * The length has to depend on the query in order to avoid reply attacks.
 *
 * @param buf a buffer
 * @param len the initial size of the buffer
 * @param max_len the maximum size
 * @param nonce a nonce, made of the client nonce repeated twice
 * @param secretkey
 * @return the new size, after padding
 */
size_t
dnscrypt_pad(uint8_t *buf, const size_t len, const size_t max_len,
             const uint8_t *nonce, const uint8_t *secretkey)
{
    uint8_t *buf_padding_area = buf + len;
    size_t padded_len;
    uint32_t rnd;

    // no padding
    if (max_len < len + DNSCRYPT_MIN_PAD_LEN)
        return len;

    assert(nonce[crypto_box_HALF_NONCEBYTES] == nonce[0]);

    crypto_stream((unsigned char *)&rnd, (unsigned long long)sizeof(rnd), nonce,
                  secretkey);
    padded_len =
        len + DNSCRYPT_MIN_PAD_LEN + rnd % (max_len - len -
                                            DNSCRYPT_MIN_PAD_LEN + 1);
    padded_len += DNSCRYPT_BLOCK_SIZE - padded_len % DNSCRYPT_BLOCK_SIZE;
    if (padded_len > max_len)
        padded_len = max_len;

    memset(buf_padding_area, 0, padded_len - len);
    *buf_padding_area = 0x80;

    return padded_len;
}

uint64_t
dnscrypt_hrtime(void)
{
    struct timeval tv;
    uint64_t ts = (uint64_t)0U;
    int ret;

    ret = gettimeofday(&tv, NULL);
    if (ret == 0) {
        ts = (uint64_t)tv.tv_sec * 1000000U + (uint64_t)tv.tv_usec;
    } else {
        log_err("gettimeofday: %s", strerror(errno));
    }
    return ts;
}

/**
 * Add the server nonce part to once.
 * The nonce is made half of client nonce and the seconf half of the server
 * nonce, both of them of size crypto_box_HALF_NONCEBYTES.
 * \param[in] nonce: a uint8_t* of size crypto_box_NONCEBYTES
 */
static void
add_server_nonce(uint8_t *nonce)
{
    randombytes_buf(nonce + crypto_box_HALF_NONCEBYTES, 8/*tsn*/+4/*suffix*/);
}

/**
 * Encrypt a reply using the dnsccert that was used with the query.
 * The client nonce will be extracted from the encrypted query and stored in
 * The buffer will be encrypted inplace.
 * \param[in] cert the dnsccert that matches this encrypted query.
 * \param[in] client_nonce client nonce used during the query
 * \param[in] nmkey shared secret key used during the query.
 * \param[in] buffer the buffer where to encrypt the reply.
 * \param[in] udp if whether or not it is a UDP query.
 * \param[in] max_udp_size configured max udp size.
 * \return 0 on success.
 */
static int
dnscrypt_server_curve(const dnsccert *cert,
                      uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
                      uint8_t nmkey[crypto_box_BEFORENMBYTES],
                      struct sldns_buffer* buffer,
                      uint8_t udp,
                      size_t max_udp_size)
{
    size_t dns_reply_len = sldns_buffer_limit(buffer);
    size_t max_len = dns_reply_len + DNSCRYPT_MAX_PADDING \
        + DNSCRYPT_REPLY_HEADER_SIZE;
    size_t max_reply_size = max_udp_size - 20U - 8U;
    uint8_t nonce[crypto_box_NONCEBYTES];
    uint8_t *boxed;
    uint8_t *const buf = sldns_buffer_begin(buffer);
    size_t len = sldns_buffer_limit(buffer);

    if(udp){
        if (max_len > max_reply_size)
            max_len = max_reply_size;
    }


    memcpy(nonce, client_nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(nonce + crypto_box_HALF_NONCEBYTES, client_nonce,
           crypto_box_HALF_NONCEBYTES);

    boxed = buf + DNSCRYPT_REPLY_BOX_OFFSET;
    memmove(boxed + crypto_box_MACBYTES, buf, len);
    len = dnscrypt_pad(boxed + crypto_box_MACBYTES, len,
                       max_len - DNSCRYPT_REPLY_HEADER_SIZE, nonce,
                       cert->keypair->crypt_secretkey);
    sldns_buffer_set_at(buffer,
                        DNSCRYPT_REPLY_BOX_OFFSET - crypto_box_BOXZEROBYTES,
                        0, crypto_box_ZEROBYTES);

    // add server nonce extension
    add_server_nonce(nonce);

    if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
        if (crypto_box_curve25519xchacha20poly1305_easy_afternm
            (boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
            return -1;
        }
#else
        return -1;
#endif
    } else {
        if (crypto_box_easy_afternm
            (boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
            return -1;
        }
    }

    sldns_buffer_write_at(buffer,
                          0,
                          DNSCRYPT_MAGIC_RESPONSE,
                          DNSCRYPT_MAGIC_HEADER_LEN);
    sldns_buffer_write_at(buffer,
                          DNSCRYPT_MAGIC_HEADER_LEN,
                          nonce,
                          crypto_box_NONCEBYTES);
    sldns_buffer_set_limit(buffer, len + DNSCRYPT_REPLY_HEADER_SIZE);
    return 0;
}

/**
 * Read the content of fname into buf.
 * \param[in] fname name of the file to read.
 * \param[in] buf the buffer in which to read the content of the file.
 * \param[in] count number of bytes to read.
 * \return 0 on success.
 */
static int
dnsc_read_from_file(char *fname, char *buf, size_t count)
{
    int fd;
    fd = open(fname, O_RDONLY);
    if (fd == -1) {
        return -1;
    }
    if (read(fd, buf, count) != (ssize_t)count) {
        close(fd);
        return -2;
    }
    close(fd);
    return 0;
}

/**
 * Given an absolute path on the original root, returns the absolute path
 * within the chroot. If chroot is disabled, the path is not modified.
 * No char * is malloced so there is no need to free this.
 * \param[in] cfg the configuration.
 * \param[in] path the path from the original root.
 * \return the path from inside the chroot.
 */
static char *
dnsc_chroot_path(struct config_file *cfg, char *path)
{
    char *nm;
    nm = path;
    if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
        cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
        nm += strlen(cfg->chrootdir);
    return nm;
}

/**
 * Parse certificates files provided by the configuration and load them into
 * dnsc_env.
 * \param[in] env the dnsc_env structure to load the certs into.
 * \param[in] cfg the configuration.
 * \return the number of certificates loaded.
 */
static int
dnsc_parse_certs(struct dnsc_env *env, struct config_file *cfg)
{
	struct config_strlist *head, *head2;
	size_t signed_cert_id;
	size_t rotated_cert_id;
	char *nm;

	env->signed_certs_count = 0U;
	env->rotated_certs_count = 0U;
	for (head = cfg->dnscrypt_provider_cert; head; head = head->next) {
		env->signed_certs_count++;
	}
	for (head = cfg->dnscrypt_provider_cert_rotated; head; head = head->next) {
		env->rotated_certs_count++;
	}
	env->signed_certs = sodium_allocarray(env->signed_certs_count,
										  sizeof *env->signed_certs);

	env->rotated_certs = sodium_allocarray(env->rotated_certs_count,
										  sizeof env->signed_certs);
	signed_cert_id = 0U;
	rotated_cert_id = 0U;
	for(head = cfg->dnscrypt_provider_cert; head; head = head->next, signed_cert_id++) {
		nm = dnsc_chroot_path(cfg, head->str);
		if(dnsc_read_from_file(
				nm,
				(char *)(env->signed_certs + signed_cert_id),
				sizeof(struct SignedCert)) != 0) {
			fatal_exit("dnsc_parse_certs: failed to load %s: %s", head->str, strerror(errno));
		}
		for(head2 = cfg->dnscrypt_provider_cert_rotated; head2; head2 = head2->next) {
			if(strcmp(head->str, head2->str) == 0) {
				*(env->rotated_certs + rotated_cert_id) = env->signed_certs + signed_cert_id;
				rotated_cert_id++;
				verbose(VERB_OPS, "Cert %s is rotated and will not be distributed via DNS", head->str);
				break;
			}
		}
		verbose(VERB_OPS, "Loaded cert %s", head->str);
	}
	return signed_cert_id;
}

/**
 * Helper function to convert a binary key into a printable fingerprint.
 * \param[in] fingerprint the buffer in which to write the printable key.
 * \param[in] key the key to convert.
 */
void
dnsc_key_to_fingerprint(char fingerprint[80U], const uint8_t * const key)
{
    const size_t fingerprint_size = 80U;
    size_t       fingerprint_pos = (size_t) 0U;
    size_t       key_pos = (size_t) 0U;

    for (;;) {
        assert(fingerprint_size > fingerprint_pos);
        snprintf(&fingerprint[fingerprint_pos],
                        fingerprint_size - fingerprint_pos, "%02X%02X",
                        key[key_pos], key[key_pos + 1U]);
        key_pos += 2U;
        if (key_pos >= crypto_box_PUBLICKEYBYTES) {
            break;
        }
        fingerprint[fingerprint_pos + 4U] = ':';
        fingerprint_pos += 5U;
    }
}

/**
 * Find the cert matching a DNSCrypt query.
 * \param[in] dnscenv The DNSCrypt environment, which contains the list of certs
 * supported by the server.
 * \param[in] buffer The encrypted DNS query.
 * \return a dnsccert * if we found a cert matching the magic_number of the
 * query, NULL otherwise.
 */
static const dnsccert *
dnsc_find_cert(struct dnsc_env* dnscenv, struct sldns_buffer* buffer)
{
	const dnsccert *certs = dnscenv->certs;
	struct dnscrypt_query_header *dnscrypt_header;
	size_t i;

	if (sldns_buffer_limit(buffer) < DNSCRYPT_QUERY_HEADER_SIZE) {
		return NULL;
	}
	dnscrypt_header = (struct dnscrypt_query_header *)sldns_buffer_begin(buffer);
	for (i = 0U; i < dnscenv->signed_certs_count; i++) {
		if (memcmp(certs[i].magic_query, dnscrypt_header->magic_query,
                   DNSCRYPT_MAGIC_HEADER_LEN) == 0) {
			return &certs[i];
		}
	}
	return NULL;
}

/**
 * Insert local-zone and local-data into configuration.
 * In order to be able to serve certs over TXT, we can reuse the local-zone and
 * local-data config option. The zone and qname are infered from the
 * provider_name and the content of the TXT record from the certificate content.
 * returns the number of certificate TXT record that were loaded.
 * < 0 in case of error.
 */
static int
dnsc_load_local_data(struct dnsc_env* dnscenv, struct config_file *cfg)
{
    size_t i, j;
	// Insert 'local-zone: "2.dnscrypt-cert.example.com" deny'
    if(!cfg_str2list_insert(&cfg->local_zones,
                            strdup(dnscenv->provider_name),
                            strdup("deny"))) {
        log_err("Could not load dnscrypt local-zone: %s deny",
                dnscenv->provider_name);
        return -1;
    }

    // Add local data entry of type:
    // 2.dnscrypt-cert.example.com 86400 IN TXT "DNSC......"
    for(i=0; i<dnscenv->signed_certs_count; i++) {
        const char *ttl_class_type = " 86400 IN TXT \"";
        int rotated_cert = 0;
	uint32_t serial;
	uint16_t rrlen;
	char* rr;
        struct SignedCert *cert = dnscenv->signed_certs + i;
		// Check if the certificate is being rotated and should not be published
        for(j=0; j<dnscenv->rotated_certs_count; j++){
            if(cert == dnscenv->rotated_certs[j]) {
                rotated_cert = 1;
                break;
            }
        }
		memcpy(&serial, cert->serial, sizeof serial);
		serial = htonl(serial);
        if(rotated_cert) {
            verbose(VERB_OPS,
                "DNSCrypt: not adding cert with serial #%"
                PRIu32
                " to local-data as it is rotated",
                serial
            );
            continue;
        }
	if((unsigned)strlen(dnscenv->provider_name) >= (unsigned)0xffff0000) {
		/* guard against integer overflow in rrlen calculation */
		verbose(VERB_OPS, "cert #%" PRIu32 " is too long", serial);
		continue;
	}
        rrlen = strlen(dnscenv->provider_name) +
                         strlen(ttl_class_type) +
                         4 * sizeof(struct SignedCert) + // worst case scenario
                         1 + // trailing double quote
                         1;
        rr = malloc(rrlen);
        if(!rr) {
            log_err("Could not allocate memory");
            return -2;
        }
        snprintf(rr, rrlen - 1, "%s 86400 IN TXT \"", dnscenv->provider_name);
        for(j=0; j<sizeof(struct SignedCert); j++) {
			int c = (int)*((const uint8_t *) cert + j);
            if (isprint(c) && c != '"' && c != '\\') {
                snprintf(rr + strlen(rr), rrlen - strlen(rr), "%c", c);
            } else {
                snprintf(rr + strlen(rr), rrlen - strlen(rr), "\\%03d", c);
            }
        }
        verbose(VERB_OPS,
			"DNSCrypt: adding cert with serial #%"
			PRIu32
			" to local-data to config: %s",
			serial, rr
		);
        snprintf(rr + strlen(rr), rrlen - strlen(rr), "\"");
        cfg_strlist_insert(&cfg->local_data, strdup(rr));
        free(rr);
    }
    return dnscenv->signed_certs_count;
}

static const char *
key_get_es_version(uint8_t version[2])
{
    struct es_version {
        uint8_t es_version[2];
        const char *name;
    };

    const int num_versions = 2;
    struct es_version es_versions[] = {
        {{0x00, 0x01}, "X25519-XSalsa20Poly1305"},
        {{0x00, 0x02}, "X25519-XChacha20Poly1305"},
    };
    int i;
    for(i=0; i < num_versions; i++){
        if(es_versions[i].es_version[0] == version[0] &&
           es_versions[i].es_version[1] == version[1]){
            return es_versions[i].name;
        }
    }
    return NULL;
}


/**
 * Parse the secret key files from `dnscrypt-secret-key` config and populates
 * a list of dnsccert with es_version, magic number and secret/public keys
 * supported by dnscrypt listener.
 * \param[in] env The dnsc_env structure which will hold the keypairs.
 * \param[in] cfg The config with the secret key file paths.
 */
static int
dnsc_parse_keys(struct dnsc_env *env, struct config_file *cfg)
{
	struct config_strlist *head;
	size_t cert_id, keypair_id;
	size_t c;
	char *nm;

	env->keypairs_count = 0U;
	for (head = cfg->dnscrypt_secret_key; head; head = head->next) {
		env->keypairs_count++;
	}

	env->keypairs = sodium_allocarray(env->keypairs_count,
		sizeof *env->keypairs);
	env->certs = sodium_allocarray(env->signed_certs_count,
		sizeof *env->certs);

	cert_id = 0U;
	keypair_id = 0U;
	for(head = cfg->dnscrypt_secret_key; head; head = head->next, keypair_id++) {
		char fingerprint[80];
		int found_cert = 0;
		KeyPair *current_keypair = &env->keypairs[keypair_id];
		nm = dnsc_chroot_path(cfg, head->str);
		if(dnsc_read_from_file(
				nm,
				(char *)(current_keypair->crypt_secretkey),
				crypto_box_SECRETKEYBYTES) != 0) {
			fatal_exit("dnsc_parse_keys: failed to load %s: %s", head->str, strerror(errno));
		}
		verbose(VERB_OPS, "Loaded key %s", head->str);
		if (crypto_scalarmult_base(current_keypair->crypt_publickey,
			current_keypair->crypt_secretkey) != 0) {
			fatal_exit("dnsc_parse_keys: could not generate public key from %s", head->str);
		}
		dnsc_key_to_fingerprint(fingerprint, current_keypair->crypt_publickey);
		verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s", head->str, fingerprint);
		// find the cert matching this key
		for(c = 0; c < env->signed_certs_count; c++) {
			if(memcmp(current_keypair->crypt_publickey,
				env->signed_certs[c].server_publickey,
				crypto_box_PUBLICKEYBYTES) == 0) {
				dnsccert *current_cert = &env->certs[cert_id++];
				found_cert = 1;
				current_cert->keypair = current_keypair;
				memcpy(current_cert->magic_query,
				       env->signed_certs[c].magic_query,
					sizeof env->signed_certs[c].magic_query);
				memcpy(current_cert->es_version,
				       env->signed_certs[c].version_major,
				       sizeof env->signed_certs[c].version_major
				);
				dnsc_key_to_fingerprint(fingerprint,
							current_cert->keypair->crypt_publickey);
				verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s",
					head->str, fingerprint);
				verbose(VERB_OPS, "Using %s",
					key_get_es_version(current_cert->es_version));
#ifndef USE_DNSCRYPT_XCHACHA20
				if (current_cert->es_version[1] == 0x02) {
				    fatal_exit("Certificate for XChacha20 but libsodium does not support it.");
				}
#endif

            		}
        	}
		if (!found_cert) {
		    fatal_exit("dnsc_parse_keys: could not match certificate for key "
			       "%s. Unable to determine ES version.",
			       head->str);
		}
	}
	return cert_id;
}

static void
sodium_misuse_handler(void)
{
	fatal_exit(
		"dnscrypt: libsodium could not be initialized, this typically"
		" happens when no good source of entropy is found. If you run"
		" unbound in a chroot, make sure /dev/urandom is available. See"
		" https://www.unbound.net/documentation/unbound.conf.html");
}


/**
 * #########################################################
 * ############# Publicly accessible functions #############
 * #########################################################
 */

int
dnsc_handle_curved_request(struct dnsc_env* dnscenv,
                           struct comm_reply* repinfo)
{
    struct comm_point* c = repinfo->c;

    repinfo->is_dnscrypted = 0;
    if( !c->dnscrypt ) {
        return 1;
    }
    // Attempt to decrypt the query. If it is not crypted, we may still need
    // to serve the certificate.
    verbose(VERB_ALGO, "handle request called on DNSCrypt socket");
    if ((repinfo->dnsc_cert = dnsc_find_cert(dnscenv, c->buffer)) != NULL) {
        if(dnscrypt_server_uncurve(dnscenv,
                                   repinfo->dnsc_cert,
                                   repinfo->client_nonce,
                                   repinfo->nmkey,
                                   c->buffer) != 0){
            verbose(VERB_ALGO, "dnscrypt: Failed to uncurve");
            comm_point_drop_reply(repinfo);
            return 0;
        }
        repinfo->is_dnscrypted = 1;
        sldns_buffer_rewind(c->buffer);
    }
    return 1;
}

int
dnsc_handle_uncurved_request(struct comm_reply *repinfo)
{
    if(!repinfo->c->dnscrypt) {
        return 1;
    }
    sldns_buffer_copy(repinfo->c->dnscrypt_buffer, repinfo->c->buffer);
    if(!repinfo->is_dnscrypted) {
        return 1;
    }
	if(dnscrypt_server_curve(repinfo->dnsc_cert,
                             repinfo->client_nonce,
                             repinfo->nmkey,
                             repinfo->c->dnscrypt_buffer,
                             repinfo->c->type == comm_udp,
                             repinfo->max_udp_size) != 0){
		verbose(VERB_ALGO, "dnscrypt: Failed to curve cached missed answer");
		comm_point_drop_reply(repinfo);
		return 0;
	}
    return 1;
}

struct dnsc_env *
dnsc_create(void)
{
	struct dnsc_env *env;
#ifdef SODIUM_MISUSE_HANDLER
	sodium_set_misuse_handler(sodium_misuse_handler);
#endif
	if (sodium_init() == -1) {
		fatal_exit("dnsc_create: could not initialize libsodium.");
	}
	env = (struct dnsc_env *) calloc(1, sizeof(struct dnsc_env));
	lock_basic_init(&env->shared_secrets_cache_lock);
	lock_protect(&env->shared_secrets_cache_lock,
                 &env->num_query_dnscrypt_secret_missed_cache,
                 sizeof(env->num_query_dnscrypt_secret_missed_cache));
	lock_basic_init(&env->nonces_cache_lock);
	lock_protect(&env->nonces_cache_lock,
                 &env->nonces_cache,
                 sizeof(env->nonces_cache));
	lock_protect(&env->nonces_cache_lock,
                 &env->num_query_dnscrypt_replay,
                 sizeof(env->num_query_dnscrypt_replay));

	return env;
}

int
dnsc_apply_cfg(struct dnsc_env *env, struct config_file *cfg)
{
    if(dnsc_parse_certs(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: no cert file loaded");
    }
    if(dnsc_parse_keys(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: no key file loaded");
    }
    randombytes_buf(env->hash_key, sizeof env->hash_key);
    env->provider_name = cfg->dnscrypt_provider;

    if(dnsc_load_local_data(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: could not load local data");
    }
    lock_basic_lock(&env->shared_secrets_cache_lock);
    env->shared_secrets_cache = slabhash_create(
        cfg->dnscrypt_shared_secret_cache_slabs,
        HASH_DEFAULT_STARTARRAY,
        cfg->dnscrypt_shared_secret_cache_size,
        dnsc_shared_secrets_sizefunc,
        dnsc_shared_secrets_compfunc,
        dnsc_shared_secrets_delkeyfunc,
        dnsc_shared_secrets_deldatafunc,
        NULL
    );
    lock_basic_unlock(&env->shared_secrets_cache_lock);
    if(!env->shared_secrets_cache){
        fatal_exit("dnsc_apply_cfg: could not create shared secrets cache.");
    }
    lock_basic_lock(&env->nonces_cache_lock);
    env->nonces_cache = slabhash_create(
        cfg->dnscrypt_nonce_cache_slabs,
        HASH_DEFAULT_STARTARRAY,
        cfg->dnscrypt_nonce_cache_size,
        dnsc_nonces_sizefunc,
        dnsc_nonces_compfunc,
        dnsc_nonces_delkeyfunc,
        dnsc_nonces_deldatafunc,
        NULL
    );
    lock_basic_unlock(&env->nonces_cache_lock);
    return 0;
}

void
dnsc_delete(struct dnsc_env *env)
{
	if(!env) {
		return;
	}
	verbose(VERB_OPS, "DNSCrypt: Freeing environment.");
	sodium_free(env->signed_certs);
	sodium_free(env->rotated_certs);
	sodium_free(env->certs);
	sodium_free(env->keypairs);
	lock_basic_destroy(&env->shared_secrets_cache_lock);
	lock_basic_destroy(&env->nonces_cache_lock);
	slabhash_delete(env->shared_secrets_cache);
	slabhash_delete(env->nonces_cache);
	free(env);
}

/**
 * #########################################################
 * ############# Shared secrets cache functions ############
 * #########################################################
 */

size_t
dnsc_shared_secrets_sizefunc(void *k, void* ATTR_UNUSED(d))
{
    struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
    size_t key_size = sizeof(struct shared_secret_cache_key)
        + lock_get_mem(&ssk->entry.lock);
    size_t data_size = crypto_box_BEFORENMBYTES;
    (void)ssk; /* otherwise ssk is unused if no threading, or fixed locksize */
    return key_size + data_size;
}

int
dnsc_shared_secrets_compfunc(void *m1, void *m2)
{
    return sodium_memcmp(m1, m2, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
}

void
dnsc_shared_secrets_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
    struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
    lock_rw_destroy(&ssk->entry.lock);
    free(ssk);
}

void
dnsc_shared_secrets_deldatafunc(void* d, void* ATTR_UNUSED(arg))
{
    uint8_t* data = (uint8_t*)d;
    free(data);
}

/**
 * #########################################################
 * ############### Nonces cache functions ##################
 * #########################################################
 */

size_t
dnsc_nonces_sizefunc(void *k, void* ATTR_UNUSED(d))
{
    struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
    size_t key_size = sizeof(struct nonce_cache_key)
        + lock_get_mem(&nk->entry.lock);
    (void)nk; /* otherwise ssk is unused if no threading, or fixed locksize */
    return key_size;
}

int
dnsc_nonces_compfunc(void *m1, void *m2)
{
    struct nonce_cache_key *k1 = m1, *k2 = m2;
    return
        sodium_memcmp(
            k1->nonce,
            k2->nonce,
            crypto_box_HALF_NONCEBYTES) != 0 ||
        sodium_memcmp(
            k1->magic_query,
            k2->magic_query,
            DNSCRYPT_MAGIC_HEADER_LEN) != 0 ||
        sodium_memcmp(
            k1->client_publickey, k2->client_publickey,
            crypto_box_PUBLICKEYBYTES) != 0;
}

void
dnsc_nonces_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
    struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
    lock_rw_destroy(&nk->entry.lock);
    free(nk);
}

void
dnsc_nonces_deldatafunc(void* ATTR_UNUSED(d), void* ATTR_UNUSED(arg))
{
    return;
}