/*
* edns-subnet/addrtree.c -- radix tree for edns subnet cache.
*
* Copyright (c) 2013, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* addrtree -- radix tree for edns subnet cache.
*/
#include "config.h"
#include "util/log.h"
#include "util/data/msgreply.h"
#include "util/module.h"
#include "addrtree.h"
/**
* Create a new edge
* @param node: Child node this edge will connect to.
* @param addr: full key to this edge.
* @param addrlen: length of relevant part of key for this node
* @param parent_node: Parent node for node
* @param parent_index: Index of child node at parent node
* @return new addredge or NULL on failure
*/
static struct addredge *
edge_create(struct addrnode *node, const addrkey_t *addr,
addrlen_t addrlen, struct addrnode *parent_node, int parent_index)
{
size_t n;
struct addredge *edge = (struct addredge *)malloc( sizeof (*edge) );
if (!edge)
return NULL;
edge->node = node;
edge->len = addrlen;
edge->parent_index = parent_index;
edge->parent_node = parent_node;
/* ceil() */
n = (size_t)((addrlen / KEYWIDTH) + ((addrlen % KEYWIDTH != 0)?1:0));
edge->str = (addrkey_t *)calloc(n, sizeof (addrkey_t));
if (!edge->str) {
free(edge);
return NULL;
}
memcpy(edge->str, addr, n * sizeof (addrkey_t));
/* Only manipulate other objects after successful alloc */
node->parent_edge = edge;
log_assert(parent_node->edge[parent_index] == NULL);
parent_node->edge[parent_index] = edge;
return edge;
}
/**
* Create a new node
* @param tree: Tree the node lives in.
* @param elem: Element to store at this node
* @param scope: Scopemask from server reply
* @param ttl: Element is valid up to this time. Absolute, seconds
* @return new addrnode or NULL on failure
*/
static struct addrnode *
node_create(struct addrtree *tree, void *elem, addrlen_t scope,
time_t ttl)
{
struct addrnode* node = (struct addrnode *)malloc( sizeof (*node) );
if (!node)
return NULL;
node->elem = elem;
tree->node_count++;
node->scope = scope;
node->ttl = ttl;
node->edge[0] = NULL;
node->edge[1] = NULL;
node->parent_edge = NULL;
node->next = NULL;
node->prev = NULL;
return node;
}
/** Size in bytes of node and parent edge
* @param tree: tree the node lives in
* @param n: node which size must be calculated
* @return size in bytes.
**/
static inline size_t
node_size(const struct addrtree *tree, const struct addrnode *n)
{
return sizeof *n + sizeof *n->parent_edge + n->parent_edge->len +
(n->elem?tree->sizefunc(n->elem):0);
}
struct addrtree *
addrtree_create(addrlen_t max_depth, void (*delfunc)(void *, void *),
size_t (*sizefunc)(void *), void *env, uint32_t max_node_count)
{
struct addrtree *tree;
log_assert(delfunc != NULL);
log_assert(sizefunc != NULL);
tree = (struct addrtree *)calloc(1, sizeof(*tree));
if (!tree)
return NULL;
tree->root = node_create(tree, NULL, 0, 0);
if (!tree->root) {
free(tree);
return NULL;
}
tree->size_bytes = sizeof *tree + sizeof *tree->root;
tree->first = NULL;
tree->last = NULL;
tree->max_depth = max_depth;
tree->delfunc = delfunc;
tree->sizefunc = sizefunc;
tree->env = env;
tree->node_count = 0;
tree->max_node_count = max_node_count;
return tree;
}
/**
* Scrub a node clean of elem
* @param tree: tree the node lives in.
* @param node: node to be cleaned.
*/
static void
clean_node(struct addrtree *tree, struct addrnode *node)
{
if (!node->elem) return;
tree->size_bytes -= tree->sizefunc(node->elem);
tree->delfunc(tree->env, node->elem);
node->elem = NULL;
}
/** Remove specified node from LRU list */
static void
lru_pop(struct addrtree *tree, struct addrnode *node)
{
if (node == tree->first) {
if (!node->next) { /* it is the last as well */
tree->first = NULL;
tree->last = NULL;
} else {
tree->first = node->next;
tree->first->prev = NULL;
}
} else if (node == tree->last) { /* but not the first */
tree->last = node->prev;
tree->last->next = NULL;
} else {
node->prev->next = node->next;
node->next->prev = node->prev;
}
}
/** Add node to LRU list as most recently used. */
static void
lru_push(struct addrtree *tree, struct addrnode *node)
{
if (!tree->first) {
tree->first = node;
node->prev = NULL;
} else {
tree->last->next = node;
node->prev = tree->last;
}
tree->last = node;
node->next = NULL;
}
/** Move node to the end of LRU list */
static void
lru_update(struct addrtree *tree, struct addrnode *node)
{
if (tree->root == node) return;
lru_pop(tree, node);
lru_push(tree, node);
}
/**
* Purge a node from the tree. Node and parentedge are cleaned and
* free'd.
* @param tree: Tree the node lives in.
* @param node: Node to be freed
*/
static void
purge_node(struct addrtree *tree, struct addrnode *node)
{
struct addredge *parent_edge, *child_edge = NULL;
int index;
int keep = node->edge[0] && node->edge[1];
clean_node(tree, node);
parent_edge = node->parent_edge;
if (keep || !parent_edge) return;
tree->node_count--;
index = parent_edge->parent_index;
child_edge = node->edge[!node->edge[0]];
if (child_edge) {
child_edge->parent_node = parent_edge->parent_node;
child_edge->parent_index = index;
}
parent_edge->parent_node->edge[index] = child_edge;
tree->size_bytes -= node_size(tree, node);
free(parent_edge->str);
free(parent_edge);
lru_pop(tree, node);
free(node);
}
/**
* If a limit is set remove old nodes while above that limit.
* @param tree: Tree to be cleaned up.
*/
static void
lru_cleanup(struct addrtree *tree)
{
struct addrnode *n, *p;
int children;
if (tree->max_node_count == 0) return;
while (tree->node_count > tree->max_node_count) {
n = tree->first;
if (!n) break;
children = (n->edge[0] != NULL) + (n->edge[1] != NULL);
/** Don't remove this node, it is either the root or we can't
* do without it because it has 2 children */
if (children == 2 || !n->parent_edge) {
lru_update(tree, n);
continue;
}
p = n->parent_edge->parent_node;
purge_node(tree, n);
/** Since we removed n, n's parent p is eligible for deletion
* if it is not the root node, caries no data and has only 1
* child */
children = (p->edge[0] != NULL) + (p->edge[1] != NULL);
if (!p->elem && children == 1 && p->parent_edge) {
purge_node(tree, p);
}
}
}
inline size_t
addrtree_size(const struct addrtree *tree)
{
return tree?tree->size_bytes:0;
}
void addrtree_delete(struct addrtree *tree)
{
struct addrnode *n;
if (!tree) return;
clean_node(tree, tree->root);
free(tree->root);
tree->size_bytes -= sizeof(struct addrnode);
while ((n = tree->first)) {
tree->first = n->next;
clean_node(tree, n);
tree->size_bytes -= node_size(tree, n);
free(n->parent_edge->str);
free(n->parent_edge);
free(n);
}
log_assert(sizeof *tree == addrtree_size(tree));
free(tree);
}
/**
* Get N'th bit from address
* @param addr: address to inspect
* @param addrlen: length of addr in bits
* @param n: index of bit to test. Must be in range [0, addrlen)
* @return 0 or 1
*/
static int
getbit(const addrkey_t *addr, addrlen_t addrlen, addrlen_t n)
{
log_assert(addrlen > n);
(void)addrlen;
return (int)(addr[n/KEYWIDTH]>>((KEYWIDTH-1)-(n%KEYWIDTH))) & 1;
}
/**
* Test for equality on N'th bit.
* @return 0 for equal, 1 otherwise
*/
static inline int
cmpbit(const addrkey_t *key1, const addrkey_t *key2, addrlen_t n)
{
addrkey_t c = key1[n/KEYWIDTH] ^ key2[n/KEYWIDTH];
return (int)(c >> ((KEYWIDTH-1)-(n%KEYWIDTH))) & 1;
}
/**
* Common number of bits in prefix.
* @param s1: first prefix.
* @param l1: length of s1 in bits.
* @param s2: second prefix.
* @param l2: length of s2 in bits.
* @param skip: nr of bits already checked.
* @return common number of bits.
*/
static addrlen_t
bits_common(const addrkey_t *s1, addrlen_t l1,
const addrkey_t *s2, addrlen_t l2, addrlen_t skip)
{
addrlen_t len, i;
len = (l1 > l2) ? l2 : l1;
log_assert(skip < len);
for (i = skip; i < len; i++) {
if (cmpbit(s1, s2, i)) return i;
}
return len;
}
/**
* Tests if s1 is a substring of s2
* @param s1: first prefix.
* @param l1: length of s1 in bits.
* @param s2: second prefix.
* @param l2: length of s2 in bits.
* @param skip: nr of bits already checked.
* @return 1 for substring, 0 otherwise
*/
static int
issub(const addrkey_t *s1, addrlen_t l1,
const addrkey_t *s2, addrlen_t l2, addrlen_t skip)
{
return bits_common(s1, l1, s2, l2, skip) == l1;
}
void
addrtree_insert(struct addrtree *tree, const addrkey_t *addr,
addrlen_t sourcemask, addrlen_t scope, void *elem, time_t ttl,
time_t now)
{
struct addrnode *newnode, *node;
struct addredge *edge;
int index;
addrlen_t common, depth;
node = tree->root;
log_assert(node != NULL);
/* Protect our cache against too much fine-grained data */
if (tree->max_depth < scope) scope = tree->max_depth;
/* Server answer was less specific than question */
if (scope < sourcemask) sourcemask = scope;
depth = 0;
while (1) {
log_assert(depth <= sourcemask);
/* Case 1: update existing node */
if (depth == sourcemask) {
/* update this node's scope and data */
clean_node(tree, node);
node->ttl = ttl;
node->elem = elem;
node->scope = scope;
tree->size_bytes += tree->sizefunc(elem);
return;
}
index = getbit(addr, sourcemask, depth);
/* Get an edge to an unexpired node */
edge = node->edge[index];
while (edge) {
/* Purge all expired nodes on path */
if (!edge->node->elem || edge->node->ttl >= now)
break;
purge_node(tree, edge->node);
edge = node->edge[index];
}
/* Case 2: New leafnode */
if (!edge) {
newnode = node_create(tree, elem, scope, ttl);
if (!newnode) return;
if (!edge_create(newnode, addr, sourcemask, node,
index)) {
clean_node(tree, newnode);
tree->node_count--;
free(newnode);
return;
}
tree->size_bytes += node_size(tree, newnode);
lru_push(tree, newnode);
lru_cleanup(tree);
return;
}
/* Case 3: Traverse edge */
common = bits_common(edge->str, edge->len, addr, sourcemask,
depth);
if (common == edge->len) {
/* We update the scope of intermediate nodes. Apparently
* the * authority changed its mind. If we would not do
* this we might not be able to reach our new node. */
node->scope = scope;
depth = edge->len;
node = edge->node;
continue;
}
/* Case 4: split. */
if (!(newnode = node_create(tree, NULL, 0, 0)))
return;
node->edge[index] = NULL;
if (!edge_create(newnode, addr, common, node, index)) {
node->edge[index] = edge;
clean_node(tree, newnode);
tree->node_count--;
free(newnode);
return;
}
lru_push(tree, newnode);
/* connect existing child to our new node */
index = getbit(edge->str, edge->len, common);
newnode->edge[index] = edge;
edge->parent_node = newnode;
edge->parent_index = (int)index;
if (common == sourcemask) {
/* Data is stored in the node */
newnode->elem = elem;
newnode->scope = scope;
newnode->ttl = ttl;
}
tree->size_bytes += node_size(tree, newnode);
if (common != sourcemask) {
/* Data is stored in other leafnode */
node = newnode;
newnode = node_create(tree, elem, scope, ttl);
if (!edge_create(newnode, addr, sourcemask, node,
index^1)) {
clean_node(tree, newnode);
tree->node_count--;
free(newnode);
return;
}
tree->size_bytes += node_size(tree, newnode);
lru_push(tree, newnode);
}
lru_cleanup(tree);
return;
}
}
struct addrnode *
addrtree_find(struct addrtree *tree, const addrkey_t *addr,
addrlen_t sourcemask, time_t now)
{
struct addrnode *node = tree->root;
struct addredge *edge = NULL;
addrlen_t depth = 0;
log_assert(node != NULL);
while (1) {
/* Current node more specific then question. */
log_assert(depth <= sourcemask);
/* does this node have data? if yes, see if we have a match */
if (node->elem && node->ttl >= now) {
/* saved at wrong depth */;
log_assert(node->scope >= depth);
if (depth == node->scope ||
(node->scope > sourcemask &&
depth == sourcemask)) {
/* Authority indicates it does not have a more
* precise answer or we cannot ask a more
* specific question. */
lru_update(tree, node);
return node;
}
}
/* This is our final depth, but we haven't found an answer. */
if (depth == sourcemask)
return NULL;
/* Find an edge to traverse */
edge = node->edge[getbit(addr, sourcemask, depth)];
if (!edge || !edge->node)
return NULL;
if (edge->len > sourcemask )
return NULL;
if (!issub(edge->str, edge->len, addr, sourcemask, depth))
return NULL;
log_assert(depth < edge->len);
depth = edge->len;
node = edge->node;
}
}
/** Wrappers for static functions to unit test */
int unittest_wrapper_addrtree_cmpbit(const addrkey_t *key1,
const addrkey_t *key2, addrlen_t n) {
return cmpbit(key1, key2, n);
}
addrlen_t unittest_wrapper_addrtree_bits_common(const addrkey_t *s1,
addrlen_t l1, const addrkey_t *s2, addrlen_t l2, addrlen_t skip) {
return bits_common(s1, l1, s2, l2, skip);
}
int unittest_wrapper_addrtree_getbit(const addrkey_t *addr,
addrlen_t addrlen, addrlen_t n) {
return getbit(addr, addrlen, n);
}
int unittest_wrapper_addrtree_issub(const addrkey_t *s1, addrlen_t l1,
const addrkey_t *s2, addrlen_t l2, addrlen_t skip) {
return issub(s1, l1, s2, l2, skip);
}