Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/* Sets (bit vectors) of hard registers, and operations on them.
   Copyright (C) 1987-2017 Free Software Foundation, Inc.

This file is part of GCC

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_HARD_REG_SET_H
#define GCC_HARD_REG_SET_H

/* Define the type of a set of hard registers.  */

/* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
   will be used for hard reg sets, either alone or in an array.

   If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
   and it has enough bits to represent all the target machine's hard
   registers.  Otherwise, it is a typedef for a suitably sized array
   of HARD_REG_ELT_TYPEs.  HARD_REG_SET_LONGS is defined as how many.

   Note that lots of code assumes that the first part of a regset is
   the same format as a HARD_REG_SET.  To help make sure this is true,
   we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
   instead of all the smaller types.  This approach loses only if
   there are very few registers and then only in the few cases where
   we have an array of HARD_REG_SETs, so it needn't be as complex as
   it used to be.  */

typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;

#if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT

#define HARD_REG_SET HARD_REG_ELT_TYPE

#else

#define HARD_REG_SET_LONGS \
 ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1)	\
  / HOST_BITS_PER_WIDEST_FAST_INT)
typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS];

#endif

/* HARD_REG_SET wrapped into a structure, to make it possible to
   use HARD_REG_SET even in APIs that should not include
   hard-reg-set.h.  */
struct hard_reg_set_container
{
  HARD_REG_SET set;
};

/* HARD_CONST is used to cast a constant to the appropriate type
   for use with a HARD_REG_SET.  */

#define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))

/* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
   to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
   All three take two arguments: the set and the register number.

   In the case where sets are arrays of longs, the first argument
   is actually a pointer to a long.

   Define two macros for initializing a set:
   CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
   These take just one argument.

   Also define macros for copying hard reg sets:
   COPY_HARD_REG_SET and COMPL_HARD_REG_SET.
   These take two arguments TO and FROM; they read from FROM
   and store into TO.  COMPL_HARD_REG_SET complements each bit.

   Also define macros for combining hard reg sets:
   IOR_HARD_REG_SET and AND_HARD_REG_SET.
   These take two arguments TO and FROM; they read from FROM
   and combine bitwise into TO.  Define also two variants
   IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET
   which use the complement of the set FROM.

   Also define:

   hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
   hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal.
   hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
   hard_reg_set_empty_p (X), which returns true if X is empty.  */

#define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)

#ifdef HARD_REG_SET

#define SET_HARD_REG_BIT(SET, BIT)  \
 ((SET) |= HARD_CONST (1) << (BIT))
#define CLEAR_HARD_REG_BIT(SET, BIT)  \
 ((SET) &= ~(HARD_CONST (1) << (BIT)))
#define TEST_HARD_REG_BIT(SET, BIT)  \
 (!!((SET) & (HARD_CONST (1) << (BIT))))

#define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
#define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))

#define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM))
#define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM))

#define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM))
#define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM))
#define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM))
#define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM))

static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return (x & ~y) == HARD_CONST (0);
}

static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return x == y;
}

static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return (x & y) != HARD_CONST (0);
}

static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
  return x == HARD_CONST (0);
}

#else

#define SET_HARD_REG_BIT(SET, BIT)		\
  ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
   |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))

#define CLEAR_HARD_REG_BIT(SET, BIT)		\
  ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
   &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))

#define TEST_HARD_REG_BIT(SET, BIT)		\
  (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
      & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))))

#if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = 0;						\
     scan_tp_[1] = 0; } while (0)

#define SET_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = -1;						\
     scan_tp_[1] = -1; } while (0)

#define COPY_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = scan_fp_[0];					\
     scan_tp_[1] = scan_fp_[1]; } while (0)

#define COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = ~ scan_fp_[0];				\
     scan_tp_[1] = ~ scan_fp_[1]; } while (0)

#define AND_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= scan_fp_[0];				\
     scan_tp_[1] &= scan_fp_[1]; } while (0)

#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= ~ scan_fp_[0];				\
     scan_tp_[1] &= ~ scan_fp_[1]; } while (0)

#define IOR_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= scan_fp_[0];				\
     scan_tp_[1] |= scan_fp_[1]; } while (0)

#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= ~ scan_fp_[0];				\
     scan_tp_[1] |= ~ scan_fp_[1]; } while (0)

static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0;
}

static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return x[0] == y[0] && x[1] == y[1];
}

static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0;
}

static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
  return x[0] == 0 && x[1] == 0;
}

#else
#if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = 0;						\
     scan_tp_[1] = 0;						\
     scan_tp_[2] = 0; } while (0)

#define SET_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = -1;						\
     scan_tp_[1] = -1;						\
     scan_tp_[2] = -1; } while (0)

#define COPY_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = scan_fp_[0];					\
     scan_tp_[1] = scan_fp_[1];					\
     scan_tp_[2] = scan_fp_[2]; } while (0)

#define COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = ~ scan_fp_[0];				\
     scan_tp_[1] = ~ scan_fp_[1];				\
     scan_tp_[2] = ~ scan_fp_[2]; } while (0)

#define AND_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= scan_fp_[0];				\
     scan_tp_[1] &= scan_fp_[1];				\
     scan_tp_[2] &= scan_fp_[2]; } while (0)

#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= ~ scan_fp_[0];				\
     scan_tp_[1] &= ~ scan_fp_[1];				\
     scan_tp_[2] &= ~ scan_fp_[2]; } while (0)

#define IOR_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= scan_fp_[0];				\
     scan_tp_[1] |= scan_fp_[1];				\
     scan_tp_[2] |= scan_fp_[2]; } while (0)

#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= ~ scan_fp_[0];				\
     scan_tp_[1] |= ~ scan_fp_[1];				\
     scan_tp_[2] |= ~ scan_fp_[2]; } while (0)

static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return ((x[0] & ~y[0]) == 0
	  && (x[1] & ~y[1]) == 0
	  && (x[2] & ~y[2]) == 0);
}

static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return x[0] == y[0] && x[1] == y[1] && x[2] == y[2];
}

static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return ((x[0] & y[0]) != 0
	  || (x[1] & y[1]) != 0
	  || (x[2] & y[2]) != 0);
}

static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
  return x[0] == 0 && x[1] == 0 && x[2] == 0;
}

#else
#if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = 0;						\
     scan_tp_[1] = 0;						\
     scan_tp_[2] = 0;						\
     scan_tp_[3] = 0; } while (0)

#define SET_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     scan_tp_[0] = -1;						\
     scan_tp_[1] = -1;						\
     scan_tp_[2] = -1;						\
     scan_tp_[3] = -1; } while (0)

#define COPY_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = scan_fp_[0];					\
     scan_tp_[1] = scan_fp_[1];					\
     scan_tp_[2] = scan_fp_[2];					\
     scan_tp_[3] = scan_fp_[3]; } while (0)

#define COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] = ~ scan_fp_[0];				\
     scan_tp_[1] = ~ scan_fp_[1];				\
     scan_tp_[2] = ~ scan_fp_[2];				\
     scan_tp_[3] = ~ scan_fp_[3]; } while (0)

#define AND_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= scan_fp_[0];				\
     scan_tp_[1] &= scan_fp_[1];				\
     scan_tp_[2] &= scan_fp_[2];				\
     scan_tp_[3] &= scan_fp_[3]; } while (0)

#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] &= ~ scan_fp_[0];				\
     scan_tp_[1] &= ~ scan_fp_[1];				\
     scan_tp_[2] &= ~ scan_fp_[2];				\
     scan_tp_[3] &= ~ scan_fp_[3]; } while (0)

#define IOR_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= scan_fp_[0];				\
     scan_tp_[1] |= scan_fp_[1];				\
     scan_tp_[2] |= scan_fp_[2];				\
     scan_tp_[3] |= scan_fp_[3]; } while (0)

#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     scan_tp_[0] |= ~ scan_fp_[0];				\
     scan_tp_[1] |= ~ scan_fp_[1];				\
     scan_tp_[2] |= ~ scan_fp_[2];				\
     scan_tp_[3] |= ~ scan_fp_[3]; } while (0)

static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return ((x[0] & ~y[0]) == 0
	  && (x[1] & ~y[1]) == 0
	  && (x[2] & ~y[2]) == 0
	  && (x[3] & ~y[3]) == 0);
}

static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3];
}

static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  return ((x[0] & y[0]) != 0
	  || (x[1] & y[1]) != 0
	  || (x[2] & y[2]) != 0
	  || (x[3] & y[3]) != 0);
}

static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
  return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0;
}

#else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */

#define CLEAR_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ = 0; } while (0)

#define SET_HARD_REG_SET(TO)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ = -1; } while (0)

#define COPY_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ = *scan_fp_++; } while (0)

#define COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ = ~ *scan_fp_++; } while (0)

#define AND_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ &= *scan_fp_++; } while (0)

#define AND_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ &= ~ *scan_fp_++; } while (0)

#define IOR_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ |= *scan_fp_++; } while (0)

#define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
     const HARD_REG_ELT_TYPE *scan_fp_ = (FROM);		\
     int i;							\
     for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
       *scan_tp_++ |= ~ *scan_fp_++; } while (0)

static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  int i;

  for (i = 0; i < HARD_REG_SET_LONGS; i++)
    if ((x[i] & ~y[i]) != 0)
      return false;
  return true;
}

static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  int i;

  for (i = 0; i < HARD_REG_SET_LONGS; i++)
    if (x[i] != y[i])
      return false;
  return true;
}

static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
  int i;

  for (i = 0; i < HARD_REG_SET_LONGS; i++)
    if ((x[i] & y[i]) != 0)
      return true;
  return false;
}

static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
  int i;

  for (i = 0; i < HARD_REG_SET_LONGS; i++)
    if (x[i] != 0)
      return false;
  return true;
}

#endif
#endif
#endif
#endif

/* Iterator for hard register sets.  */

struct hard_reg_set_iterator
{
  /* Pointer to the current element.  */
  HARD_REG_ELT_TYPE *pelt;

  /* The length of the set.  */
  unsigned short length;

  /* Word within the current element.  */
  unsigned short word_no;

  /* Contents of the actually processed word.  When finding next bit
     it is shifted right, so that the actual bit is always the least
     significant bit of ACTUAL.  */
  HARD_REG_ELT_TYPE bits;
};

#define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT

/* The implementation of the iterator functions is fully analogous to
   the bitmap iterators.  */
static inline void
hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set,
                        unsigned min, unsigned *regno)
{
#ifdef HARD_REG_SET_LONGS
  iter->pelt = set;
  iter->length = HARD_REG_SET_LONGS;
#else
  iter->pelt = &set;
  iter->length = 1;
#endif
  iter->word_no = min / HARD_REG_ELT_BITS;
  if (iter->word_no < iter->length)
    {
      iter->bits = iter->pelt[iter->word_no];
      iter->bits >>= min % HARD_REG_ELT_BITS;

      /* This is required for correct search of the next bit.  */
      min += !iter->bits;
    }
  *regno = min;
}

static inline bool
hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
{
  while (1)
    {
      /* Return false when we're advanced past the end of the set.  */
      if (iter->word_no >= iter->length)
        return false;

      if (iter->bits)
        {
          /* Find the correct bit and return it.  */
          while (!(iter->bits & 1))
            {
              iter->bits >>= 1;
              *regno += 1;
            }
          return (*regno < FIRST_PSEUDO_REGISTER);
        }

      /* Round to the beginning of the next word.  */
      *regno = (*regno + HARD_REG_ELT_BITS - 1);
      *regno -= *regno % HARD_REG_ELT_BITS;

      /* Find the next non-zero word.  */
      while (++iter->word_no < iter->length)
        {
          iter->bits = iter->pelt[iter->word_no];
          if (iter->bits)
            break;
          *regno += HARD_REG_ELT_BITS;
        }
    }
}

static inline void
hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
{
  iter->bits >>= 1;
  *regno += 1;
}

#define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER)          \
  for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM));       \
       hard_reg_set_iter_set (&(ITER), &(REGNUM));                      \
       hard_reg_set_iter_next (&(ITER), &(REGNUM)))


/* Define some standard sets of registers.  */

/* Indexed by hard register number, contains 1 for registers
   that are being used for global register decls.
   These must be exempt from ordinary flow analysis
   and are also considered fixed.  */

extern char global_regs[FIRST_PSEUDO_REGISTER];

struct simplifiable_subreg;
struct subreg_shape;

struct simplifiable_subregs_hasher : nofree_ptr_hash <simplifiable_subreg>
{
  typedef const subreg_shape *compare_type;

  static inline hashval_t hash (const simplifiable_subreg *);
  static inline bool equal (const simplifiable_subreg *, const subreg_shape *);
};

struct target_hard_regs {
  void finalize ();

  /* The set of registers that actually exist on the current target.  */
  HARD_REG_SET x_accessible_reg_set;

  /* The set of registers that should be considered to be register
     operands.  It is a subset of x_accessible_reg_set.  */
  HARD_REG_SET x_operand_reg_set;

  /* Indexed by hard register number, contains 1 for registers
     that are fixed use (stack pointer, pc, frame pointer, etc.;.
     These are the registers that cannot be used to allocate
     a pseudo reg whose life does not cross calls.  */
  char x_fixed_regs[FIRST_PSEUDO_REGISTER];

  /* The same info as a HARD_REG_SET.  */
  HARD_REG_SET x_fixed_reg_set;

  /* Indexed by hard register number, contains 1 for registers
     that are fixed use or are clobbered by function calls.
     These are the registers that cannot be used to allocate
     a pseudo reg whose life crosses calls.  */
  char x_call_used_regs[FIRST_PSEUDO_REGISTER];

  char x_call_really_used_regs[FIRST_PSEUDO_REGISTER];

  /* The same info as a HARD_REG_SET.  */
  HARD_REG_SET x_call_used_reg_set;

  /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
     a function value return register or TARGET_STRUCT_VALUE_RTX or
     STATIC_CHAIN_REGNUM.  These are the registers that cannot hold quantities
     across calls even if we are willing to save and restore them.  */
  HARD_REG_SET x_call_fixed_reg_set;

  /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- but
     only if they are not merely part of that set because they are global
     regs.  Global regs that are not otherwise fixed can still take part
     in register allocation.  */
  HARD_REG_SET x_fixed_nonglobal_reg_set;

  /* Contains 1 for registers that are set or clobbered by calls.  */
  /* ??? Ideally, this would be just call_used_regs plus global_regs, but
     for someone's bright idea to have call_used_regs strictly include
     fixed_regs.  Which leaves us guessing as to the set of fixed_regs
     that are actually preserved.  We know for sure that those associated
     with the local stack frame are safe, but scant others.  */
  HARD_REG_SET x_regs_invalidated_by_call;

  /* Call used hard registers which can not be saved because there is no
     insn for this.  */
  HARD_REG_SET x_no_caller_save_reg_set;

  /* Table of register numbers in the order in which to try to use them.  */
  int x_reg_alloc_order[FIRST_PSEUDO_REGISTER];

  /* The inverse of reg_alloc_order.  */
  int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];

  /* For each reg class, a HARD_REG_SET saying which registers are in it.  */
  HARD_REG_SET x_reg_class_contents[N_REG_CLASSES];

  /* For each reg class, a boolean saying whether the class contains only
     fixed registers.  */
  bool x_class_only_fixed_regs[N_REG_CLASSES];

  /* For each reg class, number of regs it contains.  */
  unsigned int x_reg_class_size[N_REG_CLASSES];

  /* For each reg class, table listing all the classes contained in it.  */
  enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];

  /* For each pair of reg classes,
     a largest reg class contained in their union.  */
  enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];

  /* For each pair of reg classes,
     the smallest reg class that contains their union.  */
  enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];

  /* Vector indexed by hardware reg giving its name.  */
  const char *x_reg_names[FIRST_PSEUDO_REGISTER];

  /* Records which registers can form a particular subreg, with the subreg
     being identified by its outer mode, inner mode and offset.  */
  hash_table <simplifiable_subregs_hasher> *x_simplifiable_subregs;
};

extern struct target_hard_regs default_target_hard_regs;
#if SWITCHABLE_TARGET
extern struct target_hard_regs *this_target_hard_regs;
#else
#define this_target_hard_regs (&default_target_hard_regs)
#endif

#define accessible_reg_set \
  (this_target_hard_regs->x_accessible_reg_set)
#define operand_reg_set \
  (this_target_hard_regs->x_operand_reg_set)
#define fixed_regs \
  (this_target_hard_regs->x_fixed_regs)
#define fixed_reg_set \
  (this_target_hard_regs->x_fixed_reg_set)
#define fixed_nonglobal_reg_set \
  (this_target_hard_regs->x_fixed_nonglobal_reg_set)
#define call_used_regs \
  (this_target_hard_regs->x_call_used_regs)
#define call_really_used_regs \
  (this_target_hard_regs->x_call_really_used_regs)
#define call_used_reg_set \
  (this_target_hard_regs->x_call_used_reg_set)
#define call_fixed_reg_set \
  (this_target_hard_regs->x_call_fixed_reg_set)
#define regs_invalidated_by_call \
  (this_target_hard_regs->x_regs_invalidated_by_call)
#define no_caller_save_reg_set \
  (this_target_hard_regs->x_no_caller_save_reg_set)
#define reg_alloc_order \
  (this_target_hard_regs->x_reg_alloc_order)
#define inv_reg_alloc_order \
  (this_target_hard_regs->x_inv_reg_alloc_order)
#define reg_class_contents \
  (this_target_hard_regs->x_reg_class_contents)
#define class_only_fixed_regs \
  (this_target_hard_regs->x_class_only_fixed_regs)
#define reg_class_size \
  (this_target_hard_regs->x_reg_class_size)
#define reg_class_subclasses \
  (this_target_hard_regs->x_reg_class_subclasses)
#define reg_class_subunion \
  (this_target_hard_regs->x_reg_class_subunion)
#define reg_class_superunion \
  (this_target_hard_regs->x_reg_class_superunion)
#define reg_names \
  (this_target_hard_regs->x_reg_names)

/* Vector indexed by reg class giving its name.  */

extern const char * reg_class_names[];

/* Given a hard REGN a FROM mode and a TO mode, return nonzero if
   REGN cannot change modes between the specified modes.  */
#define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO)                          \
         CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN))

#endif /* ! GCC_HARD_REG_SET_H */