Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//===-- tsan_rtl_thread.cc ------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_sync.h"

namespace __tsan {

// ThreadContext implementation.

ThreadContext::ThreadContext(int tid)
  : ThreadContextBase(tid)
  , thr()
  , sync()
  , epoch0()
  , epoch1() {
}

#if !SANITIZER_GO
ThreadContext::~ThreadContext() {
}
#endif

void ThreadContext::OnDead() {
  CHECK_EQ(sync.size(), 0);
}

void ThreadContext::OnJoined(void *arg) {
  ThreadState *caller_thr = static_cast<ThreadState *>(arg);
  AcquireImpl(caller_thr, 0, &sync);
  sync.Reset(&caller_thr->proc()->clock_cache);
}

struct OnCreatedArgs {
  ThreadState *thr;
  uptr pc;
};

void ThreadContext::OnCreated(void *arg) {
  thr = 0;
  if (tid == 0)
    return;
  OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
  if (!args->thr)  // GCD workers don't have a parent thread.
    return;
  args->thr->fast_state.IncrementEpoch();
  // Can't increment epoch w/o writing to the trace as well.
  TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
  ReleaseImpl(args->thr, 0, &sync);
  creation_stack_id = CurrentStackId(args->thr, args->pc);
  if (reuse_count == 0)
    StatInc(args->thr, StatThreadMaxTid);
}

void ThreadContext::OnReset() {
  CHECK_EQ(sync.size(), 0);
  ReleaseMemoryToOS(GetThreadTrace(tid), TraceSize() * sizeof(Event));
  //!!! ReleaseMemoryToOS(GetThreadTraceHeader(tid), sizeof(Trace));
}

void ThreadContext::OnDetached(void *arg) {
  ThreadState *thr1 = static_cast<ThreadState*>(arg);
  sync.Reset(&thr1->proc()->clock_cache);
}

struct OnStartedArgs {
  ThreadState *thr;
  uptr stk_addr;
  uptr stk_size;
  uptr tls_addr;
  uptr tls_size;
};

void ThreadContext::OnStarted(void *arg) {
  OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
  thr = args->thr;
  // RoundUp so that one trace part does not contain events
  // from different threads.
  epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
  epoch1 = (u64)-1;
  new(thr) ThreadState(ctx, tid, unique_id, epoch0, reuse_count,
      args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
#if !SANITIZER_GO
  thr->shadow_stack = &ThreadTrace(thr->tid)->shadow_stack[0];
  thr->shadow_stack_pos = thr->shadow_stack;
  thr->shadow_stack_end = thr->shadow_stack + kShadowStackSize;
#else
  // Setup dynamic shadow stack.
  const int kInitStackSize = 8;
  thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
      kInitStackSize * sizeof(uptr));
  thr->shadow_stack_pos = thr->shadow_stack;
  thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
#endif
  if (common_flags()->detect_deadlocks)
    thr->dd_lt = ctx->dd->CreateLogicalThread(unique_id);
  thr->fast_state.SetHistorySize(flags()->history_size);
  // Commit switch to the new part of the trace.
  // TraceAddEvent will reset stack0/mset0 in the new part for us.
  TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);

  thr->fast_synch_epoch = epoch0;
  AcquireImpl(thr, 0, &sync);
  StatInc(thr, StatSyncAcquire);
  sync.Reset(&thr->proc()->clock_cache);
  thr->is_inited = true;
  DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
          "tls_addr=%zx tls_size=%zx\n",
          tid, (uptr)epoch0, args->stk_addr, args->stk_size,
          args->tls_addr, args->tls_size);
}

void ThreadContext::OnFinished() {
#if SANITIZER_GO
  internal_free(thr->shadow_stack);
  thr->shadow_stack = nullptr;
  thr->shadow_stack_pos = nullptr;
  thr->shadow_stack_end = nullptr;
#endif
  if (!detached) {
    thr->fast_state.IncrementEpoch();
    // Can't increment epoch w/o writing to the trace as well.
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
    ReleaseImpl(thr, 0, &sync);
  }
  epoch1 = thr->fast_state.epoch();

  if (common_flags()->detect_deadlocks)
    ctx->dd->DestroyLogicalThread(thr->dd_lt);
  thr->~ThreadState();
#if TSAN_COLLECT_STATS
  StatAggregate(ctx->stat, thr->stat);
#endif
  thr = 0;
}

#if !SANITIZER_GO
struct ThreadLeak {
  ThreadContext *tctx;
  int count;
};

static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
  Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
  ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
  if (tctx->detached || tctx->status != ThreadStatusFinished)
    return;
  for (uptr i = 0; i < leaks.Size(); i++) {
    if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
      leaks[i].count++;
      return;
    }
  }
  ThreadLeak leak = {tctx, 1};
  leaks.PushBack(leak);
}
#endif

#if !SANITIZER_GO
static void ReportIgnoresEnabled(ThreadContext *tctx, IgnoreSet *set) {
  if (tctx->tid == 0) {
    Printf("ThreadSanitizer: main thread finished with ignores enabled\n");
  } else {
    Printf("ThreadSanitizer: thread T%d %s finished with ignores enabled,"
      " created at:\n", tctx->tid, tctx->name);
    PrintStack(SymbolizeStackId(tctx->creation_stack_id));
  }
  Printf("  One of the following ignores was not ended"
      " (in order of probability)\n");
  for (uptr i = 0; i < set->Size(); i++) {
    Printf("  Ignore was enabled at:\n");
    PrintStack(SymbolizeStackId(set->At(i)));
  }
  Die();
}

static void ThreadCheckIgnore(ThreadState *thr) {
  if (ctx->after_multithreaded_fork)
    return;
  if (thr->ignore_reads_and_writes)
    ReportIgnoresEnabled(thr->tctx, &thr->mop_ignore_set);
  if (thr->ignore_sync)
    ReportIgnoresEnabled(thr->tctx, &thr->sync_ignore_set);
}
#else
static void ThreadCheckIgnore(ThreadState *thr) {}
#endif

void ThreadFinalize(ThreadState *thr) {
  ThreadCheckIgnore(thr);
#if !SANITIZER_GO
  if (!flags()->report_thread_leaks)
    return;
  ThreadRegistryLock l(ctx->thread_registry);
  Vector<ThreadLeak> leaks(MBlockScopedBuf);
  ctx->thread_registry->RunCallbackForEachThreadLocked(
      MaybeReportThreadLeak, &leaks);
  for (uptr i = 0; i < leaks.Size(); i++) {
    ScopedReport rep(ReportTypeThreadLeak);
    rep.AddThread(leaks[i].tctx, true);
    rep.SetCount(leaks[i].count);
    OutputReport(thr, rep);
  }
#endif
}

int ThreadCount(ThreadState *thr) {
  uptr result;
  ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
  return (int)result;
}

int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
  StatInc(thr, StatThreadCreate);
  OnCreatedArgs args = { thr, pc };
  u32 parent_tid = thr ? thr->tid : kInvalidTid;  // No parent for GCD workers.
  int tid =
      ctx->thread_registry->CreateThread(uid, detached, parent_tid, &args);
  DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", parent_tid, tid, uid);
  StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
  return tid;
}

void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
  uptr stk_addr = 0;
  uptr stk_size = 0;
  uptr tls_addr = 0;
  uptr tls_size = 0;
#if !SANITIZER_GO
  GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);

  if (tid) {
    if (stk_addr && stk_size)
      MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);

    if (tls_addr && tls_size) {
      // Check that the thr object is in tls;
      const uptr thr_beg = (uptr)thr;
      const uptr thr_end = (uptr)thr + sizeof(*thr);
      CHECK_GE(thr_beg, tls_addr);
      CHECK_LE(thr_beg, tls_addr + tls_size);
      CHECK_GE(thr_end, tls_addr);
      CHECK_LE(thr_end, tls_addr + tls_size);
      // Since the thr object is huge, skip it.
      MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
      MemoryRangeImitateWrite(thr, /*pc=*/ 2,
          thr_end, tls_addr + tls_size - thr_end);
    }
  }
#endif

  ThreadRegistry *tr = ctx->thread_registry;
  OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
  tr->StartThread(tid, os_id, &args);

  tr->Lock();
  thr->tctx = (ThreadContext*)tr->GetThreadLocked(tid);
  tr->Unlock();

#if !SANITIZER_GO
  if (ctx->after_multithreaded_fork) {
    thr->ignore_interceptors++;
    ThreadIgnoreBegin(thr, 0);
    ThreadIgnoreSyncBegin(thr, 0);
  }
#endif
}

void ThreadFinish(ThreadState *thr) {
  ThreadCheckIgnore(thr);
  StatInc(thr, StatThreadFinish);
  if (thr->stk_addr && thr->stk_size)
    DontNeedShadowFor(thr->stk_addr, thr->stk_size);
  if (thr->tls_addr && thr->tls_size)
    DontNeedShadowFor(thr->tls_addr, thr->tls_size);
  thr->is_dead = true;
  ctx->thread_registry->FinishThread(thr->tid);
}

static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
  uptr uid = (uptr)arg;
  if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
    tctx->user_id = 0;
    return true;
  }
  return false;
}

int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
  int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
  DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
  return res;
}

void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
  CHECK_GT(tid, 0);
  CHECK_LT(tid, kMaxTid);
  DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
  ctx->thread_registry->JoinThread(tid, thr);
}

void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
  CHECK_GT(tid, 0);
  CHECK_LT(tid, kMaxTid);
  ctx->thread_registry->DetachThread(tid, thr);
}

void ThreadSetName(ThreadState *thr, const char *name) {
  ctx->thread_registry->SetThreadName(thr->tid, name);
}

void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
                       uptr size, bool is_write) {
  if (size == 0)
    return;

  u64 *shadow_mem = (u64*)MemToShadow(addr);
  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
      thr->tid, (void*)pc, (void*)addr,
      (int)size, is_write);

#if SANITIZER_DEBUG
  if (!IsAppMem(addr)) {
    Printf("Access to non app mem %zx\n", addr);
    DCHECK(IsAppMem(addr));
  }
  if (!IsAppMem(addr + size - 1)) {
    Printf("Access to non app mem %zx\n", addr + size - 1);
    DCHECK(IsAppMem(addr + size - 1));
  }
  if (!IsShadowMem((uptr)shadow_mem)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    DCHECK(IsShadowMem((uptr)shadow_mem));
  }
  if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
    Printf("Bad shadow addr %p (%zx)\n",
               shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
    DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
  }
#endif

  StatInc(thr, StatMopRange);

  if (*shadow_mem == kShadowRodata) {
    // Access to .rodata section, no races here.
    // Measurements show that it can be 10-20% of all memory accesses.
    StatInc(thr, StatMopRangeRodata);
    return;
  }

  FastState fast_state = thr->fast_state;
  if (fast_state.GetIgnoreBit())
    return;

  fast_state.IncrementEpoch();
  thr->fast_state = fast_state;
  TraceAddEvent(thr, fast_state, EventTypeMop, pc);

  bool unaligned = (addr % kShadowCell) != 0;

  // Handle unaligned beginning, if any.
  for (; addr % kShadowCell && size; addr++, size--) {
    int const kAccessSizeLog = 0;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
        shadow_mem, cur);
  }
  if (unaligned)
    shadow_mem += kShadowCnt;
  // Handle middle part, if any.
  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
    int const kAccessSizeLog = 3;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
        shadow_mem, cur);
    shadow_mem += kShadowCnt;
  }
  // Handle ending, if any.
  for (; size; addr++, size--) {
    int const kAccessSizeLog = 0;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
        shadow_mem, cur);
  }
}

}  // namespace __tsan